# Genetic and Chemical Characterisation of the Cornexistin Pathway Provides Further Insight into Maleidride Biosynthesis

<sup>a</sup> Katherine Williams,<sup>a</sup> Agnieszka. J. Szwalbe,<sup>b</sup> Claire Dickson,<sup>b</sup> Tim R. Desson,<sup>c</sup> Nicholas. P. Mulholland,<sup>c</sup> Jason. L. Vincent,<sup>c</sup> John. M. Clough,<sup>c</sup> Andrew. M. Bailey,<sup>d</sup> Craig. P. Butts,<sup>b</sup> Christine. L. Willis,<sup>b</sup> Thomas. J. Simpson<sup>b</sup> and Russell. J. Cox<sup>a,b\*</sup>Institute for Organic Chemistry, and BMWZ, Leibniz University of Hannover, Schneiderberg 1B, 30167, Germany

<sup>b.</sup> School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK

<sup>c.</sup> Syngenta, Jealott's Hill, Bracknell, Berkshire, RG42 6EY, UK

<sup>d</sup> School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TH, UK

# **Electronic Supplementary Information**

| 1  | General Procedures 3                                           |    |  |  |  |  |
|----|----------------------------------------------------------------|----|--|--|--|--|
| 2  | NMR Instruments                                                | 3  |  |  |  |  |
| 3  | HRESIMS                                                        | 3  |  |  |  |  |
| 4  | Strains                                                        | 3  |  |  |  |  |
| 5  | Growth and Fermentation Conditions                             | 3  |  |  |  |  |
| 6  | Fungal Nucleic Acid Preparation                                | 3  |  |  |  |  |
| 7  | Genome and RNA Sequencing                                      | 3  |  |  |  |  |
| 8  | Cornexistin Biosynthetic Gene Cluster                          | 4  |  |  |  |  |
| 9  | Biosynthetic Gene Cluster Comparisons                          | 5  |  |  |  |  |
| 10 | Gene Disruption Procedures 8                                   |    |  |  |  |  |
| 11 | Transformation of P. variotii K5013                            | 11 |  |  |  |  |
| 12 | Genetic Characterisation of Gene Knock-Outs                    | 11 |  |  |  |  |
| 1  | 12.1 PCR Analysis of PVΔpks1 Strains                           | 12 |  |  |  |  |
| 1  | 12.2 PCR analysis of PV Agn $\Delta$ pks strains               | 13 |  |  |  |  |
| 1  | 12.3 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ L1 strains   | 14 |  |  |  |  |
| 1  | 12.4 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ L6 strains   | 15 |  |  |  |  |
| 1  | 12.5 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ R1 strains   | 16 |  |  |  |  |
| 1  | 12.6 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ L3 strains   | 17 |  |  |  |  |
| 1  | 12.7 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ L11 strains  | 18 |  |  |  |  |
| 1  | 12.8 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ L7 strains   | 19 |  |  |  |  |
| 1  | 12.9 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ L9 strains   | 20 |  |  |  |  |
| 1  | 12.10 PCR analysis of Agn $\Delta$ pks-PV $\Delta$ L14 strains | 21 |  |  |  |  |
| 1  | 12.11 PCR analysis of $PV\Delta L13$ strains                   | 22 |  |  |  |  |
| 13 | Metabolite Extraction and LCMS Analysis of P. variotii         | 23 |  |  |  |  |
| 14 | Quantification of Cornexistin Production 23                    |    |  |  |  |  |

| 15   | Comparison of Maleidride Production Between AgnΔpks and AgnΔpks-PVΔ11 Strains 24 |    |  |  |  |  |  |
|------|----------------------------------------------------------------------------------|----|--|--|--|--|--|
| 16   | LCMS Analysis of Other Agn∆pks Knock-Out Strains                                 | 24 |  |  |  |  |  |
| 17   | Structure Elucidation                                                            | 25 |  |  |  |  |  |
| 17.1 | Cornexistin 1                                                                    | 25 |  |  |  |  |  |
| 17.2 | 2 Analysis of the PV Agn $\Delta$ pks Strain                                     | 28 |  |  |  |  |  |
| 1    | 17.2.1Dihydrocornexistin diastereomers 10A and 10B28                             |    |  |  |  |  |  |
| 1    | 7.2.2 6-dehydroxy-2,2'dihydro-cornexistin 11                                     | 32 |  |  |  |  |  |
| 1    | 7.2.3 2,2-dihydro-2-hydroxycornexistin 15, isolated as its hemiacetal 9          | 33 |  |  |  |  |  |
| 17.3 | 3 Analysis of isolated metabolites                                               | 37 |  |  |  |  |  |
| 18   | Feeding Byssochlamic Acid 4 to the PV∆pks Strain                                 | 38 |  |  |  |  |  |
| 19   | Detection of Byssochlamic Acid 4 in P. variotii                                  | 40 |  |  |  |  |  |
| 20   | Cornexistin Mid-Pathway Hypothesis                                               | 41 |  |  |  |  |  |
| 21   | LCMS analysis of compounds 5, 5' and 13                                          | 42 |  |  |  |  |  |
| 22   | Hydrogenation of Cornexistin                                                     | 42 |  |  |  |  |  |
| 23   | NMR Experimental Details                                                         | 43 |  |  |  |  |  |
| 23.1 | L Compound 9                                                                     | 43 |  |  |  |  |  |
| 23.2 | 2 Compound 10                                                                    | 43 |  |  |  |  |  |
| 24   | Structural Calculations for 9, 10A and 10B                                       | 44 |  |  |  |  |  |
| 24.1 | Conformational search for 9 and 10                                               | 44 |  |  |  |  |  |
| 24.2 | 2 Calculation of chemical shifts for 9                                           | 45 |  |  |  |  |  |
| 24.3 | 3 Calculation of distances for NOE comparison for 10                             | 46 |  |  |  |  |  |
| 24.4 | Calculation of scalar coupling constants for 10                                  | 47 |  |  |  |  |  |
| 24.5 | 5 Chemical shift analysis for 9                                                  | 47 |  |  |  |  |  |
| 24.6 | 5 Analysis for 10                                                                | 51 |  |  |  |  |  |
| 25   | Crystallisation of Cornexistin and X-ray Analysis                                | 67 |  |  |  |  |  |
| 26   | References 69                                                                    |    |  |  |  |  |  |

# 1 General Procedures

Analytical grade chemicals and reagents were supplied from Sigma-Aldrich, Alfa Aesar, Acros Organics, Becton-Dickinson, BDH, Fisher, Fluka and Difco, unless otherwise stated. Solvents used for LC-DAD-MS analyses were HPLC grade. General molecular biology procedures were performed as standard<sup>1</sup> and molecular biology kits used according to manufacturer's protocols. Analytical PCR was performed using BioMix Red (Bioline) and preparative PCR was performed using Phusion polymerase (NEB) or KAPA-HiFli (Roche). Restriction endonucleases were purchased from Thermo Fisher Scientific or NEB.

# 2 NMR Instruments

Varian 400-MR (400MHz), Varian VNMRS500 (500MHz), Bruker 500 Cryo (500MHz) or Varian VNMRS600 Cryo (600MHz).

# 3 HRESIMS

(1) Bruker Daltonics micrOTOF II, (2) Bruker Daltonics Apex IV FT-ICR instruments.

# 4 Strains

*Escherichia coli* strain TOP10 (Invitrogen) was used as a host for all plasmids. *Saccharomyces cerevisiae* strain YPH499 (Stratagene) was used a host for plasmid assembly by homologous recombination. *Paecilomyces variotii* K5103 was obtained as a gift from Syngenta and is a derivative of *Paecilomyces variotii* SANK 21086.<sup>24</sup>

# 5 Growth and Fermentation Conditions

*P. variotii* K5013 was maintained on PDA at 25 °C. Spores were inoculated into 100ml PDB in 500ml Erlenmeyer flasks and grown at 25 °C with shaking at 200 rpm. For cornexistin and related metabolite production, cultures were grown for 11 days. For transformation, the culture was grown overnight, and subsequently protoplasted.

# 6 Fungal Nucleic Acid Preparation

*P. variotii* was cultured in PDB, which was then pelleted, lyophilized and ground under liquid nitrogen. Genomic DNA for both sequencing and PCR analysis was prepared using the GenElute Plant Genomic DNA Miniprep kit (Sigma). RNA was prepared using the RNeasy Plant Mini Kit (Qiagen) for sequencing.

# 7 Genome and RNA Sequencing

Paired-end and mate-pair Illumina sequencing runs were performed on gDNA extracted from fungal mycelia of *P. variotii*. The reads from both sequencing runs were assembled using the ABySS-pe<sup>2</sup> algorithm with a Kmer of 71 and scaffolded using SSPACE.<sup>3</sup> GApCloser was used to produce the final assembly. A total of 41 scaffolds were assembled with over 34 million bases and an N50 of 3.3 million. For the RNAseq, paired-end Illumina sequencing was conducted after TruSeq RNAseq library preparation. The sequencing reads were mapped to the genome assembly using Tophat.<sup>4</sup>

## 8 Cornexistin Biosynthetic Gene Cluster

Softberry FGENESH<sup>5</sup> was utilized for predictions of the intron and exon positions for coding sequences within the BGC, which were manually adjusted by comparison with the transcriptomics data. Coding sequences were then annotated using BLAST<sup>6</sup> and InterPro<sup>7</sup> (Table S1).



Figure S1: Cornexistin BGC

 Table S1: Analysis of the putative cornexistin BGC from P. variotii. \*Closest characterized homologue in the Swissprot

 database

|        |                                                 |                        | Identity |         | Query    |       |
|--------|-------------------------------------------------|------------------------|----------|---------|----------|-------|
| Gene   | Putative function                               | Homologue*             | (%)      | E value | coverage | Score |
| pvpks1 | Polyketide synthase                             | FUB1 <sup>8</sup>      | 36%      | 0       | 98%      | 1380  |
| pvL1   | Hydrolase                                       | FUB4 <sup>8</sup>      | 33%      | 1e-21   | 78%      | 92.8  |
| pvL2   | 2-methylcitrate dehydratase                     | yahT <sup>9</sup>      | 42%      | 1e-130  | 97%      | 390   |
| pvL3   | Ketosteroid isomerase-like                      | -                      | -        | -       | -        | -     |
| pvL4   | MFS transporter                                 | QDR1 <sup>10</sup>     | 31%      | 2e-65   | 86%      | 224   |
| pvL5   | Dioxygenase                                     | GA3ox2-3 <sup>11</sup> | 31%      | 7e-10   | 42%      | 63.2  |
| pvL6   | Citrate synthase-like                           | GltA <sup>12</sup>     | 33%      | 1e-80   | 95%      | 261   |
| pvL7   | Six-bladed beta-propeller protein               | -                      | -        | -       | -        | -     |
| pvL8   | C6 transcription factor                         | gliZ <sup>13</sup>     | 51%      | 5e-07   | 51%      | 55.8  |
| pvL9   | Serine carboxypeptidase                         | SCPA <sup>14</sup>     | 44%      | 2e-177  | 98%      | 520   |
| pvL10  | MFS transporter                                 | Qdr2p <sup>15</sup>    | 32%      | 7e-76   | 93%      | 251   |
| pvL11  | Dienelactone hydrolase                          | CMBL <sup>16</sup>     | 22%      | 2e-08   | 93%      | 57    |
| pvL12  | MFS transporter                                 | FUBT <sup>17</sup>     | 34%      | 2e-78   | 97%      | 259   |
| pvL13  | Cytochrome P450                                 | PbP450-218             | 33%      | 4e-72   | 89%      | 241   |
| pvL14  | Transketolase                                   | TK <sup>19</sup>       | 25%      | 9e-21   | 78%      | 100   |
| pvL15  | Aldo/keto reductase                             | CPR <sup>20</sup>      | 36%      | 5e-54   | 89%      | 181   |
| pvL16  | Hypothetical protein                            | -                      | -        | -       | -        | -     |
| pvL17  | Fumarylacetoacetate hydrolase                   | -                      | -        | -       | -        | -     |
| pvL18  | NRPS-like enzyme                                | FUB8 <sup>8</sup>      | 32%      | 1e-153  | 96%      | 486   |
| pvR1   | Phosphatidylethanolamine-binding protein (PEBP) | CEN <sup>21</sup>      | 27%      | 0.56    | 71%      | 33.9  |
| pvR2   | Phosphotransferase                              | -                      | -        | -       | -        | -     |

## 9 Biosynthetic Gene Cluster Comparisons

BGCs were compared using Artemis Comparison Tool (ACT)<sup>22</sup>



Figure S2: Comparison of the cornexistin 1 cluster (middle), to the putative maleidride cluster from *Cochliobolus* (top) and the byssochlamic acid 4 cluster using ACT. Regions of homology are identified by pink and blue lines. Pink lines denote homology on the same strand, and blue strands denote homology on the opposite strand.

T. stipitatus ATCC 10500 Cluster 1



Figure S3: Comparison of the cornexistin 1 cluster (middle), to the two putative maleidride clusters from *Talaromyces* (top and bottom) using ACT. Regions of homology are identified by pink and blue lines. Pink lines denote homology on the same strand, and blue strands denote homology on the opposite strand.

**Table S2:** Percentage identity matrix calculated using clustal Ω of PKS sequences from the cornexistin 1 cluster, the C.

 heterostrophus cluster, the two T. stipitatus clusters and the byssochlamic acid 4 cluster.

| PKSs   | pvpks1 | chpks1 | tspks1 | tspks2 | bfpks1 |
|--------|--------|--------|--------|--------|--------|
| pvpks1 | 100    | 47.77  | 48.91  | 50.42  | 50.29  |
| chpks1 | 47.77  | 100    | 45.65  | 45.29  | 50.79  |
| tspks1 | 48.91  | 45.65  | 100    | 56.51  | 45.8   |
| tspks2 | 50.42  | 45.29  | 56.51  | 100    | 46.93  |
| bfpks1 | 50.29  | 50.79  | 45.8   | 46.93  | 100    |

**Table S3:** Percentage identity matrix calculated using clustal Ω of hydrolase 341 sequences from the cornexistin 1 cluster,the C. heterostrophus cluster, the two T. stipitatus clusters and the byssochlamic acid 4 cluster.

| Hyd 341 | pvL1  | chR9  | ts1R10 | ts2L9 | bfL1  |
|---------|-------|-------|--------|-------|-------|
| pvL1    | 100   | 49.54 | 42.79  | 53.18 | 58.64 |
| chR9    | 49.54 | 100   | 40.64  | 51.6  | 54.34 |
| ts1R10  | 42.79 | 40.64 | 100    | 45.7  | 44.34 |
| ts2L9   | 53.18 | 51.6  | 45.7   | 100   | 53.85 |
| bfL1    | 58.64 | 54.34 | 44.34  | 53.85 | 100   |

**Table S4:** Percentage identity matrix calculated using clustal Ω of citrate synthase sequences from the cornexistin 1 cluster, the *C. heterostrophus* cluster, the two *T. stipitatus* clusters and the byssochlamic acid 4 cluster.

| CSs   | pvL6  | chR8  | ts1R7 | ts2L2 | bfL2  |
|-------|-------|-------|-------|-------|-------|
| pvL6  | 100   | 59.86 | 45.69 | 65.69 | 58.28 |
| chR8  | 59.86 | 100   | 43.76 | 58.28 | 63.95 |
| ts1R7 | 45.69 | 43.76 | 100   | 44.96 | 50.35 |
| ts2L2 | 65.69 | 58.28 | 44.96 | 100   | 55.33 |
| bfL2  | 58.28 | 63.95 | 50.35 | 55.33 | 100   |

**Table S5:** Percentage identity matrix calculated using clustal  $\Omega$  of 2-methyl citrate dehydratase sequences from the cornexistin **1** cluster, the *C. heterostrophus* cluster, the two *T. stipitatus* clusters and the byssochlamic acid **4** cluster.

| 2MCDs | pvL2  | chR7  | ts1R8 | ts2L1 | bfL3  |
|-------|-------|-------|-------|-------|-------|
| pvL2  | 100   | 61.94 | 52.59 | 67.23 | 63.66 |
| chR7  | 61.94 | 100   | 50.21 | 58.81 | 61.07 |
| ts1R8 | 52.59 | 50.21 | 100   | 54.12 | 52.26 |
| ts2L1 | 67.23 | 58.81 | 54.12 | 100   | 63.52 |
| bfL3  | 63.66 | 61.07 | 52.26 | 63.52 | 100   |

**Table S6:** Percentage identity matrix calculated using clustal  $\Omega$  of ketosteroid isomerase-like sequences from the cornexistin **1** cluster, the *C. heterostrophus* cluster, the two *T. stipitatus* clusters and the byssochlamic acid **4** cluster.

| KI-like | pvL3  | chR5  | chR1  | ts1R4 | ts2L8 | bfL6  | bfL10 |
|---------|-------|-------|-------|-------|-------|-------|-------|
| pvL3    | 100   | 44.6  | 42.49 | 36.32 | 51.9  | 47.3  | 44    |
| chR5    | 44.6  | 100   | 49.06 | 37.62 | 44.55 | 48.13 | 60.29 |
| chR1    | 42.49 | 49.06 | 100   | 34.56 | 41.52 | 51.28 | 46.08 |
| ts1R4   | 36.32 | 37.62 | 34.56 | 100   | 35.21 | 39.37 | 40.58 |
| ts2L8   | 51.9  | 44.55 | 41.52 | 35.21 | 100   | 39.66 | 43.06 |
| bfL6    | 47.3  | 48.13 | 51.28 | 39.37 | 39.66 | 100   | 49.33 |
| bfL10   | 44    | 60.29 | 46.08 | 40.58 | 43.06 | 49.33 | 100   |

**Table S7:** Percentage identity matrix calculated using clustal Ω of PEBP-like sequences from the cornexistin 1 cluster, the *C. heterostrophus* cluster, the two *T. stipitatus* clusters and the byssochlamic acid 4 cluster.

| PEBP-like | pvR1  | chR10 | ts1R3 | ts1R9 | ts2L3 | ts2L5 | bfL5  | bfL9  |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| pvR1      | 100   | 33.99 | 15.03 | 33.7  | 20.11 | 43.06 | 38.46 | 23.72 |
| chR10     | 33.99 | 100   | 17.88 | 35.2  | 21.26 | 38.12 | 43.48 | 22.58 |
| ts1R3     | 15.03 | 17.88 | 100   | 18.59 | 15.07 | 14.94 | 17.88 | 38.05 |
| ts1R9     | 33.7  | 35.2  | 18.59 | 100   | 21.76 | 36.56 | 35.2  | 23.12 |
| ts2L3     | 20.11 | 21.26 | 15.07 | 21.76 | 100   | 22.22 | 22.41 | 18.79 |
| ts2L5     | 43.06 | 38.12 | 14.94 | 36.56 | 22.22 | 100   | 42.11 | 18.47 |
| bfL5      | 38.46 | 43.48 | 17.88 | 35.2  | 22.41 | 42.11 | 100   | 22.73 |
| bfL9      | 23.72 | 22.58 | 38.05 | 23.12 | 18.79 | 18.47 | 22.73 | 100   |

## **10** Gene Disruption Procedures

The genes investigated within the cornexistin cluster were knocked-out using the bipartite method.<sup>23</sup> This method relies on the splitting of the resistance marker (with a ~500bp overlap), which leads to the requirement for homologous recombination between the two resistance marker halves for selection to occur. This activation of the homologous recombination pathway appears to lead to higher gene disruption levels. Gene disruption in *P. variotii* using this method varied between 20-100% of transformants tested.

Two different resistance markers were utilised in the transformation of P. variotii K5013, the HygR gene (for hygromycin resistance) (CAA83647) and the nptII gene (for geneticin resistance) (AAL78958). In each case the resistance cassette consisted of the gpdA promoter and in some cases the trpC terminator. In some constructs no terminator was present as it does not appear to be necessary for the efficacy of the resistance marker. The gene knock-out fragments, which consisted of a region homologous (~1-2kb) to the P. variotii genome and one half of the resistance cassette, were amplified by several rounds of PCR. Initially, gDNA was isolated from P. variotii lyophilised mycelium using the GenElute Plant Genomic DNA Miniprep kit (Sigma). The left hand side homologous region was amplified using a reverse primer that contained a tail homologous to the beginning of the gpdA promoter, and the right hand side homologous region was amplified using a forward primer that contained a tail either homologous to the trpC terminator or to the end of the resistance gene. All primers used are shown in Table S8. The split fragments of the resistance cassette were amplified separately, and subsequently approximately equal amounts of the left hand side homologous region and the left hand side of the resistance cassette (and vice versa) were mixed and used as a template in a fusion PCR amplification. In cases where fusion PCR proved difficult, homologous recombination in the yeast, Saccharomyces cerevisiae was used to assemble the knockout fragments. Approximately equal amounts of the fused PCR products were used in a transformation of P. variotii.

| Primer Name | Sequence (5' to 3')   | Notes                                     |
|-------------|-----------------------|-------------------------------------------|
| HygRP5-F    | CATGATGGGGATCCTCTAGTG | Hygromycin resistance cassette split      |
| HygRP6.2-R  | CGTCAGGACATTGTTGGAG   | amplification primers (P7.1 was utilised  |
| HygRP7.1-F  | CTGTCGAGAAGTTTCTGATCG | only for the PVpks1 KO, P7.2 was used for |

| HygRP7.2-F GCTTTCAGCTTCGATGTAGG                               |                                                | all other hygromycin KOs) (the two P8                |  |  |
|---------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|--|--|
| HygRP8-R CAGGTCGAGTGGAGATGTG                                  |                                                | primers represent the inclusion or not of            |  |  |
| HygRP8.2-R                                                    | CTATTCCTTTGCCCTCGGA                            | the terminator)                                      |  |  |
| nptII-P6-R                                                    | CCATGATATTCGGCAAGCAG                           | Geneticin resistance cassette split                  |  |  |
| nptII-P7-F                                                    | AGAGGCTATTCGGCTATGAC                           | amplification primers (the forward primer            |  |  |
| nptII-P8-R                                                    | TCAGAAGAACTCGTCAAGAAGG                         | for the left hand side was HygRP5-F)                 |  |  |
| PVs6c30-PKS-P1-F                                              | ATACTCCTCCAACCAACTGC                           | Primers for the knock-out of the PKS                 |  |  |
| PVs6c30-PKS-P2-R                                              | CACTAGAGGATCCCCATCATGGGCGACGACA<br>ATTATACGAC  | involved in production of xanthone related compounds |  |  |
| PVs6c30-PKS-P3.1-<br>F                                        | CCTTCTTGACGAGTTCTTCTGAGCATCGTTAG<br>CAATGATCCG |                                                      |  |  |
| PVs6c30-PKS-P4-R                                              | CTTTCGGGAACTTCACAACC                           |                                                      |  |  |
| PVs1c4-KI-P1-F                                                | CGTGATGGTTAGGTTGACC                            | Ketosteroid isomerase-like knock-out                 |  |  |
| PVs1c4-KI-P2-R                                                | CACTAGAGGATCCCCATCATGCTAGCGACTTG<br>AAGTTGTCC  | primers                                              |  |  |
| PVs1c4-KI-P3-F                                                | TCCGAGGGCAAAGGAATAGAGGAGCATCCC<br>AACTACATC    |                                                      |  |  |
| PVs1c4-KI-P4-R                                                | ATACGGCAGTTGGGTGATG                            |                                                      |  |  |
| PVs1c4-PEBP-P1-F                                              | GACGCGTCATATGTGCTAGTC                          | PEBP knock-out primers                               |  |  |
| PVs1c4-PEBP-P2-R                                              | CACTAGAGGATCCCCATCATGAGCCCACGAC<br>ATATCGCTTC  |                                                      |  |  |
| PVs1c4-PEBP-P3.1-<br>F                                        | TCCGAGGGCAAAGGAATAGGGTAGGACTGG<br>AACACACTG    |                                                      |  |  |
| PVs1c4-PEBP-P4-R                                              | GATTGATCGACTGCTCAAGC                           |                                                      |  |  |
| PVs1c4-OXR341-<br>P1-F                                        | ACGACCAGACACTGTCATCC                           | Hydrolase 341 knock-out primers                      |  |  |
| PVs1c4-OXR341-                                                | CACTAGAGGATCCCCATCATGTGTCTACCGAG               |                                                      |  |  |
| P2-R                                                          | TTGGGACTG                                      | -                                                    |  |  |
| PVS1C4-UXR341-<br>P3 1-F                                      |                                                |                                                      |  |  |
| PVs1c4-OXR341-                                                | CACAAGCATGTCGGTGTAGTC                          | -                                                    |  |  |
| P4-R                                                          |                                                |                                                      |  |  |
| PVs1c4-CS-P1-F                                                | TCAGATGTACTCGAGTAGTGG                          | Citrate synthase knock-out primers                   |  |  |
| PVs1c4-CS-P2-R                                                | CACTAGAGGATCCCCATCATGAACTGCATGC<br>GAACGC      |                                                      |  |  |
| PVs1c4-CS-P3-F                                                | TCCGAGGGCAAAGGAATAGAGGTGATCGTG<br>ATGGACG      |                                                      |  |  |
| PVs1c4-CS-P4-R                                                | ATGAACACGGAGGCTTCCAC                           |                                                      |  |  |
| PVs1c4-DLH-P1-F                                               | CTACATCACCAGCTTCCAGTG                          | Dienelactone hydrolase knock-out primers             |  |  |
| PVs1c4-DLH-P2-R CACTAGAGGATCCCCATCATGAACCGATGAA<br>GGAACTCGTC |                                                |                                                      |  |  |
| PVs1c4-DLH-P3.2-F                                             | TCCGAGGGCAAAGGAATAGGACCAGTGATGT<br>CTACATCC    |                                                      |  |  |
| PVs1c4-DLH-P4-R                                               | TCTATTGTTCTCCCGCTGAC                           |                                                      |  |  |
| PVs1c4-P450-P1-F                                              | CGCCAATACCTGTGCTCTAG                           | P450 knock-out primers                               |  |  |
| PVs1c4-P450-P2-R                                              | CACTAGAGGATCCCCATCATGGTCGAAAGAG<br>TTGGAGAAG   |                                                      |  |  |
| PVs1c4-P450-P3-F                                              | CACATCTCCACTCGACCTGCCTTACTGAGGAT<br>GGTGTAGC   |                                                      |  |  |
| PVs1c4-P450-P4-R                                              | GGGTTATCAGTCTCGGTATGC                          |                                                      |  |  |

| PVs1c4-OXR-P1-F | GTTCCCAGGTTTCTCTGCAA                                   | Dioxygenase knock-out primers            |
|-----------------|--------------------------------------------------------|------------------------------------------|
| PVs1c4-OXR-P2-R | CACTAGAGGATCCCCATCATGGACTCAGCTTG                       |                                          |
|                 | TATGCCTTC                                              | -                                        |
| PVs1c4-OXR-P3-F | CCACATCTCCACTCGACCTGATCCGTTTCCTGC<br>ATAATCC           |                                          |
| PVs1c4-OXR-P4-R | CCTCAAGATAGATGCAAGCC                                   |                                          |
| PVs1c4-PKS-P1-F | GATCCGACGACAAGAGTATG                                   | PKS knock-out primers                    |
| PVs1c4-PKS-P2-R | CACTAGAGGATCCCCATCATGCTTGACCCGTG<br>AAGATGAAG          |                                          |
| PVs1c4-PKS-P3-F | CACATCTCCACTCGACCTGCAACCACGAGATT<br>GTCTCGTC           |                                          |
| PVs1c4-PKS-P4-R | GCTGGGAGTCGATATTGTC                                    |                                          |
| PVs1c4-TK-P1-F  | tagatcggctctcgtgctac                                   | Transketolase knock-out primers          |
| PVs1c4-TK-P2-R  | CGAAAGATCCACTAGAGGATCCCCATCATGTT<br>GAACTGCTTGAGGTCGAC |                                          |
| PVs1c4-TK-P3-F  | CCCAGCACTCGTCCGAGGGCAAAGGAATAGG<br>TCATCGATTCTGACCTTGC |                                          |
| PVs1c4-TK-P4-R  | TGCCCTCCAATCATCTAAGG                                   |                                          |
| PVs1c4-GL-P1-F  | gtctccgacagtaacccatc                                   | Six-bladed beta-propeller protein knock- |
| PVs1c4-GL-P2-R  | CGAAAGATCCACTAGAGGATCCCCATCATGC<br>GAATTGGAGGTGCTGTTGG | out primers                              |
| PVs1c4-GL-P3-F  | CCCAGCACTCGTCCGAGGGCAAAGGAATAGA<br>CTATGGCCTCTCGTCGTCC |                                          |
| PVs1c4-GL-P4-R  | agcaggggatgggtactgtg                                   |                                          |
| PVs1c4-SC-P1-F  | GCTGATAACAGGACTCGTG                                    | Serine carboxypeptidase knock-out        |
| PVs1c4-SC-P2-R  | CGAAAGATCCACTAGAGGATCCCCATCATGA<br>TCCCATACGTCAGCTGTC  | primers                                  |
| PVs1c4-SC-P3-F  | CCCAGCACTCGTCCGAGGGCAAAGGAATAGC<br>TATCTCAACCAACGCTGG  |                                          |
| PVs1c4-SC-P4-R  | ACCTTGAATATGAGGCATGAC                                  |                                          |
| TrpC-Nd-F       | GCTCCGTAACACCCAATACG                                   | Primers used to test integration of KO   |
| pgpdA-Bg-R      | GCTCGACGTATTTCAGTGTC                                   | constructs                               |
| HygR-Nd-F       | CTATCAGAGCTTGGTTGACG                                   |                                          |
| HygR-Bg-F       | GCTTTCAGCTTCGATGTAGG                                   |                                          |
| s1c4-F1         | CTTCTCCCATCTGTGAATGG                                   |                                          |
| s1c4-R1         | TGCCGTCATCTGATGTGAAC                                   |                                          |
| s6c30-F1        | CTGTGGAGACTCCTTGTTGC                                   |                                          |
| S6c30-R1        | CTTCAACACGGGATCTTGAG                                   |                                          |
| s1c4-F2         | CAGGCCATTCCCACCAAC                                     | ]                                        |
| S1c4-R2         | CGAGCACCAAGTACACGATG                                   | ]                                        |
| s1c4-F3         | AGTACCGAACGTTCTGGATC                                   | 1                                        |
| s1c4-R3         | CGTATCTGGTAACGTAGGACC                                  | ]                                        |
| s1c4-F4         | GTCAGTTGCTCATCTGGTTG                                   | ]                                        |

| s1c4-R4  | GTTGGTGCATTGGTACATG   |
|----------|-----------------------|
| s1c4-F5  | ACAATCGTCCAGGTCTGTTG  |
| s1c4-R5  | ACAACCCAGTCTGTATCACG  |
| s1c4-F7  | ATCAGGAACTGTCTCGAGAGC |
| s1c4-R7  | ATTCTATGCCACCTCGTTCG  |
| s1c4-F9  | GCAGTCCAGACACAACAAAC  |
| s1c4-R9  | GCAGTGGATGACAATTGACC  |
| s1c4-F10 | GCTCTCCTACAACATGGTAAG |
| s1c4-R10 | GGTCAAGTAGGTATGATTGC  |
| s1c4-F11 | CAGTAGTCCAAGGAGCCAC   |
| s1c4-R11 | GGTAAAGACTGGATTGGAAG  |
| s1c4-F12 | AACAGCACCTCCAATTCGAC  |
| s1c4-R12 | ATCACATCACGAGAACTCCC  |

# 11 Transformation of *P. variotii* K5013

Transformation was performed using the PEG mediated protoplast method. P. variotii was grown on PDA plates for 1-2 weeks. Spores from a single plate were inoculated into 100ml PDB and cultured overnight at 25°C with shaking at 200rpm. Germinated spores were pelleted and washed with sterile H<sub>2</sub>O and then 0.7 M KCl. The pellet was then resuspended in 10ml filter sterilised protoplasting solution (0.7M KCl, 5mg/ml driselase, 5mg/ml Trichoderma lysing enzyme), and mixed gently at 25°C for 90 minutes. Protoplasts were separated from the mycelium through sterile miracloth and centrifuged at 1000 x g for 3 minutes. The pellet was washed with solution 1 (0.7M KCl, 50mM CaCl<sub>2</sub> 10mM Tris-HCI [pH 7.5]), and then resuspended in at least 400µl of solution 1. Aliquots of 200µl were taken for each transformation and added to  $50\mu$ I of PEG solution (25% (w/v) PEG 3350, 0.7M KCl, 50mM CaCl<sub>2</sub> 10mM Tris-HCl [pH 7.5]) along with ~50ng DNA of each knock-out fragment. The protoplasts were gently mixed and placed on ice for 20 minutes. Subsequently, 500µl of PEG solution was added and incubated at room temperature for 5 minutes. Aliquots of 175µl were spread onto plates containing PDA + 1M sorbitol, and the plates incubated at 25°C overnight. Overlays of ~10ml PDA containing either hygromycin/geneticin/both drugs at a final concentration of 100µg/ml were added the next day. Transformants appeared approximately 3-5 days later, and were subcultured to secondary plates containing the appropriate drug(s). After sporulation had occurred, the spores were streaked to single colonies on tertiary plates, and finally single colonies were transferred to quaternary plates to ensure genetic purity.

# 12 Genetic Characterisation of Gene Knock-Outs

Transformants from the gene knock-out experiments were inoculated from a single plate into 100ml PDB and cultured at 25°C, with 200rpm shaking. After 2-3 days, 10ml of the culture was removed, centrifuged and lyophilised for gDNA extraction. Integration of the knock-out constructs were tested *via* primers designed outside the homologous regions, and within the resistance cassettes. Transformants that had been determined to be knock-outs were then subjected to metabolite extraction using the remaining 90ml of culture.

#### 12.1 PCR Analysis of PVΔpks1 Strains

Primers TrpC-Nd-F and s1c4-R1 were used to test for 3' integration of the PVpks1 knock-out construct which should amplify a product of 2535 bp. Two putative transformants were analysed as shown in Figure S4. An amplicon of the correct size was apparent for T2.

Primers s1c4-F1 and PgpdA-Bg-R were used to test for 5' integration of the PVpks1 knock-out construct which should amplify a product of 2172 bp. Two putative transformants were analysed as shown in Figure S5. No amplicons of the correct size were apparent for either transformant.



**Figure S4:** Gel electrophoresis of PCR analysis for integration of the 3' end of the PVpks1 knock-out construct. *P. variotii* WT was compared to two transformants, T1 and T2. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.



**Figure S5:** Gel electrophoresis of PCR analysis for integration of the 5' end of the PVpks1 knock-out construct. *P. variotii* WT was compared to two transformants, T1 and T2. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.

Although PCR analysis did not demonstrate that both the 5' and 3' ends of the knock-out construct had integrated correctly, T2 ( $PV\Delta pks1-T2$ ) was taken forward for metabolite analysis, as only 3' integration should still disrupt the PKS and prevent full gene transcription and translation.

## **12.2** PCR analysis of PV Agn∆pks strains

Primers s6c30-F1 and PgpdA-Bg-R were used to test for 5' integration of the Agnpks knock-out construct which should amplify a product of 2057 bp. Seven putative transformants were analysed as shown in Figure S6. Amplicons of the correct size were apparent for four transformants.

Primers nptII-P7-F and s6c30-R1 were used to test for 3' integration of the Agnpks knock-out construct which should amplify a product of 2640 bp. Seven putative transformants were analysed as shown in Figure S7. Amplicons of the correct size were apparent for six transformants.

Transformants T1, T2, T4 and T7 showed correct integration of both sides of the Agnpks knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S6:** Gel electrophoresis of PCR analysis for integration of the 5' end of the Agnpks knock-out construct. *P. variotii* WT was compared to seven transformants, T1 to T7. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.



**Figure S7:** Gel electrophoresis of PCR analysis for integration of the 3' end of the Agnpks knock-out construct. *P. variotii* WT was compared to seven transformants, T1 to T7. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.

#### 12.3 PCR analysis of AgnΔpks-PVΔL1 strains

Primers s1c4-F4 and PgpdA-Bg-R were used to test for 5' integration of the Hyd341 knock-out construct which should amplify a product of 1923 bp. Six putative transformants were analysed as shown in Figure S8. Amplicons of the correct size were apparent for four transformants.

Primers HygR-Nd-F and s1c4-R4 were used to test for 3' integration of the Hyd341 knock-out construct which should amplify a product of 1787 bp. Six putative transformants were analysed as shown in Figure S9. Amplicons of the correct size were apparent for five transformants.

Transformants T1, T4, T5 and T6 showed correct integration of both sides of the Hyd341 knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S8:** Gel electrophoresis of PCR analysis for integration of the 5' end of the Hyd341 knock-out construct. *P. variotii* AgnΔpks is compared to six transformants, T1 to T6. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.



**Figure S9:** Gel electrophoresis of PCR analysis for integration of the 3' end of the Hyd341 knock-out construct. *P. variotii* Agn $\Delta$ pks is compared to six transformants, T1 to T6. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.

## 12.4 PCR analysis of AgnΔpks-PVΔL6 strains

Primers s1c4-F12 and PgpdA-Bg-R were used to test for 5' integration of the citrate synthase knockout construct which should amplify a product of 1825 bp. Four putative transformants were analysed as shown in Figure S10. Amplicons of the correct size were apparent for two transformants. Primers HygR-Bg-F and s1c4-R12 were used to test for 3' integration of the citrate synthase knockout construct which should amplify a product of 2411 bp. Four putative transformants were analysed as shown in Figure S11. Amplicons of the correct size were apparent for two transformants.

Transformants T1 and T3 showed correct integration of both sides of the citrate synthase knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S10:** Gel electrophoresis of PCR analysis for integration of the 5' end of the citrate synthase knock-out construct. *P. variotii* WT was compared to four transformants, T1 to T4.



**Figure S11:** Gel electrophoresis of PCR analysis for integration of the 3' end of the citrate synthase knock-out construct. *P. variotii* WT was compared to four transformants, T1 to T4.

# 12.5 PCR analysis of AgnΔpks-PVΔR1 strains

Primers s1c4-F5 and PgpdA-Bg-R were used to test for 5' integration of the PEBP knock-out construct which should amplify a product of 1953 bp. Six putative transformants were analysed as shown in Figure S12. Amplicons of the correct size were apparent for five transformants.

Primers HygR-Nd-F and s1c4-R5 were used to test for 3' integration of the PEBP knock-out construct which should amplify a product of 2304 bp. Six putative transformants were analysed as shown in Figure S13. Amplicons of the correct size were apparent for five transformants.

Transformants T1, T2, T3, T5 and T6 showed correct integration of both sides of the PEPB knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S12:** Gel electrophoresis of PCR analysis for integration of the 5' end of the PEBP knock-out construct. *P. variotii* Agn $\Delta$ pks is compared to six transformants, T1 to T6–ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.



**Figure S13:** Gel electrophoresis of PCR analysis for integration of the 3' end of the PEBP knock-out construct. *P. variotii* Agn $\Delta$ pks is compared to six transformants, T1 to T6. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.

#### 12.6 PCR analysis of AgnΔpks-PVΔL3 strains

Primers s1c4-F7 and pgpdA-Bg-R were used to test for 5' integration of the KI knock-out construct which should amplify a product of 1059 bp. Five putative transformants were analysed as shown in Figure S14. Amplicons of the correct size were apparent for two transformants.

Primers HygR-Nd-F and s1c4-R7 were used to test for 3' integration of the KI knock-out construct which should amplify a product of 1723 bp. Five putative transformants were analysed as shown in Figure S15. Amplicons of the correct size were apparent for two transformants.

Transformants T1 and T5 showed correct integration of both sides of the KI knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S14:** Gel electrophoresis of PCR analysis for integration of the 5' end of the KI knock-out construct. *P. variotii* Agn∆pks is compared to five transformants, T1 to T5. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.





## 12.7 PCR analysis of AgnΔpks-PVΔL11 strains

Primers s1c4-F3 and PgpdA-Bg-R were used to test for 5' integration of the DLH knock-out construct which should amplify a product of 2099 bp. Six putative transformants were analysed as shown in Figure S16. Amplicons of the correct size were apparent for three transformants.

Primers HygR-Nd-F and s1c4-R3 were used to test for 3' integration of the DLH knock-out construct which should amplify a product of 2029 bp. Six putative transformants were analysed as shown in Figure S17. Amplicons of the correct size were apparent for three transformants.

Transformants T1, T3 and T4 showed correct integration of both sides of the DLH knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S16:** Gel electrophoresis of PCR analysis for integration of the 5' end of the DLH knock-out construct. *P. variotii* Agn $\Delta$ pks is compared to six transformants, T1 to T6. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.



**Figure S17:** Gel electrophoresis of PCR analysis for integration of the 3' end of the DLH knock-out construct. *P. variotii* Agn $\Delta$ pks is compared to six transformants, T1 to T6. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.

#### 12.8 PCR analysis of AgnΔpks-PVΔL7 strains

Primers s1c4-F9 and PgpdA-Bg-R were used to test for 5' integration of the 6-bladed beta propeller knock-out construct which should amplify a product of 1467 bp. Five putative transformants were analysed as shown in Figure S18. Amplicons of the correct size were apparent for four transformants.

Primers HygR-Nd-F and s1c4-R9 were used to test for 3' integration of the 6-bladed beta propeller knock-out construct which should amplify a product of 1396 bp. Five putative transformants were analysed as shown in Figure S19. Amplicons of the correct size were apparent for all transformants, however some products were clearer than others.

Transformants T1, T2, T3 and T5 showed correct integration of both sides of the 6-bladed beta propeller knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S18:** Gel electrophoresis of PCR analysis for integration of the 5' end of the 6-bladed beta propeller knock-out construct. *P. variotii* Agn∆pks is compared to five transformants, T1 to T5. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.



**Figure S19:** Gel electrophoresis of PCR analysis for integration of the 3' end of the 6-bladed beta propeller knock-out construct. *P. variotii* Agn∆pks is compared to five transformants, T1 to T5. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control. Some non-specific binding is apparent.

# 12.9 PCR analysis of AgnΔpks-PVΔL9 strains

Primers s1c4-F11 and PgpdA-Bg-R were used to test for 5' integration of the serine carboxypeptidase knock-out construct which should amplify a product of 1282 bp. Five putative transformants were analysed as shown in Figure S20. An amplicon of the correct size was apparent for one transformant.

Primers HygR-Nd-F and s1c4-R11 were used to test for 3' integration of the serine carboxypeptidase knock-out construct which should amplify a product of 1213 bp. Five putative transformants were analysed as shown in Figure S21. No amplicons of the correct size were apparent for any transformants.

Although PCR analysis does not demonstrate that both the 5' and 3' ends of the knock-out construct have integrated correctly, T1 (AgnΔpks-PVΔL9-T1) was taken forward for metabolite analysis, as only 5' integration should still disrupt the serine carboxypeptidase and prevent full gene transcription and translation.



**Figure S20:** Gel electrophoresis of PCR analysis for integration of the 5' end of the serine carboxypeptidase knock-out construct. *P. variotii* AgnΔpks is compared to five transformants, T1 to T5. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control. Some non-specific binding is apparent.





#### 12.10 PCR analysis of AgnΔpks-PVΔL14 strains

Primers s1c4-F10 and PgpdA-Bg-R were used to test for 5' integration of the transketolase knock-out construct which should amplify a product of 1253 bp. Two putative transformants were analysed as shown in Figure S22. Amplicons of the correct size were apparent for both transformants.

Primers HygR-Bg-F and s1c4-R10 were used to test for 3' integration of the transketolase knock-out construct which should amplify a product of 2236 bp. Two putative transformants were analysed as shown in Figure S23. Amplicons of the correct size were apparent for both transformants.

Transformants T1 and T2 showed correct integration of both sides of the transketolase knock-out construct, and therefore were analysed for their metabolite profile.



Figure S22: Gel electrophoresis of PCR analysis for integration of the 5' end of the transketolase knock-out construct. *P. variotii* Agn∆pks is compared to two transformants, T1 and T2.



Figure S23: Gel electrophoresis of PCR analysis for integration of the 3' end of the transketolase knock-out construct. *P. variotii* Agn∆pks is compared to two transformants, T1 and T2.

## 12.11 PCR analysis of PVΔL13 strains

Primers TrpC-Nd-F and s1c4-R2 were used to test for 3' integration of the P450 knock-out construct which should amplify a product of 2266 bp. Seven putative transformants were analysed as shown in Figure S24. Amplicons of the correct size were apparent for four transformants.

Primers s1c4-F2 and PgpdA-Bg-R were used to test for 5' integration of the P450 knock-out construct which should amplify a product of 1954 bp. Four putative transformants were analysed as shown in Figure S25 (those that had amplified products for 3' integration). Amplicons of the correct size were apparent for three transformants.

Transformants T1, T3 and T5 showed correct integration of both sides of the P450 knock-out construct, and therefore were analysed for their metabolite profile.



**Figure S24:** Gel electrophoresis of PCR analysis for integration of the 3' end of the P450 knock-out construct. *P. variotii* WT was compared to seven transformants, T1 to T7. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.



**Figure S25**: Gel electrophoresis of PCR analysis for integration of the 5' end of the P450 knock-out construct. *P. variotii* WT was compared to four transformants, T1, T3, T5 and T7. –ve lane contained H<sub>2</sub>O instead of DNA template as a negative control.

#### 13 Metabolite Extraction and LCMS Analysis of P. variotii

Metabolite extraction was performed at 11 days. The culture liquid was separated from the mycelium, and an equal volume of ethyl acetate was added. The mixture was acidified with HCl to pH 4.0 and mixed. The ethyl acetate phase was taken and dried, then resuspended in acetonitrile at 5mg/ml. Nonadrides do not appear to accumulate in the mycelium, although where appropriate, the mycelium was also extracted by blending in acetone, and then re-extracted using ethyl acetate as before. The extracts were analysed using a Waters LCMS system comprising of a Waters 2767 autosampler, Waters 2545 pump system, a Phenomenex Kinetex column (2.6  $\mu$ , C18, 100 Å, 4.6 × 100 mm) equipped with a Phenomenex Security Guard precolumn (Luna C5 300 Å) eluted at 1 mL/min. Detection was by Waters 2998 Diode Array detector between 200 and 600 nm; Waters 2424 ELSD and Waters SQD-2 mass detector operating simultaneously in ES+ and ES- modes between 100 *m/z* and 800 *m/z*. Solvents were: A, HPLC grade H<sub>2</sub>O containing 0.05% formic acid; and B, HPLC grade CH<sub>3</sub>CN containing 0.045% formic acid. Most samples were run on a 15%-60% CH<sub>3</sub>CN gradient over 30 min, unless otherwise specified.

#### 14 Quantification of Cornexistin Production

A UV-based method for quantifying cornexistin **1** content in fungal extracts was established in the following manner. A calibration curve was created by running a fixed volume of a series of dilutions of cornexistin **1** solution and integrating the corresponding signal for extracted wavelength at 250 nm. Integrated values were then plotted against a known sample concentration (Figure S26) and fitted into a straight line described by **Equation 1** y = 210099C + 4792, where *y* is the dimensionless integration value of the UV peak (UV<sub>int</sub>) and *C* is the corresponding concentration of **1** in mg·ml<sup>-1</sup>. The relationship was linear within the 0.03 – 4.00 mg·ml<sup>-1</sup> concentration range and the lower limit of detection was 0.02 mg·ml<sup>-1</sup>. **Equation 1** in a form of C = (UV<sub>int</sub> - 4792.7)/ 210099) was then applied to quantify cornexistin **1**. The method was validated by analysing crude extract from *P. variotii* using LCMS and quantifying the concentration of cornexistin **1** and using the UV-signal (**Equation 1**), and then comparing the calculated value with the actual, weighted amount of cornexistin **1**, which had been HPLC-purified from the same extract.





Figure S26: Calibration curve for cornexistin 1 quantification.

## 15 Comparison of Maleidride Production Between AgnΔpks and AgnΔpks-PVΔ11 Strains

Cornexistin production was not abolished, but was significantly reduced in Agn∆pks-PV∆11 strains (Figure S27).



Figure S27: ES- chromatograms comparing Agn $\Delta$ pks to Agn $\Delta$ pks PV $\Delta$ L11

Mean integrated peak area was calculated for both cornexistin and 2,2'-dihydrocornexistin production from two Agn $\Delta$ pks replicates, and three Agn $\Delta$ pks-PV $\Delta$ 11 strains. Titres of both compounds are reduced by ~2.6 fold in the Agn $\Delta$ pks-PV $\Delta$ 11 strains (Figure S28).



**Figure S28:** Comparison of maleidride production between AgnΔpks and AgnΔpks-PVΔ11 strains

## 16 LCMS Analysis of Other AgnΔpks Knock-Out Strains

Other knock-out strains were compared to Agn∆pks using LCMS analysis (Figure S28). No cornexistin **1** or related intermediates were identified in any of the strains.



**Figure S28A:** HPLC analysis (10-90% ACN programme, 15 min) of AgnΔpks compared to AgnΔpks PVΔL7, AgnΔpks PVΔL9 and AgnΔpks PVΔL14. \*: unrelated metabolite

### 17 Structure Elucidation

#### 17.1 Cornexistin 1

Cornexistin **1** gives a UV spectrum characteristic for nonadrides with  $\lambda_{max}$  at 210 and 251 nm (Figure S29, a) and it also ionizes well in ESIMS, showing a molecular ion of m/z 307.6 [M-H]<sup>-</sup>, a possible dimer of m/z 616.0 [2M-H]<sup>-</sup> and putative fragment peaks of m/z 289.6 [M-H<sub>2</sub>O-H]<sup>-</sup>, 263.5 [M-CO<sub>2</sub>-H]<sup>-</sup> and 222.9 [M-2CO<sub>2</sub>-H]<sup>-</sup> (Figure S29, b).



Figure S29: (a) UV and (b) - ESIMS spectra of cornexistin 1.

NMR spectra for both <sup>1</sup>H and <sup>13</sup>C matched the available literature data (Figure S30), and analysis of the 2D data enabled assignment of all peaks for the first time. The doublet of  $1'-CH_3$  was apparent in

the <sup>1</sup>H NMR spectrum ( $\delta_{H}$  1.69), as was the 2'-C<u>H</u> appearing at  $\delta_{H}$  5.81, characteristic for olefinic protons. The 3'-C<u>H</u><sub>3</sub> was quickly identified as the triplet ( $\delta_{H}$  0.92) integrating as three protons and COSY correlations were utilized to identify peaks of the pendant propyl group (4-C<u>H</u><sub>2</sub> and 5'-C<u>H</u><sub>2</sub>) as well as of the 1-C<u>H</u><sub>2</sub> showing long-range coupling to 2'-C<u>H</u> (Figure S31). The obvious peak identified by its <sup>13</sup>C NMR chemical shifts was the C-5 carbonyl ( $\delta_{C}$  212.6). Other than the 2'-C<u>H</u>, there were three other methine signals apparent from the HSQC spectrum, two of which had chemical shifts characteristic for the oxygen-bound carbons 3/6-C<u>H</u> ( $\delta_{C}$  68.5/80.7). The third signal was assigned as the 7-C<u>H</u> ( $\delta_{C}$  41.8). Resonances of 3-C<u>H</u> ( $\delta_{C}$  68.5) and 6-C<u>H</u> ( $\delta_{C}$  80.7) were differentiated based on the observed COSY correlations to 2'-C<u>H</u> and 7-C<u>H</u> respectively (Figure S31). The HMBC spectrum (Figure S32) served to assign the quaternary carbons of the anhydride moiety. The 8-C ( $\delta_{C}$  142.4) was identified by correlations from 6-C<u>H</u> and 5-C<u>H</u><sub>2</sub>, while 9-C ( $\delta_{C}$  145.9) from 1'-C<u>H</u><sub>3</sub> and 2'-C<u>H</u>. Similarly, the anhydride carbonyls C-10 ( $\delta_{C}$ ) and C-11 were distinguished by correlations from 1-C<u>H</u><sub>2</sub> and 7-C<u>H</u> respectively. The remaining quaternary carbon 2-C was assigned the chemical shift of  $\delta_{C}$  134.0, which was confirmed by the observed HMBC correlations from 2'-C<u>H</u>, 4-C<u>H</u><sub>2</sub>, 1'-C<u>H</u><sub>3</sub>, 1-C<u>H</u><sub>2</sub> and 3-C<u>H</u><sub>2</sub>.



**Figure S30:** Reference (top) and experimental (bottom) <sup>1</sup>H (a, b) and <sup>13</sup>C (c, d) NMR spectra of **1**. Spectra a and c are reproduced from Nakajima *et al.*<sup>24</sup>



Figure S31: Important COSY correlations of cornexistin 1.



Figure S32: The HMBC spectrum of 1 with key correlations highlighted in the right bottom corner.

#### 17.2 Analysis of the PV Agn∆pks Strain

Three peaks were targeted for purification and structural elucidation from the PV Agn $\Delta$ pks strain(Figure S33,  $t_R$  14.9, 20.4 and 22.9 min).



**Figure S33:** ELSD chromatogram showing the crude extract from 11 day old cultures of *P. variotii* Agn $\Delta$ pks strain. Cornexistin **1** is highlighted, along with three further peaks targeted for purification at 14.9, 20.4 and 22.9 minutes.

#### 17.2.1 Dihydrocornexistin diastereomers 10A and 10B

The compound eluting at 20.4 min had a UV spectrum with  $\lambda_{max}$  210 and 257 nm resembling the spectrum of cornexistin **1** (Figure S34, a). It gave a molecular ion of m/z 309.3 [M-H]<sup>-</sup> and dimer of m/z 619.5 [2M-H]<sup>-</sup> in the <sup>-</sup>ESIMS spectrum and putative fragment ions of m/z 265.3 [M-CO<sub>2</sub>-H]<sup>-</sup>, 221.3 [M-2CO<sub>2</sub>-H]<sup>-</sup>, which indicated a reduced analogue of cornexistin **1** (Figure S34, b).



Figure S34: (a) UV and (b) - ESIMS spectra of the 20.4 min peak.

HRMS analysis of the HPLC-purified 20.4 min peak confirmed the formula to be  $C_{16}H_{22}O_{6}$ , confirming the presence of two additional protons in comparison with **1**. NMR analysis showed key differences in comparison with the NMR spectra of cornexistin **1**. In the <sup>1</sup>H NMR spectrum (Figure S35), the two methyl groups (1'-CH<sub>3</sub> and 3'-CH<sub>3</sub>) both appeared as triplets ( $\delta_{H}$  0.92 and 1.04), indicating coupling with two neighbouring protons, which was a new feature for 1'-CH<sub>3</sub> and suggested that there was a methylene present at 2'-C position. This was further corroborated by the observed COSY coupling of 1'-CH<sub>3</sub> with 2'-CH<sub>2</sub> of chemical shift ( $\delta_{H}$  1.74) characteristic for an alkene. Analysis of the <sup>13</sup>C NMR spectrum (Figure S36) showed that, in comparison with the spectrum of cornexistin **1**, both olefinic resonances of 2-<u>C</u> ( $\delta_c$  134.0) and 2'-<u>C</u>H ( $\delta_c$  130.4) in **1** disappeared, and new aliphatic peaks (substitutions also confirmed by HSQC data) of 2-<u>C</u>H and 2'-<u>C</u>H<sub>2</sub> appeared at  $\delta_c$  45.9 and  $\delta_c$  27.5 respectively. This change also affected the chemical shift of 3-C<u>H<sub>2</sub></u> which moved *ca.* 0.9 ppm upfield with respect to the corresponding peak in cornexistin **1**. The chemical shifts of the four quaternary carbons of anhydride moiety ( $\delta_c$  143.4, 148.3, 164.6, 165.3) were practically unchanged (assigned by HMBC correlations, Figure S37) further confirming the 8, 9-bond remained unmodified. All data suggested the saturation of the 2, 2'-ethylidene bond (in comparison with cornexistin **1**) and therefore the compound was named 2, 2'-dihydrocornexistin **10**.

| 10A          |                       | 10B   |                        |  |
|--------------|-----------------------|-------|------------------------|--|
| Exp. & /norm |                       | Exp.  | \$ /nnm                |  |
| Label        | o <sub>exp</sub> /ppm | Label | O <sub>exp</sub> /ppin |  |
| H01a         | 2.527                 | H01a  | 2.435                  |  |
| H01b         | 2.267                 | H01b  | 2.435                  |  |
| H02          | 2.002                 | H02   | 1.735                  |  |
| H03          | 4.166                 | H03   | 4.235                  |  |
| H04a         | 2.561                 | H04a  | 2.653                  |  |
| H04b         | 3.273                 | H04b  | 3.138                  |  |
| H06          | 4.305                 | H06   | 4.140                  |  |
| H07          | 3.414                 | H07   | 3.259                  |  |
| H01'         | 1.047                 | H01'  | 1.039                  |  |
| H02'a        | 1.460                 | H02'a | 1.622/1.592            |  |
| H02'b        | 1.689                 | H02'b | 1.592/1.622            |  |
| H03'         | 0.924                 | H03'  | 0.916                  |  |
| H04'a        | 1.270                 | H04'a | 1.229/1.283            |  |
| H04'b        | 1.361                 | H04'b | 1.229/1.283            |  |
| H05'a        | 1.817                 | H05'a | 2.029                  |  |
| H05'b        | 1.562                 | H05'b | 1.955                  |  |
| C1           | 26.400                | C1    | 22.730                 |  |
| C2           | 47.430                | C2    | 45.780                 |  |
| C3           | 72.800                | C3    | 70.550                 |  |
| C4           | 45.380                | C4    | 44.800                 |  |
| C5           | 213.370               | C5    | 212.330                |  |
| C6           | 78.230                | C6    | 78.610                 |  |
| C7           | 41.400                | C7    | 41.070                 |  |
| C8           | 142.310               | C8    | 143.250                |  |
| C9           | 146.190               | C9    | 148.190                |  |
| C10          | 165.600               | C10   | 165.130                |  |
| C11          | 166.470               | C11   | 164.380                |  |
| C1'          | 11.290                | C1'   | 11.990                 |  |
| C2'          | 26.040                | C2'   | 27.380                 |  |
| C3'          | 13.780                | C3'   | 13.860                 |  |
| C4'          | 21.040                | C4'   | 21.260                 |  |
| C5'          | 31.450                | C5'   | 30.180                 |  |

**Table S9:** Experimental <sup>1</sup>H and <sup>13</sup>C chemical shifts for **10A** and **10B** obtained by hydrogenation of **1** (see section 22) referenced to internal chloroform at 7.258 ppm at 600 MHz (<sup>1</sup>H) and 76.990 ppm at 500 MHz (<sup>13</sup>C).

The relative stereochemistry at the 2-CH was assigned based on comparison to the two diasteroemers of 2,2'-dihydrocornexistin obtained by hydrogenation of cornexistin itself (Section 22).



Figure S35: Comparison of the <sup>1</sup>H NMR spectra of (a) 2, 2'-dihydrocornexistin 10a and (b) cornexistin 1.



Figure S36: Comparison of the <sup>13</sup>C NMR spectra of (a) 2, 2'-dihydrocornexistin 10a and (b) cornexistin 1.



Figure S37: HMBC spectrum of 10a, showing key correlations of quaternary carbons.



Scheme S1: The relative stereochemistry of a natural product 2,2-dihydrocornexistin 10 was determined by comparison of the NMR data with synthetic epimers 10A/10B obtained by hydrogenation of 1 (see section 22). The relative configurations of 10A and 10B were determined computationally (see section 24).

#### 17.2.2 6-dehydroxy-2,2'dihydro-cornexistin 11

The peak eluting at 22.9 min had a UV spectrum indicating similarity to cornexistin **1** (Figure S38, a). The -ESIMS spectrum indicated the nominal mass of the compound to be 294 (m/z 293.6 [M-H]<sup>-</sup>), equivalent to the mass of 2, 2'-dihydrocornexistin **10**, but lacking one oxygen (Figure S38, b).



Figure S38: (a) UV and (b) ESIMS spectra of the 22.9 min peak.

The HRMS analysis of the HPLC-purified compound confirmed the molecular formula of the compound to be  $C_{15}H_{22}O_5$ . Analysis of the <sup>1</sup>H NMR data revealed the presence of two triplets ( $\delta_H$  1.05 and 0.93) (Figure S39), corresponding to two methyl groups (1'-CH<sub>3</sub> and 3'-CH<sub>3</sub> respectively), which confirmed that it was a derivative of 2,2'-dihydrocornexistin **10** and not cornexistin **1**, which shows a triplet for 3'-CH<sub>3</sub> and a doublet for the 1'-CH<sub>3</sub>. In comparison with the <sup>13</sup>C spectrum of **10**, the obvious difference was the presence of only one peak within the 70-80 ppm range, where usually the oxygen-linked carbons appear (3-<u>C</u>H and 6-<u>C</u>H in cornexistin). Additionally, the HSQC spectrum showed that there were only three methine groups present in the molecule (four in **10**). These data suggested that the compound is lacking one of the –OH groups. Analysis of the methine signal at  $\delta_H$  4.23, which appeared as a doublet of triplets and showed COSY coupling to 4–CH<sub>2</sub> ( $\delta_H$  2.78, 2.61) and 2–CH ( $\delta_H$  1.85), indicating that the 3-OH is retained, suggesting structure **11** (Figure S40). The 6-CH<sub>2</sub> ( $\delta_H$  2.79) showed HMBC correlations (Figure S40, b) to 5-C, 7-CH and 8-C, which further corroborated structure **11** and was therefore named 6-dehydroxy-2, 2'-dihydrocornexistin **11**.





Figure S40: (a) COSY and (b) HMBC correlations of 6-dehydroxy-2, 2'-dihydrocornexistin 11.

#### 17.2.3 2,2-dihydro-2-hydroxycornexistin 15, isolated as its hemiacetal 9

The peak eluting at 14.9 min had a UV spectrum indicating similarity to cornexistin **1** (Figure S41, a). MS analysis suggested the mass of the compound eluting at 14.9 min to be 326 (m/z 325.5 in the low resolution <sup>-</sup>ESIMS spectrum), indicating either a hydrated derivative of cornexistin **1** (308 + 18) or a hydroxyl-derivative of dihydrocornexistin (310 + 16).



Figure S41: (a) UV and (b) ESIMS spectra of the 14.9 min peak.

The molecular formula was confirmed by HRMS analysis as C<sub>16</sub>H<sub>22</sub>O<sub>7</sub>. All 22 protons were visible in the <sup>1</sup>H NMR spectrum (Figure S42, a). The <sup>1</sup>H NMR spectrum in DMSO-d<sub>6</sub> showed broad peaks, so variable temperature (VT) experiments up to 70 °C were run to collect good quality NMR data (Figure S42, b). Inspection of the HSQC spectrum showed resonances at  $\delta_{\rm H}$  5.86 and 5.20 that had no carbon attached, which indicated a presence of -OH groups and this was further confirmed by a deuterium exchange experiment (Figure S42, c). The  $\delta_{\rm H}$  5.20 peak was split at the top, which was further confirmed to be an overlap of two singlets by the observed three peaks in the <sup>1</sup>H NMR spectrum at 60 °C (Figure S42, b -  $\delta_{\rm H}$  5.72, 5.09 and 5.01). The presence of two triplets arising from the methyl groups suggested that the compound was another derivative of 2, 2'-dihydrocornexistin 10 and not cornexistin 1 (a triplet and a doublet). Analysis of the <sup>13</sup>C NMR spectrum, where no signals were visible above the anhydride carbonyls (ca.  $\delta_c$  160-165), indicated a lack of the 5-C ketone (ca.  $\delta_c$  200). Instead, a quartenary carbon at  $\delta_c$  106.2 was present, showing HMBC correlation from 4-CH<sub>2</sub>. This suggested that the 5-C carbonyl present in cornexistin  $\mathbf{1}$  was replaced by a hydroxyl, and to keep the formula correct, the additional oxygen must have been introduced elsewhere. Another significant difference, in comparison with cornexistin 1, was the lack of one of the methine groups (2-CH or 7-CH) and a presence of an additional quaternary centre, identified as 2-C. Due to its much higher chemical shift ( $\delta_c$  89.8, when compared with 2-<u>C</u>H  $\delta_c$  45.9 in 2, 2'-dihydrocornexistin 10), it was evident that this carbon has been linked with a more electronegative substituent, such as an oxygen atom. The HMBC data acquired at 70 °C revealed some new correlations (with regard to the spectrum acquired at 25 °C), and information from both spectra was combined to aid elucidation of the structure of the 14.9 min compound, which was proposed as **9** (Figure S43).



**Figure S42:** (a) <sup>1</sup>H NMR spectrum of the 14.9 min compound in DMSO-d<sub>6</sub>; (b); <sup>1</sup>H NMR spectrum of the 14.9 min compound in DMSO-d<sub>6</sub> at 60°C ; (c) <sup>1</sup>H NMR spectrum of the 14.9 min compound in DMSO-d<sub>6</sub> mixed with a drop of D<sub>2</sub>O.



Figure S43: Superimposed HMBC spectra of 9 acquired at 25 °C (orange) and 70 °C (green).

 Table S10: Experimental <sup>1</sup>H and <sup>13</sup>C chemical shifts for 9 referenced to internal DMSO at 2.508 ppm (<sup>1</sup>H) and 39.520 ppm (<sup>13</sup>C) at 500 MHz.

| 9             |                                      |               |                                       |  |  |
|---------------|--------------------------------------|---------------|---------------------------------------|--|--|
| Exp.<br>Label | <sup>1</sup> Η δ <sub>exp</sub> /ppm | Exp.<br>Label | <sup>13</sup> C δ <sub>exp</sub> /ppm |  |  |
| H1a/b         | 2.363                                | C1            | 30.319                                |  |  |
| H1a/b         | 2.747                                | C2            | 89.817                                |  |  |
| H3            | 4.172                                | C3            | 72.949                                |  |  |
| H4            | 1.891                                | C4            | 43.940                                |  |  |
| H6            | 3.807                                | C5            | 106.241                               |  |  |
| H7            | 2.917                                | C6            | 80.540                                |  |  |
| H1'           | 0.925                                | C7            | 42.593                                |  |  |
| H2'           | 1.636                                | C8/C9         | 144.387                               |  |  |
| H3'           | 0.832                                | C8/C9         | 143.664                               |  |  |
| H4'a/b        | 1.271 - 1.141                        | C10           | 165.831                               |  |  |
| H5'a/b        | 1.756                                | C11           | 167.075                               |  |  |
| H5'a/b        | 2.012                                | C1'           | 8.214                                 |  |  |
| OH3           | 5.196                                | C2'           | 33.038                                |  |  |
| OH5           | 5.196                                | C3'           | 13.778                                |  |  |
| OH6           | 5.862                                | C4'           | 20.791                                |  |  |
|               |                                      | C5'           | 32.083                                |  |  |
## 17.3 Analysis of isolated metabolites

Cornexistin **1** - whitish solid;  $\lambda_{max}$  (UV) 210, 251 nm; -ESIMS (LCMS) *m/z* 307.6 [M-H]-, 289.6 [M-H<sub>2</sub>O-H]-, 263.5 [M-CO2-H]-, 219.6 [M-2CO<sub>2</sub>-H]-, 616.0 [2M-H]-; <sup>1</sup>H and <sup>13</sup>C NMR data see: Table S11.

2, 2'-dihydrocornexistin **10a** – isolated as brown oil;  $\lambda_{max}$  (UV) 210, 257 nm; <sup>-</sup>ESIMS (LCMS) *m/z* 309.3 [M-H]<sup>-</sup>, 265.3 [M-H-CO<sub>2</sub>]<sup>-</sup>, 221.3 [M-H-2CO<sub>2</sub>]<sup>-</sup>, 619.5 [2M-H]<sup>-</sup>; <sup>1</sup>H and <sup>13</sup>C NMR data see: Table S11.

6-dehydroxy-2, 2'-dihydrocornexistin **11** – isolated as whitish residue;  $\lambda_{max}$  (UV) 210, 263 nm; <sup>-</sup>ESIMS (LCMS) m/z 293.5 [M-H]<sup>-</sup>, 339.6 [M-H]HCOOH<sup>-</sup>; HRESIMS m/z 317.1360 [M]Na<sup>+</sup> (C<sub>16</sub>H<sub>22</sub>NaO<sub>5</sub> requires 317.1365); <sup>1</sup>H and <sup>13</sup>C NMR data see: Table S12

Hemiacetal **9** – isolated as whitish residue;  $\lambda_{max}$  (UV) 204, 271 nm; <sup>-</sup>ESIMS (LCMS) *m/z* 325.5 [M-H]<sup>-</sup>, 307.5 [M-H-H<sub>2</sub>O]<sup>-</sup>; HRESIMS *m/z* 349.1258 [M]Na<sup>+</sup> (C<sub>16</sub>H<sub>22</sub>NaO<sub>7</sub> requires 349.1263); <sup>1</sup>H and <sup>13</sup>C NMR data see: Table S12.



**Table S11:** <sup>1</sup>H, <sup>13</sup>C and HMBC NMR data for **1** and **10a** (CDCl<sub>3</sub>). <sup>a</sup> 400 MHz, <sup>b</sup> 101 MHz, <sup>c</sup> 500 MHz, <sup>d</sup>126 MHz.



|          | cornexistin 1                               |                |                          | 2, 2'-dihydrocornexistin 10a                  |                |                       |  |
|----------|---------------------------------------------|----------------|--------------------------|-----------------------------------------------|----------------|-----------------------|--|
| Position | $\delta_{ m H}  (J  { m in}  { m Hz})^{ a}$ | $\delta_C{}^b$ | HMBC c                   | δ <sub>H</sub> (J in Hz) <sup>c</sup>         | $\delta_C{}^d$ | HMBC c                |  |
| 1        | 3.37 (d, 13.7), 3.13<br>(d, 14.3)           | 26.9           | 2, 2', 3, 8, 9, 10       | 2.43 (dd, 14.0, 3.0); 2.67<br>(dd, 14.4, 4.1) | 22.9           | 2, 2', 3, 8, 9,<br>10 |  |
| 2        | -                                           | 134.0          | -                        | 1.74 (m)                                      | 45.9           | none                  |  |
| 3        | 5.09 (dd, 6.8, 4.4)                         | 68.5           | 1, 2, 2', 4, 5           | 4.22 (m)                                      | 70.8           | 1, 5                  |  |
| 4        | 2.53 (dd, 14.1, 4.3),<br>3.42 (m)           | 45.4           | 2, 3, 5, 6               | 3.1 (dd, 14.7, 8.4), 2.62<br>(m)              | 45.0           | 2, 3, 5               |  |
| 5        | -                                           | 212.6          | -                        | -                                             | 212.6          | -                     |  |
| 6        | 4.04 (d, 8.6)                               | 80.7           | 4, 5, 5',7, 8            | 4.14, d (9.2)                                 | 78.8           | 5, 5', 7, 8           |  |
| 7        | 3.42 (m)                                    | 41.8           | 4', 5,5', 6, 8. 9,<br>11 | 3.27 (td, 10.0, 5.3)                          | 41.2           | 5', 6, 8, 9, 11       |  |
| 8        | -                                           | 142.4          | -                        | -                                             | 143.4          | -                     |  |
| 9        | -                                           | 145.9          | -                        | -                                             | 148 3          |                       |  |
| 10       | -                                           | 165.3          | -                        | -                                             | 165.3          | -                     |  |
| 11       | -                                           | 164.4          | -                        | -                                             | 164.6          | -                     |  |
| 1'       | 1.69 (d, 7.1)                               | 13.6           | 1, 2, 2', 3, 4, 9        | 1.04 (t, 7.3)                                 | 12.1           | 2, 2'                 |  |
| 2'       | 5.81 (q, 7.1)                               | 130.4          | 1, 1', 2, 3, 9           | 1.60 (m)                                      | 27.5           | 1, 1', 2, 3           |  |
| 3'       | 0.92 (t, 7.3)                               | 14.0           | 4', 5'                   | 0.92 (t, 7.3)                                 | 14.0           | 4', 5'                |  |
| 4'       | 1.27 (m)                                    | 21.6           | 3',5',7                  | 1.24 (m)                                      | 21.4           | none                  |  |
| 5'       | 1.94 (m), 2.07 (m)                          | 30.9           | 3', 4', 6, 7, 8          | 1.95 (m)                                      | 30.4           | 3', 4', 7, 8          |  |

Table S12: <sup>1</sup>H, <sup>13</sup>C and HMBC NMR data for 11 (CDCl<sub>3</sub>) and 9 (DMSO-d<sub>6</sub>). <sup>a</sup> 500 MHz, <sup>b</sup> 126 MHz. \* at 60 °C, otherwise bs -<br/>broad singlet; bm- broad multiplet.





|         | 6-dehydroxy-2, 2                             | 2'-dihydroco   | rnexistin 11          | hemiacetal 9                          |                             |                    |  |
|---------|----------------------------------------------|----------------|-----------------------|---------------------------------------|-----------------------------|--------------------|--|
| Positio | n $\delta_{\rm H} (J \text{ in Hz})^{\rm a}$ | $\delta_C{}^b$ | HMBC <sup>a</sup>     | δ <sub>H</sub> (J in Hz) <sup>a</sup> | δ <sub>C</sub> <sup>b</sup> | HMBC a             |  |
| 1       | 2.51 (m)                                     | 25.3           | 2', 2, 3,<br>10, 8, 9 | 2.37 (d, 14.2), 2.80 (d, 14.2)        | 30.3                        | 2', 3, 2, 9,<br>10 |  |
| 2       | 1.85 (m)                                     | 46.1           | none                  | -                                     | 89.8                        | -                  |  |
| 3       | 4.14 (dt, 9.7, 2.9)                          | 69.8           | none                  | 4.23 (t, 9.1)*                        | 72.85                       | -                  |  |
| 4       | 2.78 (m), 2.61 (dd,<br>14.3, 2.7)            | 49.3           | 2, 5, 3               | 1.93 (m)                              | 43.9                        |                    |  |
| 5       | -                                            | 211.5          | -                     | -                                     | 106.2                       | -                  |  |
| 6       | 2.79 (m)                                     | 43.9           | 5, 8, 7               | 3.75 (bs)                             | 80.5                        | -                  |  |
| 7       | 3.30 (m)                                     | 33.1           | 5', 6, 5,<br>11, 9, 8 | 2.91 (bs)                             | 42.6                        | -                  |  |
| 8       | -                                            | 146.2          | -                     | -                                     | 143.6                       | -                  |  |
| 9       | -                                            | 144.5          | -                     | -                                     | 144.4                       | -                  |  |
| 10      | -                                            | 165.5          | -                     | -                                     | 165.8                       | -                  |  |
| 11      | -                                            | 165.7          | -                     | -                                     | 167.1                       | -                  |  |
| 1'      | 1.05 (t, 7.3)                                | 12.1           | 2', 2                 | 0.93 (t, 7.3)                         | 8.2                         | 2, 2'              |  |
| 2'      | 1.78 (m), 1.46 (m)                           | 24.5           | 1', 1, 2, 3           | 1.63 (bs)                             | 33.0                        | -                  |  |
| 3'      | 0.93 (t, 7.3)                                | 13.9           | 4', 5'                | 0.85 (t, 7.3)                         | 13.8                        | 4', 5', 7          |  |
| 4'      | 1.42 (m), 1.27 (m)                           | 20.95          | none                  | 1.21 (m)                              | 20.8                        | 3', 5', 7          |  |
| 5'      | 1.70 (m)                                     | 34.5           | 4', 7, 8              | 2.00 (m), 1.80 (m)                    | 32.1                        | 3', 4', 7, 6,<br>8 |  |

## 18 Feeding Byssochlamic Acid 4 to the PVApks Strain

The *P. variotii* PV $\Delta$ pks strain was used in feeding studies with (+)-byssochlamic acid **4** (purified from *B. fulva* cultures), which is a potential precursor to cornexistin **1**. 10 mg of pure byssochlamic acid **4** (in aqueous ethanol) was fed to *P. variotii* PV $\Delta$ pks cultured in PDB medium and extracted after 10 days. The production of cornexistin **1** was not restored in the mutant, however the conversion of byssochlamic acid **4** into dihydrobyssochlamic acid **12** (tR 13.3 min) was observed (Figure S44, a). The compound accumulating in the PV $\Delta$ pks mutant culture was identified as dihydrobyssochlamic acid **12** based on the LCMS data (similar UV spectrum and –ESIMS spectrum with molecular ion *m/z* 

333.6, indicating the nominal mass of the compound to be 334, Figure S44, cd), compared with data for 10-dihydrobyssochlamic acid previously isolated from *B. fulva*.<sup>25</sup>



**Figure S44:** (a) ELSD chromatogram (30-80% ACN programme) of the extract from the PVΔpks culture fed with byssochlamic acid **4**; (b) ELSD chromatogram of the extract from the control PVΔpks culture not fed with byssochlamic acid **4**; (c) –ESIMS spectrum of the 13.3 min peak; (d) UV spectrum of the 13.3 min peak.

When **12** was analysed by NMR, similarly to 10-dihydrobyssochlamic acid isolated from *B. fulva*,<sup>25</sup> there appeared to be a mixture of isomeric compounds (Figure S45). There were four -CH-OH signals visible, indicating a mixture of isomers. The 13.3 min compound from *P. variotii* however showed a different ratio of those methine peaks (two compounds,  $\delta$ H 5.93 and 5.85 appeared to be dominating) and the rest of the signals were an overlapping mixture, which greatly complicated structural elucidation.



Figure S45: Methine region of the <sup>1</sup>H NMR spectrum of (a) 10-dihydrobyssochlamic acid isolated from *B. fulva*;<sup>25</sup> (b) dihydrobyssochlamic acid **12** isolated from *P. variotii* fed with (+)-byssochlamic acid **4**.

### 19 Detection of Byssochlamic Acid 4 in P. variotii

Extracts of *P. variotii* AgnΔpks and wild type *B. fulva* were analysed by HR-LCMS. Byssochlamic acid elutes at 15.6 min (Figure S46).



Figure S46: HR-LCMS analysis of byssochlamic acid (15.6 min) production in *P. variotii* Agn∆pks (top) and *B. fulva* WT (bottom). Left-hand panels show the extracted ion chromatogram (ES-) at 331 Da; right-hand panel shows HRMS of the 15.6 min peak in each case. Byssochlamic acid, C<sub>18</sub>H<sub>19</sub>O<sub>6</sub> [M-H]- calc 331.1182; found 331.1201.

# 20 Cornexistin Mid-Pathway Hypothesis





### 21 LCMS analysis of compounds 5, 5' and 13

Various forms of the anhydride monomer were observed in *P. variotii* extracts (Figure S48). The monomer **5** has been previously shown to undergo spontaneous decarboxylation, as well as interconversion between the ring closed and the diacid forms.



Figure S48: LCMS analysis of compounds 5, 13 and 5'. (a) UV chromatogram of 5. (b) UV chromatogram of 13. (c) UV chromatogram of 5'. (d) Mass fragmentation of 5. (e) Mass fragmentation of 13. (f) Mass fragmentation of 5'.

#### 22 Hydrogenation of Cornexistin

5% Pt on C (Aldrich, 8 mg) was pre-washed with ethyl acetate (3 x 3 ml). A solution of cornexistin (10 mg) in ethyl acetate (1.5 ml) was carefully added, the vessel was purged three times with nitrogen and three times with hydrogen, and the reaction mixture was then stirred at room temperature under 0.5 bar of hydrogen. After 130 minutes, analytical reverse phase LCMS showed that the cornexistin had been completely consumed, and showed a new peak (two stereoisomers co-eluting). The reaction mixture was filtered and concentrated under reduced pressure to give a colourless gum (10 mg). Proton NMR showed two stereoisomeric products, and normal phase TLC on silica gel (50% EtOAc in isohexane) also showed two spots corresponding to the two stereoisomers.

The crude product was purified by normal phase chromatography on silica gel, eluting with a 0-30% gradient of ethyl acetate in isohexane. Good separation of the stereoisomers was achieved. First eluting stereoisomer (3mg, gum) called **10A**. Second eluting stereoisomer (3mg, gum/solid) called **10B**. Analytical reverse phase LCMS of each sample showed [M]H<sup>+</sup> 311, [M]Na<sup>+</sup> 333 in ESI<sup>+</sup>, supporting MWt 310.

# 23 NMR Experimental Details

Data were processed in MestReNova 9.0.1.<sup>26</sup>

## 23.1 Compound 9

Spectra were recorded using *ca* 2 mg of **9** in 0.7 ml deuterated dimethyl sulfoxide on a Bruker AVANCE III HD 500 MHz NMR Spectrometer with 5 mm DCH  $^{13}C^{-1}H/D$  Cryo Probe at 298 K.

<sup>13</sup>C spectra were collected with a spectrum width of 31,250 Hz centred on 110 ppm with an acquired size of 59,522 data points and 2,000 scans. The data were baseline corrected with the Bernstein polynomial fit, zero-filled to a spectral size of 131,072 and apodized with a 1.0 Hz exponential function.

<sup>1</sup>H spectra were collected with a spectrum width of 15,015 Hz centred on 6.0 ppm with an acquired size of 65,536 data points and 16 scans. The data were baseline corrected with a Bernstein polynomial fit, zero-filled to a spectral size of 262,144.

# 23.2 Compound 10

<sup>13</sup>C spectra were recorded for the two diastereomers of **10** (**10A** and **10B**) on a Bruker AVANCE III HD 500 MHz NMR Spectrometer with 5 mm DCH <sup>13</sup>C-<sup>1</sup>H/D Cryo Probe at 298 K using *ca* 2 mg of **10** in 0.7 ml deuterated chloroform. <sup>13</sup>C spectra were collected with a spectrum width of 29762 Hz centred on 110 ppm with an acquired size of 32,768 data points and 4,128 scans. The data were baseline corrected with the Bernstein polynomial fit, zero-filled to a spectral size of 65,536 and apodized with a 1.0 Hz exponential function.

Subsequent spectra were recorded for the two diastereomers of **10** on Varian VNMRS 600 MHz with HCN Cryo probe at 298K using 2.0mg in 0.7ml deuterated chloroform in 5mm tubes under air without degassing.

<sup>1</sup>H spectra were collected with a spectrum width of 9,615 Hz centred on 6.0 ppm with an acquired size of 32,768 data points and 8 scans. The data were baseline corrected with a Bernstein polynomial fit, zero-filled to a spectral size of 65,536. The spin simulation tool in available in MestReNova 9.0.1<sup>26</sup> was used to extract <sup>1</sup>H chemical shifts and <sup>1</sup>H-<sup>1</sup>H scalar couplings (<sup>n</sup>J<sub>HH</sub>), the fitting between experimental and simulated spectra was assessed by eye.

2D NOESY spectra were collected with a mixing time of 500ms, a relaxation delay of 5s and selective saturation of the residual  $H_2O$  resonance during the relaxation delay. F1 and F2 spectral widths of 5,411 Hz centred on 4.0 ppm with an acquired size of 400 increments in F1, 1,624 data points and 16 scans in F2 were used. The data were baseline corrected with a Bernstein polynomial fit, zero-filled to a spectral size of 4096 in both dimensions and apodized with 90° sine square in F1 and a 90° sine bell in F2.

2D NOESY data were converted into interproton distances with the PANIC (peak amplitude normalization for improved cross-relaxation) approach where the NOE intensity was taken to be the ratio between cross peaks and diagonal peaks (this allows longer mixing times to be used while assuming the initial rate approximation is still valid).<sup>27,28,29</sup> This was achieved by using F2 traces for each proton of interest, and setting the integral of each diagonal peak to have an integral of 1,000. Equation 2, as derived using this approximation in Chapter 4 of Neuhaus and Williamson<sup>30</sup> and

applied to distance determination by Butts *et al.*<sup>31</sup> and Jones *et al.*,<sup>32</sup> was used to convert the measured intensities ( $\eta^{x,y}$ ) for the cross peaks into distances ( $r^{x,y}$ ) using the H1a-H1b correlation as a reference distance ( $r^{ref}$ ) and intensity ( $\eta^{ref}$ ) for each diastereomer (**10A** and **10B**).

$$\frac{\eta^{x,y}}{\eta^{ref}} = \frac{(r^{x,y})^{-6}}{(r^{ref})^{-6}}$$
(2)

Where,  $\eta^{x,y}$  is experimentally measured NOE intensity between nuclei x and y;  $\eta^{ref}$  is experimentally measured NOE intensity between two reference nuclei;  $r^{x,y}$  is experimentally determined distance between nuclei x and y;  $r^{ref}$  is a reference distance.

In cases of cross peaks arising from NOE correlations to methyl groups, the PANIC-corrected intensity is divided by a factor of 3 to account for the 3 <sup>1</sup>H contributing to the signal (Equation 3).

$$\frac{\eta^{x,y}}{3 \times \eta^{ref}} = \frac{(r^{x,y})^{-6}}{(r^{ref})^{-6}}$$
(3)

#### 24 Structural Calculations for 9, 10A and 10B

MATLAB R2016a (9.0.0341360) was used to calculate Boltzmann-averaged DFT-derived values for chemical shift, scalar couplings and <sup>1</sup>H-<sup>1</sup>H distances for the diastereomers of **9** and **10**. Microsoft Excel 2013 (15.0.4885.1000) was used to calculate the statistics used to compare experimental and calculated datasets.

#### 24.1 Conformational search for 9 and 10

An MCMM (Monte Carlo Multiple Minimum) conformational search was performed for the four diastereomers of **9** and two diasteromers of **10** (Figure S49) with MacroModel<sup>33</sup> using MMFFs (Merk Molecular Force Field) with 1,000,000 steps, molecules within 50.0 kJ/mol of the lowest energy molecule found were retained. The calculations were conducted in gaseous phase for **9** and with chloroform for **10**. Structures were minimised using the TNCG (truncated Newton Conjugate Gradient) method with 500 iterations with a gradient convergence criteria of 0.05.



Figure S49: Labelling systems for 9 and 10 (for diastereotopic <sup>1</sup>H *Pro-R* labelled as Ha and *Pro-S* as Hb) and the six diastereomers under investigation.

#### 24.2 Calculation of chemical shifts for 9

All subsequent DFT (density functional theory) calculations were performed using Gaussian 09.34

According to the method of Goodman *et al.*<sup>35</sup> molecules within 10.0 kJ/mol of the lowest energy conformer found by the conformational search were subjected to single point energy and NMR shielding tensor calculations using B3LYP/6-31G(d,p) and the GIAO method for the NMR calculations. The isotropic magnetic shielding tensors for each nucleus across the conformers were then weighted according to the Boltzmann distribution (Equation 4) determined by the potential energy for single point energy calculations.

$$\sigma^{x} = \frac{\sum_{i} \sigma_{i}^{x} e^{-E_{i}/RT}}{\sum_{i} e^{-E_{i}/RT}}$$

(4)

Where,  $\sigma^x$  is the Boltzmann-averaged shielding for nucleus x;  $\sigma^x$  is the shielding for nucleus x in conformer i;  $E_i$  is the relative potential energy of conformer i; R is the molar gas constant and T the temperature (298K).

Calculated shieldings for the <sup>1</sup>H and <sup>13</sup>C of TMS (tetramethylsilane) were then used to calculate chemical shifts from the weighted shielding (Equation 5).

$$\delta_{calc}^{x} = \frac{\sigma^{TMS} - \sigma^{x}}{1 - \sigma^{TMS} \times 10^{-6}} \tag{5}$$

Where,  $\delta^{x}_{calc}$  is the Boltzmann-averaged calculated chemical shift for nucleus x and  $\sigma^{TMS}$  is the shielding for the <sup>1</sup>H (31.755) or <sup>13</sup>C (191.800) of TMS.

TMS geometry optimisation and NMR calculations performed using DFT B3LYP/6-31G(d,p) with the GIAO method. These calculated chemical shifts were then scaled according to the gradient and intercept between calculated and experimental data (Equation 6).

$$\delta_{scaled}^{x} = \frac{\delta_{calc}^{x} - c}{m} \tag{6}$$

Where,  $\delta^{x}_{scaled}$  is the scaled Boltzmann-averaged chemical shift for nucleus x; c is the intercept of a plot of  $\delta_{calc}$  against the experimental chemical shift and m is the gradient.

These scaled and experimental chemical shifts were then analysed by calculating the mean absolute deviation (MAD), standard deviation in the deviations (SD) and root mean squared deviation (RMSD) as defined in Equations 7 to 9 and with the DP4 method described by Goodman *et al.*<sup>35</sup>

$$MAD = \frac{1}{n} \sum_{j=1}^{n} |a_j - b_j|$$
(7)

Where,  $a_i$  is the experimental value (such as chemical shift);  $b_j$  is the calculated value; n is the total number of values for a molecule.

$$SD = \sqrt{\sum_{j=1}^{n} (\bar{z} - z_j)^2}$$
(8)  
*Where*,  $z_j = a_j - b_j$  and  $\bar{z} = \frac{1}{n} \sum_{j=1}^{n} z_j$   
*RMSD* =  $\sqrt{\frac{\sum_{j=1}^{n} (z_j)^2}{n}}$ 
(9)

#### 24.3 Calculation of distances for NOE comparison for 10

Г

Molecules found by the conformational search were subjected to single point energy calculations using B3LYP/6-31g(d,p) with the IEFPCM solvent model for chloroform. Molecules within 21.0 kJ/mol of the lowest energy found were subjected to optimisation and frequency calculations (mPW1PW91/6-311g(d,p) with the IEFPCM solvent model for chloroform). Conformers which converged to the same geometry following optimisation were eliminated.

The <sup>1</sup>H-<sup>1</sup>H distances across the different conformers were then weighted according to the Boltzmann distribution (Equation 10) determined by the frequency calculations which provided the Gibbs free energy.

$$r_{effective} = \left(\frac{\sum_{i} (r_{i}^{x,y})^{-6} e^{-G_{i}/RT}}{\sum_{i} e^{-G_{i}/RT}}\right)^{-1/6}$$
(10)

Where,  $r^{x,y}_{effective}$  is the Boltzmann-averaged effective distance between nuclei x and y;  $r^{x,y}_i$  is the calculated distance for conformer *i*.

Methyl <sup>1</sup>H distances were averaged according to equation 11.

$$r_{effective}^{x,y(Me)} = \left(\frac{\sum_{i}^{1} / 3((r_{i}^{x,y_{1}})^{-6} + (r_{i}^{x,y_{2}})^{-6} + (r_{i}^{x,y_{3}})^{-6})e^{-G_{i}/RT}}{\sum_{i} e^{-G_{i}/RT}}\right)^{-1/6}$$
(11)

Where,  $r^{x,y(Me)}_{effective}$  is the Boltzmann-averaged effective distance between nuclei x and methyl <sup>1</sup>H y;  $r_i^{x,y1}$ ,  $r_i^{x,y2}$ ,  $r_i^{x,y3}$  are the calculated distances between x and y for the three <sup>1</sup>H for conformer i.

The calculated <sup>1</sup>H-<sup>1</sup>H coupling constants were compared to the experimentally determined values by calculating the MAD, SD (Equations 7-8) and the mean absolute percentage deviation (MA%D) (Equation 12).

$$MA\%D = \frac{1}{n} \sum_{j=1}^{n} \frac{|a_j - b_j|}{a_j}$$
(12)

The reference distance ( $r^{ref}$ ), required by equations 2-3, was determined by minimising the RMSD (Equation 9) using the Datasolver tool in Microsoft Excel 2013 from a starting value of 1.78Å for each combination of experimental and calculated datasets.

#### 24.4 Calculation of scalar coupling constants for 10

The structures found by geometry optimisation and frequency calculations were subjected NMR calculations using the GIAO method with mPW1PW91/6-311g(d,p) and the IEFPCM solvent model for chloroform giving the total spin-spin couplings (J).

The scalar couplings across the different conformers were then weighted according to the Boltzmann distribution (Equation 13) determined by the frequency calculations which provided the Gibbs free energy.



(13)

Where,  $J^{x,y}$  is the Boltzmann-averaged scalar coupling constant between nuclei x and y;  $J_i^{x,y}$  scalar coupling constant between nuclei x and y for conformer i and  $G_i$ , the relative Gibbs free energy of conformer i.

The calculated <sup>1</sup>H-<sup>1</sup>H coupling constants were compared to the experimentally determined values by calculating the MAD and SD (Equations 7-8).

#### 24.5 Chemical shift analysis for 9

Conformational searching using MCMM with MMFFs for the four diastereomers of **9** found between 18 and 58 conformers below 10kJ/mol relative to the global minimum found. Table S13 to Table S16 show the populations calculated from the relative potential energies from single point calculations using DFT.

| Label | Relative Energy<br>(E) /kJ.mol <sup>.1</sup> | Population | Label | Relative Energy<br>(E) /kJ.mol <sup>.1</sup> | Population |
|-------|----------------------------------------------|------------|-------|----------------------------------------------|------------|
| 1     | 0.00                                         | 32.77%     | 10    | 4.61                                         | 5.09%      |
| 2     | 3.43                                         | 8.20%      | 11    | 4.60                                         | 5.11%      |
| 3     | 4.57                                         | 5.18%      | 12    | 5.97                                         | 2.94%      |
| 4     | 7.69                                         | 1.47%      | 13    | 11.62                                        | 0.30%      |
| 5     | 2.38                                         | 12.55%     | 14    | 11.18                                        | 0.36%      |
| 6     | 3.41                                         | 8.26%      | 15    | 11.43                                        | 0.32%      |
| 7     | 6.88                                         | 2.04%      | 16    | 5.38                                         | 3.73%      |
| 8     | 5.28                                         | 3.88%      | 17    | 14.10                                        | 0.11%      |
| 9     | 7.78                                         | 1.42%      | 18    | 4.09                                         | 6.28%      |

 Table S13: 9-RR - relative potential energies (DFT B3LYP/6-31g (d,p)) and populations at 289K, Cartesian co-ordinates for these conformers are attached.

| Label | Relative Energy<br>(E) /kJ.mol <sup>-1</sup> | Population | Label | Relative Energy<br>(E) /kJ.mol <sup>-1</sup> | Population |
|-------|----------------------------------------------|------------|-------|----------------------------------------------|------------|
| 1     | 7.71                                         | 1.41%      | 25    | 16.22                                        | 0.05%      |
| 2     | 1.69                                         | 16.06%     | 26    | 14.08                                        | 0.11%      |
| 3     | 0.00                                         | 31.77%     | 27    | 19.84                                        | 0.01%      |
| 4     | 5.02                                         | 4.18%      | 28    | 15.17                                        | 0.07%      |
| 5     | 10.77                                        | 0.41%      | 29    | 13.52                                        | 0.13%      |
| 6     | 8.20                                         | 1.16%      | 30    | 7.62                                         | 1.46%      |
| 7     | 13.73                                        | 0.12%      | 31    | 9.40                                         | 0.72%      |
| 8     | 6.09                                         | 2.71%      | 32    | 15.43                                        | 0.06%      |
| 9     | 14.77                                        | 0.08%      | 33    | 9.65                                         | 0.65%      |
| 10    | 11.20                                        | 0.35%      | 34    | 7.18                                         | 1.75%      |
| 11    | 9.93                                         | 0.58%      | 35    | 14.89                                        | 0.08%      |
| 12    | 5.26                                         | 3.81%      | 36    | 19.67                                        | 0.01%      |
| 13    | 3.97                                         | 6.40%      | 37    | 9.72                                         | 0.63%      |
| 14    | 3.49                                         | 7.77%      | 38    | 6.80                                         | 2.04%      |
| 15    | 20.87                                        | 0.01%      | 39    | 18.54                                        | 0.02%      |
| 16    | 9.24                                         | 0.76%      | 40    | 10.76                                        | 0.41%      |
| 17    | 10.84                                        | 0.40%      | 41    | 15.89                                        | 0.05%      |
| 18    | 5.44                                         | 3.54%      | 42    | 18.43                                        | 0.02%      |
| 19    | 5.22                                         | 3.86%      | 43    | 24.46                                        | 0.00%      |
| 20    | 15.02                                        | 0.07%      | 44    | 14.97                                        | 0.08%      |
| 21    | 18.54                                        | 0.02%      | 45    | 5.84                                         | 3.01%      |
| 22    | 12.24                                        | 0.23%      | 46    | 8.95                                         | 0.85%      |
| 23    | 10.91                                        | 0.39%      | 47    | 19.03                                        | 0.01%      |
| 24    | 16.17                                        | 0.05%      | 48    | 7.31                                         | 1.66%      |

# Table S14: 9-RS - relative potential energies (DFT B3LYP/6-31g (d,p)) and populations at 289K, Cartesian co-ordinates for these conformers are attached.

 Table S15: 9-SR - relative potential energies (DFT B3LYP/6-31g (d,p)) and populations at 289K, Cartesian co-ordinates for these conformers are attached.

| Label | Relative Energy<br>(E) /kJ.mol <sup>-1</sup> | Population | Label | Relative Energy<br>(E) /kJ.mol <sup>-1</sup> | Population |
|-------|----------------------------------------------|------------|-------|----------------------------------------------|------------|
| 1     | 9.98                                         | 0.33%      | 28    | 7.10                                         | 1.07%      |
| 2     | 5.29                                         | 2.22%      | 29    | 6.81                                         | 1.20%      |
| 3     | 5.29                                         | 2.22%      | 30    | 10.38                                        | 0.28%      |
| 4     | 3.41                                         | 4.75%      | 31    | 13.65                                        | 0.08%      |
| 5     | 8.05                                         | 0.73%      | 32    | 13.15                                        | 0.09%      |
| 6     | 10.75                                        | 0.25%      | 33    | 6.31                                         | 1.47%      |
| 7     | 8.98                                         | 0.50%      | 34    | 10.66                                        | 0.25%      |
| 8     | 4.04                                         | 3.69%      | 35    | 10.58                                        | 0.26%      |
| 9     | 4.05                                         | 3.67%      | 36    | 2.38                                         | 7.19%      |
| 10    | 10.44                                        | 0.28%      | 37    | 5.68                                         | 1.90%      |
| 11    | 6.36                                         | 1.44%      | 38    | 0.00                                         | 18.82%     |
| 12    | 11.46                                        | 0.18%      | 39    | 10.44                                        | 0.28%      |
| 13    | 9.83                                         | 0.36%      | 40    | 14.38                                        | 0.06%      |
| 14    | 9.86                                         | 0.35%      | 41    | 7.14                                         | 1.05%      |
| 15    | 7.83                                         | 0.80%      | 42    | 4.16                                         | 3.51%      |
| 16    | 6.13                                         | 1.58%      | 43    | 8.94                                         | 0.51%      |
| 17    | 14.61                                        | 0.05%      | 44    | 5.90                                         | 1.74%      |
| 18    | 9.99                                         | 0.33%      | 45    | 1.74                                         | 9.32%      |
| 19    | 8.57                                         | 0.59%      | 46    | 5.43                                         | 2.10%      |
| 20    | 10.26                                        | 0.30%      | 47    | 16.18                                        | 0.03%      |
| 21    | 17.95                                        | 0.01%      | 48    | 7.10                                         | 1.07%      |
| 22    | 6.91                                         | 1.16%      | 49    | 8.53                                         | 0.60%      |
| 23    | 11.76                                        | 0.16%      | 50    | 11.59                                        | 0.17%      |
| 24    | 1.19                                         | 11.63%     | 51    | 13.77                                        | 0.07%      |
| 25    | 8.39                                         | 0.64%      | 52    | 5.10                                         | 2.40%      |
| 26    | 3.17                                         | 5.22%      | 53    | 8.59                                         | 0.59%      |
| 27    | 9.35                                         | 0.43%      |       |                                              |            |

|       | Relative Energy           | <b>D L</b> 1 <sup>11</sup> |       | Relative Energy           | <b>A</b> 1.1 |
|-------|---------------------------|----------------------------|-------|---------------------------|--------------|
| Label | (E) /kJ.mol <sup>-1</sup> | Population                 | Label | (E) /kJ.mol <sup>-1</sup> | Population   |
| 1     | 7.24                      | 0.97%                      | 30    | 9.17                      | 0.44%        |
| 2     | 5.44                      | 2.01%                      | 31    | 4.03                      | 3.55%        |
| 3     | 6.19                      | 1.48%                      | 32    | 10.38                     | 0.27%        |
| 4     | 3.05                      | 5.27%                      | 33    | 11.32                     | 0.19%        |
| 5     | 8.83                      | 0.51%                      | 34    | 12.85                     | 0.10%        |
| 6     | 7.42                      | 0.90%                      | 35    | 3.57                      | 4.28%        |
| 7     | 7.40                      | 0.91%                      | 36    | 6.56                      | 1.28%        |
| 8     | 2.43                      | 6.76%                      | 37    | 6.60                      | 1.26%        |
| 9     | 19.30                     | 0.01%                      | 38    | 21.88                     | 0.00%        |
| 10    | 1.69                      | 9.11%                      | 39    | 18.56                     | 0.01%        |
| 11    | 7.88                      | 0.75%                      | 40    | 23.52                     | 0.00%        |
| 12    | 17.10                     | 0.02%                      | 41    | 14.82                     | 0.05%        |
| 13    | 9.41                      | 0.40%                      | 42    | 14.82                     | 0.05%        |
| 14    | 10.96                     | 0.22%                      | 43    | 14.81                     | 0.05%        |
| 15    | 4.56                      | 2.87%                      | 44    | 10.73                     | 0.24%        |
| 16    | 4.55                      | 2.87%                      | 45    | 19.78                     | 0.01%        |
| 17    | 8.14                      | 0.68%                      | 46    | 9.92                      | 0.33%        |
| 18    | 9.39                      | 0.41%                      | 47    | 17.40                     | 0.02%        |
| 19    | 9.39                      | 0.41%                      | 48    | 4.53                      | 2.90%        |
| 20    | 24.60                     | 0.00%                      | 49    | 4.54                      | 2.89%        |
| 21    | 17.89                     | 0.01%                      | 50    | 13.33                     | 0.08%        |
| 22    | 0.00                      | 18.06%                     | 51    | 22.67                     | 0.00%        |
| 23    | 7.70                      | 0.81%                      | 52    | 26.82                     | 0.00%        |
| 24    | 0.15                      | 16.98%                     | 53    | 6.29                      | 1.43%        |
| 25    | 24.51                     | 0.00%                      | 54    | 20.33                     | 0.00%        |
| 26    | 6.88                      | 1.12%                      | 55    | 12.43                     | 0.12%        |
| 27    | 10.25                     | 0.29%                      | 56    | 20.31                     | 0.00%        |
| 28    | 10.24                     | 0.29%                      | 57    | 2.92                      | 5.56%        |
| 29    | 9.00                      | 0.48%                      | 58    | 10.10                     | 0.31%        |

 Table S16: 9-SS - relative potential energies (DFT B3LYP/6-31g (d,p)) and populations at 289K, Cartesian co-ordinates for these conformers are attached.

The populations were used to weight the calculated  $\sigma$  for the different conformers (Equation 4) which were used to calculate  $\delta_{scaled}$  for the four diastereomers (Equations 5-6).  $\delta_{scaled}$  were then compared to the  $\delta_{exp}$  and used to calculate MAD, SD and DP4 for <sup>1</sup>H (Table S17) and <sup>13</sup>C (Table S18). The chemical shifts of H4'a and H4'b, for which the experimental measurement of chemical shift was ambiguous, and the chemical shifts of <sup>1</sup>H in OH groups were not included in the calculation of MAD, SD or DP4.

| Exp.   | s /                   | Calc. | 9-RR $\delta_{scaled}$ | 9-RS $\delta_{scaled}$ | 9-SR $\delta_{scaled}$ | 9-SS $\delta_{scaled}$ |
|--------|-----------------------|-------|------------------------|------------------------|------------------------|------------------------|
| Label  | o <sub>exp</sub> /ppm | Label | /ppm                   | /ppm                   | /ppm                   | /ppm                   |
| H1a/b  | 2.363                 | H1b   | 2.572                  | 2.7750                 | 2.711                  | 2.321                  |
| H1a/b  | 2.747                 | H1a   | 2.331                  | 2.9639                 | 3.172                  | 2.739                  |
| H3     | 4.172                 | H3    | 3.881                  | 4.4151                 | 4.149                  | 4.387                  |
| H4     | 1.891                 | H4    | 2.012                  | 1.8646                 | 1.779                  | 2.138                  |
| H6     | 3.807                 | H6    | 3.869                  | 3.3671                 | 3.692                  | 3.380                  |
| H7     | 2.917                 | H7    | 3.364                  | 3.1264                 | 2.935                  | 3.022                  |
| H1'    | 0.925                 | H1'   | 0.856                  | 0.8739                 | 0.921                  | 0.899                  |
| H2'    | 1.636                 | H2'   | 1.797                  | 1.4683                 | 1.471                  | 1.555                  |
| H3'    | 0.832                 | H3'   | 0.728                  | 0.9571                 | 0.893                  | 0.809                  |
| H4'a/b | 1.271 - 1.141         | H5'b  | 1.575                  | 1.4234                 | 1.623                  | 1.523                  |
| H5'a/b | 1.756                 | H5'a  | 2.291                  | 1.4734                 | 1.428                  | 2.422                  |
| H5'a/b | 2.012                 |       |                        |                        |                        |                        |
| OH3    | 5.196                 |       |                        |                        |                        |                        |
| OH5    | 5.196                 |       |                        |                        |                        |                        |
| OH6    | 5.862                 |       |                        |                        |                        |                        |
| M      | MAD /ppm              |       | 0.22                   | 0.31                   | 0.25                   | 0.22                   |
| 9      | SD /ppm               |       | 0.18                   | 0.26                   | 0.19                   | 0.16                   |
|        | DP4                   |       | 40.0%                  | 0.1%                   | 23.7%                  | 36.1%                  |

**Table S17:** Experimental <sup>1</sup>H chemical shifts for **9** referenced to internal DMSO at 2.508 ppm and  $\delta_{scaled}$  is the correspondingscaled chemical shift for the different diastereomers (Equation 6).

**Table S18:** Experimental <sup>13</sup>C chemical shifts for **9** referenced to internal DMSO at 39.520 ppm and  $\delta_{scaled}$  is thecorresponding scaled chemical shift for the different diastereomers (Equation 6).

| Exp.  | £ /mmm                | Calc. | 9-RR $\delta_{scaled}$ | 9-RS $\delta_{scaled}$ | 9-SR $\delta_{scaled}$ | 9-SS $\delta_{scaled}$ |
|-------|-----------------------|-------|------------------------|------------------------|------------------------|------------------------|
| Label | o <sub>exp</sub> /ppm | Label | /ppm                   | /ppm                   | /ppm                   | /ppm                   |
| C1    | 30.319                | C1    | 29.383                 | 38.055                 | 36.612                 | 29.113                 |
| C2    | 89.817                | C2    | 94.233                 | 74.985                 | 76.620                 | 90.342                 |
| C3    | 72.949                | C3    | 74.549                 | 85.477                 | 81.677                 | 73.482                 |
| C4    | 43.940                | C4    | 43.131                 | 44.412                 | 41.102                 | 41.193                 |
| C5    | 106.241               | C5    | 108.605                | 103.851                | 107.503                | 109.949                |
| C6    | 80.540                | C6    | 83.086                 | 76.717                 | 75.055                 | 85.272                 |
| C7    | 42.593                | C7    | 43.441                 | 57.488                 | 58.388                 | 40.451                 |
| C8/C9 | 144.387               | C8    | 140.733                | 150.031                | 146.960                | 141.217                |
| C8/C9 | 143.664               | C9    | 142.603                | 137.541                | 141.073                | 141.285                |
| C10   | 165.831               | C10   | 165.827                | 167.337                | 166.693                | 166.792                |
| C11   | 167.075               | C11   | 166.130                | 168.278                | 167.816                | 166.962                |
| C1'   | 8.214                 | C1'   | 7.490                  | 2.489                  | 2.656                  | 7.975                  |
| C2'   | 33.038                | C2'   | 30.706                 | 25.136                 | 30.227                 | 33.829                 |
| C3'   | 13.778                | C3'   | 12.233                 | 8.783                  | 9.206                  | 13.203                 |
| C4'   | 20.791                | C4'   | 21.364                 | 18.730                 | 18.370                 | 21.872                 |
| C5'   | 32.083                | C5'   | 31.746                 | 35.951                 | 35.303                 | 32.323                 |
| MAI   | D /ppm                |       | 1.96                   | 7.71                   | 6.68                   | 2.15                   |
| SD    | /ppm                  |       | 1.54                   | 5.98                   | 4.93                   | 1.57                   |
| I     | DP4                   |       | 65.5%                  | 0.0%                   | 0.0%                   | 34.5%                  |

It was found that either the **9-RR** or **9-SS** diastereomers were the most probable match to the experimental data, however the results for DP4 (Figure S50) show that distinguishing the **9-RR** (67.7% using <sup>1</sup>H and <sup>13</sup>C) from the **9-SS** (32.3% using <sup>1</sup>H and <sup>13</sup>C) was more difficult.



Figure S50: Summary of DP4 results for the different diastereomers of 9.

## 24.6 Analysis for 10

Conformational searching using MCMM with MMFFs for the two diastereomers of **10** found 538 conformers below 50kJ/mol for **10-RRRS** and 1423 for **10-SRRS** relative to the global minima. Following single point energy calculations (using DFT B3LYP 6-31g(d,p)) to obtain the relative potential energies, 158 conformers were found below 21 kJ/mol for **10-RRRS** and 202 for **10-SRRS**. The conformers were then further geometry optimised and frequency calculations were performed to obtain the relative Gibbs free energy which was used to calculate the population of each conformer using the Boltzmann distribution (Table S19, Table S20). Conformers which converged to the same geometry following optimisation were eliminated, resulting in 136 conformers for **10-RRRS** and 132 for **10-SRRS**.

| Label | Relative Energy<br>(G) /kJ.mol <sup>-1</sup> | Population | Label | Relative Energy<br>(G) /kJ.mol <sup>-1</sup> | Population |
|-------|----------------------------------------------|------------|-------|----------------------------------------------|------------|
| 1     | 2.418                                        | 5.305%     | 102   | 15.895                                       | 0.023%     |
| 2     | 0.000                                        | 14.086%    | 104   | 7.911                                        | 0.577%     |
| 3     | 1.864                                        | 6.635%     | 108   | 6.800                                        | 0.904%     |
| 4     | 1.397                                        | 8.014%     | 110   | 15.819                                       | 0.024%     |
| 5     | 5.674                                        | 1.425%     | 112   | 8.488                                        | 0.457%     |
| 6     | 4.035                                        | 2.761%     | 114   | 7.567                                        | 0.663%     |
| 7     | 5.700                                        | 1.410%     | 115   | 11.841                                       | 0.118%     |
| 9     | 11.135                                       | 0.157%     | 118   | 3.810                                        | 3.025%     |
| 10    | 6.863                                        | 0.881%     | 119   | 5.301                                        | 1.656%     |
| 11    | 5.109                                        | 1.790%     | 121   | 18.465                                       | 0.008%     |
| 12    | 12.371                                       | 0.095%     | 126   | 1.665                                        | 7.192%     |
| 13    | 8.932                                        | 0.382%     | 129   | 11.250                                       | 0.150%     |
| 14    | 6.858                                        | 0.883%     | 130   | 12.545                                       | 0.089%     |
| 15    | 13.569                                       | 0.059%     | 132   | 5.692                                        | 1.414%     |
| 16    | 5.419                                        | 1.579%     | 133   | 10.481                                       | 0.204%     |
| 17    | 4.802                                        | 2.026%     | 134   | 9.231                                        | 0.339%     |
| 18    | 16.165                                       | 0.021%     | 135   | 12.786                                       | 0.081%     |
| 19    | 12.064                                       | 0.108%     | 143   | 7.934                                        | 0.572%     |
| 20    | 10.229                                       | 0.226%     | 144   | 13.293                                       | 0.066%     |
| 21    | 8.344                                        | 0.485%     | 148   | 12.437                                       | 0.093%     |
| 22    | 12.991                                       | 0.074%     | 149   | 6.301                                        | 1.106%     |
| 23    | 7.312                                        | 0.735%     | 150   | 10.323                                       | 0.218%     |
| 24    | 6.866                                        | 0.880%     | 155   | 9.024                                        | 0.368%     |
| 26    | 17.512                                       | 0.012%     | 156   | 7.774                                        | 0.610%     |
| 27    | 11.917                                       | 0.115%     | 158   | 7.015                                        | 0.829%     |
| 28    | 11.605                                       | 0.130%     | 162   | 11.991                                       | 0.111%     |
| 29    | 9.948                                        | 0.254%     | 165   | 15.070                                       | 0.032%     |
| 30    | 9.612                                        | 0.290%     | 167   | 11.497                                       | 0.136%     |
| 31    | 15.157                                       | 0.031%     | 169   | 3.613                                        | 3.275%     |
| 32    | 10.200                                       | 0.229%     | 170   | 7.317                                        | 0.734%     |
| 33    | 15.210                                       | 0.030%     | 173   | 12.017                                       | 0.110%     |

 

 Table S19: 10-RRRS - relative Gibb's free energies (DFT mPW1PW91/6-311g(d,p)) and populations at 289K, Cartesian coordinates for these conformers are attached.

| 35   | 11.376 | 0.142% | 175 | 8.134  | 0.528% |
|------|--------|--------|-----|--------|--------|
| 39   | 13.114 | 0.071% | 176 | 11.424 | 0.140% |
| 41   | 11.610 | 0.130% | 182 | 11.783 | 0.121% |
| 42   | 17.163 | 0.014% | 184 | 4.560  | 2.234% |
| 43   | 12.458 | 0.092% | 188 | 12.936 | 0.076% |
| 44   | 10.371 | 0.214% | 190 | 13.976 | 0.050% |
| 45   | 14.587 | 0.039% | 191 | 11.059 | 0.162% |
| 47   | 13.884 | 0.052% | 201 | 15.383 | 0.028% |
| 49   | 9.964  | 0.252% | 209 | 4.910  | 1.940% |
| 50   | 13.461 | 0.061% | 214 | 14.393 | 0.042% |
| 51   | 9.334  | 0.325% | 215 | 6.805  | 0.902% |
| 55   | 19.274 | 0.006% | 218 | 15.034 | 0.033% |
| 57   | 7.186  | 0.774% | 221 | 7.165  | 0.780% |
| 58   | 11.836 | 0.118% | 223 | 14.608 | 0.039% |
| 61   | 16.992 | 0.015% | 230 | 9.237  | 0.338% |
| 64   | 17.677 | 0.011% | 234 | 15.464 | 0.027% |
| 66   | 21.479 | 0.002% | 243 | 16.023 | 0.022% |
| 68   | 8.055  | 0.545% | 244 | 11.093 | 0.160% |
| 70   | 7.596  | 0.656% | 252 | 3.497  | 3.431% |
| 71   | 9.953  | 0.253% | 254 | 14.595 | 0.039% |
| 72   | 14.052 | 0.048% | 264 | 6.826  | 0.895% |
| 74   | 12.878 | 0.078% | 268 | 7.228  | 0.761% |
| 75   | 7.958  | 0.566% | 277 | 17.184 | 0.014% |
| 76   | 14.926 | 0.034% | 288 | 11.718 | 0.124% |
| 78   | 18.701 | 0.007% | 302 | 15.262 | 0.030% |
| 80   | 16.131 | 0.021% | 306 | 8.683  | 0.423% |
| 81   | 7.196  | 0.770% | 315 | 12.776 | 0.081% |
| 83   | 19.043 | 0.006% | 339 | 13.983 | 0.050% |
| 85   | 14.073 | 0.048% | 342 | 18.759 | 0.007% |
| 87   | 10.534 | 0.200% | 359 | 9.307  | 0.328% |
| 89   | 6.322  | 1.097% | 363 | 13.813 | 0.053% |
| 90   | 20.474 | 0.004% | 419 | 12.621 | 0.086% |
| 93   | 17.520 | 0.012% | 422 | 15.595 | 0.026% |
| 94   | 8.063  | 0.543% | 428 | 11.143 | 0.157% |
| 95   | 7.123  | 0.794% | 432 | 18.754 | 0.007% |
| 96   | 11.242 | 0.150% | 444 | 11.208 | 0.152% |
| 99   | 6.075  | 1.211% | 504 | 13.432 | 0.062% |
| <br> |        |        |     |        |        |

 

 Table S20: 10-SRRS - relative Gibb's free energies (DFT mPW1PW91/6-311g(d,p)) and populations at 289K, Cartesian coordinates for these conformers are attached.

| Label | Relative Energy<br>(G) /kJ.mol <sup>-1</sup> | Population | Label | Relative Energy<br>(G) /kJ.mol <sup>-1</sup> | Population |
|-------|----------------------------------------------|------------|-------|----------------------------------------------|------------|
| 1     | 9.181                                        | 1.123%     | 145   | 23.905                                       | 0.003%     |
| 2     | 9.373                                        | 1.040%     | 147   | 11.676                                       | 0.410%     |
| 3     | 9.583                                        | 0.955%     | 148   | 14.081                                       | 0.155%     |
| 4     | 8.953                                        | 1.232%     | 150   | 3.445                                        | 11.391%    |
| 7     | 15.630                                       | 0.083%     | 155   | 24.170                                       | 0.003%     |
| 8     | 13.826                                       | 0.172%     | 170   | 18.371                                       | 0.027%     |
| 9     | 11.715                                       | 0.404%     | 172   | 21.393                                       | 0.008%     |
| 10    | 18.896                                       | 0.022%     | 173   | 20.287                                       | 0.013%     |
| 11    | 17.210                                       | 0.044%     | 176   | 5.574                                        | 4.821%     |
| 12    | 16.121                                       | 0.068%     | 177   | 19.802                                       | 0.015%     |
| 13    | 11.035                                       | 0.531%     | 188   | 18.526                                       | 0.026%     |
| 14    | 13.763                                       | 0.177%     | 206   | 15.504                                       | 0.087%     |
| 15    | 14.984                                       | 0.108%     | 210   | 16.401                                       | 0.061%     |
| 16    | 14.616                                       | 0.125%     | 212   | 21.316                                       | 0.008%     |
| 18    | 8.677                                        | 1.377%     | 214   | 8.402                                        | 1.539%     |
| 19    | 14.107                                       | 0.154%     | 224   | 4.104                                        | 8.730%     |
| 20    | 7.588                                        | 2.138%     | 232   | 24.966                                       | 0.002%     |
| 21    | 14.401                                       | 0.136%     | 249   | 23.879                                       | 0.003%     |
| 22    | 15.464                                       | 0.089%     | 250   | 9.005                                        | 1.206%     |
| 23    | 13.608                                       | 0.188%     | 270   | 27.476                                       | 0.001%     |
| 24    | 17.255                                       | 0.043%     | 271   | 10.912                                       | 0.559%     |
| 26    | 20.048                                       | 0.014%     | 278   | 19.809                                       | 0.015%     |
| 27    | 13.965                                       | 0.163%     | 287   | 22.146                                       | 0.006%     |
| 29    | 23.070                                       | 0.004%     | 292   | 19.555                                       | 0.017%     |
| 35    | 16.638                                       | 0.055%     | 303   | 18.323                                       | 0.028%     |
| 36    | 17.856                                       | 0.034%     | 305   | 19.836                                       | 0.015%     |
| 37    | 11.471                                       | 0.446%     | 312   | 10.898                                       | 0.562%     |
| 38    | 21.009                                       | 0.009%     | 314   | 24.821                                       | 0.002%     |
| 39    | 17.349                                       | 0.041%     | 329   | 5.894                                        | 4.236%     |
| 40    | 20.337                                       | 0.012%     | 339   | 23.104                                       | 0.004%     |
| 44    | 28.516                                       | 0.000%     | 347   | 24.128                                       | 0.003%     |
| 45    | 18.688                                       | 0.024%     | 359   | 23.430                                       | 0.004%     |
| 46    | 22.955                                       | 0.004%     | 365   | 19.689                                       | 0.016%     |

| 47  | 21.151 | 0.009%  | 371  | 18.019 | 0.032% |
|-----|--------|---------|------|--------|--------|
| 48  | 12.072 | 0.350%  | 379  | 13.978 | 0.162% |
| 49  | 12.833 | 0.257%  | 388  | 13.834 | 0.172% |
| 51  | 19.731 | 0.016%  | 427  | 22.648 | 0.005% |
| 54  | 21.177 | 0.009%  | 435  | 21.818 | 0.007% |
| 57  | 21.529 | 0.008%  | 505  | 19.261 | 0.019% |
| 58  | 19.886 | 0.015%  | 517  | 20.608 | 0.011% |
| 65  | 20.962 | 0.010%  | 522  | 18.541 | 0.026% |
| 67  | 0.000  | 45.779% | 538  | 23.637 | 0.003% |
| 68  | 30.044 | 0.000%  | 541  | 25.588 | 0.001% |
| 69  | 19.972 | 0.014%  | 562  | 13.810 | 0.173% |
| 70  | 21.537 | 0.008%  | 567  | 23.527 | 0.003% |
| 74  | 16.373 | 0.062%  | 571  | 15.010 | 0.107% |
| 75  | 17.756 | 0.035%  | 611  | 23.026 | 0.004% |
| 78  | 23.207 | 0.004%  | 642  | 24.462 | 0.002% |
| 79  | 14.682 | 0.122%  | 764  | 16.207 | 0.066% |
| 81  | 17.137 | 0.045%  | 823  | 17.903 | 0.033% |
| 83  | 16.441 | 0.060%  | 866  | 18.919 | 0.022% |
| 84  | 14.640 | 0.124%  | 878  | 23.307 | 0.004% |
| 91  | 25.383 | 0.002%  | 999  | 22.269 | 0.006% |
| 100 | 19.135 | 0.020%  | 1008 | 12.384 | 0.308% |
| 101 | 6.519  | 3.291%  | 1018 | 24.905 | 0.002% |
| 105 | 14.283 | 0.143%  | 1153 | 21.676 | 0.007% |
| 109 | 16.444 | 0.060%  | 1172 | 15.816 | 0.077% |
| 111 | 17.762 | 0.035%  | 1188 | 13.227 | 0.219% |
| 116 | 13.443 | 0.201%  | 1219 | 21.684 | 0.007% |
| 117 | 20.489 | 0.012%  | 1228 | 23.057 | 0.004% |
| 123 | 13.419 | 0.203%  | 1262 | 27.381 | 0.001% |
| 124 | 18.376 | 0.027%  | 1266 | 17.486 | 0.039% |
| 128 | 16.795 | 0.052%  | 1268 | 7.745  | 2.006% |
| 138 | 11.762 | 0.396%  | 1287 | 20.823 | 0.010% |
| 141 | 15.378 | 0.092%  | 1319 | 25.354 | 0.002% |
| 144 | 23.401 | 0.004%  | 1378 | 24.084 | 0.003% |

The spin simulation tool in available in MestReNova 9.0.1<sup>26</sup> was used to extract <sup>1</sup>H chemical shifts and <sup>n</sup>J<sub>HH</sub> where possible (Figure S51-Figure S52). Due to overlap and complex, broad peak shapes not all <sup>n</sup>J<sub>HH</sub> involving H4'a/b could be measured for **10A** or **10B** (Table S21, Table S22). Assignment of diastereotopic (a/b) <sup>1</sup>H was achieved using distinguishing experimental and computational <sup>n</sup>J<sub>HH</sub> such as the couplings between H1a/b and H2, which differ by between 5.3 and 8.8 Hz. Where this was not possible, such as H4'a/b and H5'a/b in **10A**, these were assigned by comparison of experimentally determined <sup>1</sup>H-<sup>1</sup>H distances and DFT-derived  $r_{effective}$  <sup>1</sup>H-<sup>1</sup>H distances (Table S23, Table S24). In the case of H2'a/b and H4'a/b in **10B** the issues of overlap (in NOE-intensity measurements) and nondistinguishing <sup>n</sup>J<sub>HH</sub> meant that was not possible to assign the chemical shifts.



Figure S51: <sup>1</sup>H spectrum for 10A in deuterated chloroform at 600 MHz A) experimental data, B) spin simulation.



Figure S52: <sup>1</sup>H spectrum for **10B** in deuterated chloroform at 600 MHz A) experimental data, B) spin simulation.

|         |         |                  | 10-RR              | RS                     |                                   |                  | 10-SF              | RRS                    |                                   |
|---------|---------|------------------|--------------------|------------------------|-----------------------------------|------------------|--------------------|------------------------|-----------------------------------|
| Label 1 | Label 2 | $\delta_{exp} 1$ | δ <sub>exp</sub> 2 | DFT                    | 10A                               | $\delta_{exp}$ 1 | δ <sub>exp</sub> 2 | DFT                    | 10A                               |
|         |         | /ppm             | /ppm               | יז <sub>וו</sub> / Hz⁺ | <sup>n</sup> J <sub>нн</sub> / Hz | /ppm             | /ppm               | "J <sub>HH</sub> / Hz⁺ | <sup>n</sup> J <sub>нн</sub> / Hz |
| H1a     | H1b     | 2.527            | 2.267              | 14.8                   | 13.8                              | 2.267            | 2.527              | 13.3                   | 13.8                              |
| H1a     | H2      | 2.527            | 2.002              | 3.4                    | 3.2                               | 2.267            | 2.002              | 8.9                    | 12.0                              |
| H1a     | H3      | 2.527            | 4.166              | 0.2                    |                                   | 2.267            | 4.166              | 0.6                    |                                   |
| H1b     | H2      | 2.267            | 2.002              | 9.6                    | 12.0                              | 2.527            | 2.002              | 1.7                    | 3.2                               |
| H2      | H3      | 2.002            | 4.166              | 5.8                    | 6.6                               | 2.002            | 4.166              | 1.8                    | 6.6                               |
| H2      | H2'a    | 2.002            | 1.460              | 7.5                    | 7.9                               | 2.002            | 1.689              | 5.1                    | 4.8                               |
| H2      | H2'b    | 2.002            | 1.689              | 3.8                    | 4.8                               | 2.002            | 1.460              | 7.3                    | 7.9                               |
| H3      | H4a     | 4.166            | 2.561              | 3.2                    | 2.4                               | 4.166            | 2.561              | 3.0                    | 2.4                               |
| H3      | H4b     | 4.166            | 3.273              | 6.3                    | 7.5                               | 4.166            | 3.273              | 9.9                    | 7.5                               |
| H4a     | H4b     | 2.561            | 3.273              | 15.0                   | 15.5                              | 2.561            | 3.273              | 14.3                   | 15.5                              |
| H6      | H7      | 4.305            | 3.414              | 6.3                    | 5.8                               | 4.305            | 3.414              | 9.0                    | 5.8                               |
| H7      | H5'a    | 3.414            | 1.817              | 6.1                    | 6.1                               | 3.414            | 1.817              | 3.9                    | 6.1                               |
| H7      | H5'b    | 3.414            | 1.562              | 8.0                    | 9.5                               | 3.414            | 1.562              | 10.0                   | 9.5                               |
| H1'     | H2'a    | 1.047            | 1.460              | 6.4                    | 7.4                               | 1.047            | 1.689              | 6.5                    | 7.4                               |
| H1'     | H2'b    | 1.047            | 1.689              | 6.6                    | 7.4                               | 1.047            | 1.460              | 6.5                    | 7.4                               |
| H2'a    | H2'b    | 1.460            | 1.689              | 13.8                   | 14.7                              | 1.689            | 1.460              | 13.7                   | 14.7                              |
| H3'     | H4'a    | 0.924            | 1.270              | 6.4                    | 7.3                               | 0.924            | 1.270              | 6.4                    | 7.3                               |
| H3'     | H4'b    | 0.924            | 1.361              | 6.3                    | 7.3                               | 0.924            | 1.361              | 6.3                    | 7.3                               |
| H4'a    | H4'b    | 1.270            | 1.361              | 12.9                   |                                   | 1.270            | 1.361              | 13.1                   |                                   |
| H4'a    | H5'a    | 1.270            | 1.817              | 9.8                    |                                   | 1.270            | 1.817              | 10.0                   |                                   |
| H4'a    | H5'b    | 1.270            | 1.562              | 3.8                    |                                   | 1.270            | 1.562              | 4.0                    |                                   |
| H4'b    | H5'a    | 1.361            | 1.817              | 4.6                    |                                   | 1.361            | 1.817              | 5.2                    |                                   |
| H4'b    | H5'b    | 1.361            | 1.562              | 9.6                    |                                   | 1.361            | 1.562              | 9.3                    |                                   |
| H5'a    | H5'b    | 1.817            | 1.562              | 13.6                   | 13.9                              | 1.817            | 1.562              | 13.7                   | 13.9                              |

**Table S21:** <sup>n</sup>J<sub>HH</sub> measured experimentally for **10A** compared to DFT-derived values for **10-RRRS** and **10-SRRS**. Experimental <sup>1</sup>H chemical shifts for **10A** referenced to internal chloroform at 7.258 ppm at 600 MHz. <sup>†</sup>DFT <sup>n</sup>J<sub>HH</sub> >0.5Hz reported.

|         |         |                            | 10-RRR                     | S                                                     |                                          |                            | 10-SRF                     | RS                                        |                                          |
|---------|---------|----------------------------|----------------------------|-------------------------------------------------------|------------------------------------------|----------------------------|----------------------------|-------------------------------------------|------------------------------------------|
| Label 1 | Label 2 | δ <sub>exp</sub> 1<br>/ppm | δ <sub>exp</sub> 2<br>/ppm | DFT<br><sup></sup> ″J <sub>HH</sub> / Hz <sup>†</sup> | 10В<br><sup>"</sup> Ј <sub>НН</sub> / Нz | δ <sub>exp</sub> 1<br>/ppm | δ <sub>exp</sub> 2<br>/ppm | DFT<br>"J <sub>HH</sub> / Hz <sup>†</sup> | 10В<br><sup>"</sup> Ј <sub>НН</sub> / Нz |
| H1a     | H1b     | 2.435                      | 2.710                      | 14.8                                                  | 14.0                                     | 2.710                      | 2.435                      | 13.3                                      | 14.0                                     |
| H1a     | H2      | 2.435                      | 1.735                      | 3.4                                                   | 3.0                                      | 2.710                      | 1.735                      | 8.9                                       | 8.3                                      |
| H1a     | H3      | 2.435                      | 4.235                      | 0.2                                                   |                                          | 2.710                      | 4.235                      | 0.6                                       |                                          |
| H1b     | H2      | 2.710                      | 1.735                      | 9.6                                                   | 8.3                                      | 2.435                      | 1.735                      | 1.7                                       | 3.0                                      |
| H2      | H3      | 1.735                      | 4.235                      | 5.8                                                   | 2.2                                      | 1.735                      | 4.235                      | 1.8                                       | 2.2                                      |
| H2      | H2'a    | 1.735                      | 1.622/1.592                | 7.5                                                   | 6.9                                      | 1.735                      | 1.622/1.592                | 5.1                                       | 6.9                                      |
| H2      | H2'b    | 1.735                      | 1.622/1.592                | 3.8                                                   | 6.9                                      | 1.735                      | 1.622/1.592                | 7.3                                       | 6.9                                      |
| H3      | H4a     | 4.235                      | 2.653                      | 3.2                                                   | 4.1                                      | 4.235                      | 2.653                      | 3.0                                       | 4.1                                      |
| H3      | H4b     | 4.235                      | 3.138                      | 6.3                                                   | 8.5                                      | 4.235                      | 3.138                      | 9.9                                       | 8.5                                      |
| H4a     | H4b     | 2.653                      | 3.138                      | 15.0                                                  | 14.7                                     | 2.653                      | 3.138                      | 14.3                                      | 14.7                                     |
| H6      | H7      | 4.140                      | 3.259                      | 6.3                                                   | 9.4                                      | 4.140                      | 3.259                      | 9.0                                       | 9.4                                      |
| H7      | H5'a    | 3.259                      | 2.029                      | 6.1                                                   | 5.0                                      | 3.259                      | 2.029                      | 3.9                                       | 5.0                                      |
| H7      | H5'b    | 3.259                      | 1.955                      | 8.0                                                   | 10.5                                     | 3.259                      | 1.955                      | 10.0                                      | 10.5                                     |
| H1'     | H2'a    | 1.039                      | 1.622/1.592                | 6.4                                                   | 7.4                                      | 1.039                      | 1.622/1.592                | 6.5                                       | 7.4                                      |
| H1'     | H2'b    | 1.039                      | 1.622/1.592                | 6.6                                                   | 7.4                                      | 1.039                      | 1.622/1.592                | 6.5                                       | 7.4                                      |
| H2'a    | H2'b    | 1.622/1.592                | 1.622/1.592                | 13.8                                                  | 13.6                                     | 1.622/1.592                | 1.622/1.592                | 13.7                                      | 13.6                                     |
| H3'     | H4'a    | 0.916                      | 1.229/1.283                | 6.4                                                   | 7.3                                      | 0.916                      | 1.229/1.283                | 6.4                                       | 7.3                                      |
| H3'     | H4'b    | 0.916                      | 1.229/1.283                | 6.3                                                   | 7.3                                      | 0.916                      | 1.229/1.283                | 6.3                                       | 7.3                                      |
| H4'a    | H4'b    | 1.229/1.283                | 1.229/1.283                | 12.9                                                  |                                          | 1.229/1.283                | 1.229/1.283                | 13.1                                      |                                          |
| H4'a    | H5'a    | 1.229/1.283                | 2.029                      | 9.8                                                   |                                          | 1.229/1.283                | 2.029                      | 10.0                                      |                                          |
| H4'a    | H5'b    | 1.229/1.283                | 1.955                      | 3.8                                                   |                                          | 1.229/1.283                | 1.955                      | 4.0                                       |                                          |
| H4'b    | H5'a    | 1.229/1.283                | 2.029                      | 4.6                                                   |                                          | 1.229/1.283                | 2.029                      | 5.2                                       |                                          |
| H4'b    | H5'b    | 1.229/1.283                | 1.955                      | 9.6                                                   | 6.6                                      | 1.229/1.283                | 1.955                      | 9.3                                       | 6.6                                      |
| H5'a    | H5'b    | 2.029                      | 1.955                      | 13.6                                                  | 13.9                                     | 2.029                      | 1.955                      | 13.7                                      | 13.9                                     |

**Table S22:** <sup>n</sup>J<sub>HH</sub> measured experimentally for **10B** compared to DFT-derived values for **10-RRRS** and **10-SRRS**. Experimental <sup>1</sup>H chemical shifts for **10B** referenced to internal chloroform at 7.258 ppm at 600 MHz. <sup>†</sup>DFT <sup>n</sup>J<sub>HH</sub> >0.5Hz reported.

# **Table S23:** Experimental <sup>1</sup>H-<sup>1</sup>H distances **10A**. $\eta^{ref}$ was 89.14 (H1a-H1b) and $r^{ref}$ set to 1.753Å for **10-RRRS** and 1.902Å for **10-SRRS**.

|             |             |                             |                             | 10-RRRS                       |       |                            |                             |                             | 10-SRRS                       |       |                                  |
|-------------|-------------|-----------------------------|-----------------------------|-------------------------------|-------|----------------------------|-----------------------------|-----------------------------|-------------------------------|-------|----------------------------------|
| F1<br>Label | F2<br>Label | δ <sub>exp</sub> F1<br>/ppm | δ <sub>exp</sub> F2<br>/ppm | r <sub>effective</sub><br>/ Å | η     | r <sub>exp</sub><br>10A /Å | δ <sub>exp</sub> F1<br>/ppm | δ <sub>exp</sub> F2<br>/ppm | r <sub>effective</sub><br>/ Å | η     | <i>r<sub>exp</sub></i><br>10A /Å |
| H01a        | H01b        | 2.527                       | 2.267                       | 1.75                          | 82.17 | 1.78                       | 2.267                       | 2.527                       | 1.76                          | 89.11 | 1.90                             |
| H01a        | H02         | 2.527                       | 2.002                       | 2.49                          | 19.14 | 2.27                       | 2.267                       | 2.002                       | 2.97                          |       |                                  |
| H01a        | H03         | 2.527                       | 4.166                       | 3.91                          |       |                            | 2.267                       | 4.166                       | 3.68                          | 6.69  | 2.93                             |
| H01a        | H04a        | 2.527                       | 2.561                       | 4.40                          |       |                            | 2.267                       | 2.561                       | 3.57                          |       |                                  |
| H01a        | H04b        | 2.527                       | 3.273                       | 4.62                          |       |                            | 2.267                       | 3.273                       | 4.06                          |       |                                  |
| H01a        | H06         | 2.527                       | 4.305                       | 5.33                          |       |                            | 2.267                       | 4.305                       | 4.65                          | 1.39  | 3.80                             |
| H01a        | H07         | 2.527                       | 3.414                       | 3.89                          |       |                            | 2.267                       | 3.414                       | 2.31                          |       |                                  |
| H01a        | H01'        | 2.527                       | 1.047                       | 2.70                          | 16.97 | 2.78                       | 2.267                       | 1.047                       | 3.76                          |       |                                  |
| H01a        | H02'a       | 2.527                       | 1.460                       | 2.68                          | 8.79  | 2.58                       | 2.267                       | 1.689                       | 3.08                          | 1.99  | 3.58                             |
| H01a        | H02'b       | 2.527                       | 1.689                       | 3.03                          |       |                            | 2.267                       | 1.460                       | 2.77                          | 8.48  | 2.81                             |
| H01a        | H03'        | 2.527                       | 0.924                       | 5.57                          |       |                            | 2.267                       | 0.924                       | 4.25                          |       |                                  |
| H01a        | H04'a       | 2.527                       | 1.270                       | 4.42                          |       |                            | 2.267                       | 1.270                       | 4.12                          |       |                                  |
| H01a        | H04'b       | 2.527                       | 1.361                       | 4.70                          |       |                            | 2.267                       | 1.361                       | 3.70                          |       |                                  |
| H01a        | H05'a       | 2.527                       | 1.817                       | 3.80                          |       |                            | 2.267                       | 1.562                       | 4.60                          | 13.96 | 2.59                             |
| H01a        | H05'b       | 2.527                       | 1.562                       | 3.85                          |       |                            | 2.267                       | 1.817                       | 4.73                          | 7.32  | 2.88                             |
| H01b        | H01a        | 2.267                       | 2.527                       | 1.75                          | 89.14 | 1.75                       | 2.527                       | 2.267                       | 1.76                          | 82.17 | 1.93                             |
| H01b        | H02         | 2.267                       | 2.002                       | 2.99                          |       |                            | 2.527                       | 2.002                       | 2.58                          | 19.14 | 2.46                             |
| H01b        | H03         | 2.267                       | 4.166                       | 2.91                          | 6.69  | 2.70                       | 2.527                       | 4.166                       | 4.19                          |       |                                  |
| H01b        | H04a        | 2.267                       | 2.561                       | 3.30                          |       |                            | 2.527                       | 2.561                       | 3.92                          |       |                                  |
| H01b        | H04b        | 2.267                       | 3.273                       | 3.76                          |       |                            | 2.527                       | 3.273                       | 4.88                          |       |                                  |
| H01b        | H06         | 2.267                       | 4.305                       | 4.00                          | 1.39  | 3.51                       | 2.527                       | 4.305                       | 5.22                          |       |                                  |
| H01b        | H07         | 2.267                       | 3.414                       | 4.15                          |       |                            | 2.527                       | 3.414                       | 3.72                          |       |                                  |
| H01b        | H01'        | 2.267                       | 1.047                       | 3.45                          |       |                            | 2.527                       | 1.047                       | 2.72                          | 16.97 | 3.01                             |
| H01b        | H02'a       | 2.267                       | 1.460                       | 2.65                          | 8.48  | 2.59                       | 2.527                       | 1.689                       | 3.07                          |       |                                  |

| H01b | H02'b | 2.267 | 1.689 | 3.07 | 1.99   | 3.30 | 2.527 | 1.460 | 2.48 | 8.79   | 2.80 |
|------|-------|-------|-------|------|--------|------|-------|-------|------|--------|------|
| H01b | H03'  | 2.267 | 0.924 | 5.08 |        |      | 2.527 | 0.924 | 5.48 |        |      |
| H01b | H04'a | 2.267 | 1.270 | 4.14 |        |      | 2.527 | 1.270 | 4.63 |        |      |
| H01b | H04'b | 2.267 | 1.361 | 4.41 |        |      | 2.527 | 1.361 | 4.64 |        |      |
| H01b | H05'a | 2.267 | 1.817 | 2.61 | 7.32   | 2.66 | 2.527 | 1.562 | 4.05 |        |      |
| H01b | H05'b | 2.267 | 1.562 | 2.51 | 13.96  | 2.39 | 2.527 | 1.817 | 3.97 |        |      |
| H02  | H01a  | 2.002 | 2.527 | 2.49 | 15.85  | 2.34 | 2.002 | 2.267 | 2.97 |        |      |
| H02  | H01b  | 2.002 | 2.267 | 2.99 |        |      | 2.002 | 2.527 | 2.58 | 15.85  | 2.54 |
| H02  | H03   | 2 002 | 4 166 | 2 59 | 10 44  | 2 51 | 2 002 | 4 166 | 2 46 | 10 44  | 2 72 |
| H02  | H04a  | 2 002 | 2 561 | 3 65 | 10111  | 2.01 | 2 002 | 2 561 | 2.10 | 10111  | 2.72 |
| H02  | H04b  | 2 002 | 3 273 | 3 11 | 3 61   | 2 99 | 2 002 | 3 273 | 3 31 | 3 61   | 3 25 |
| H02  | H06   | 2 002 | 4 305 | 5.25 | 5101   | 2.55 | 2 002 | 4 305 | / 91 | 5101   | 5125 |
| H02  | H07   | 2.002 | 2 /1/ | 2.25 |        |      | 2.002 | 2 /1/ | 4.51 |        |      |
|      | LO1   | 2.002 | 1.047 | 2.07 | 7 24   | 2 10 | 2.002 | 1.047 | 2 20 | 7 24   | 2 46 |
| 1102 | 1101  | 2.002 | 1.047 | 2.33 | 2.61   | 2.00 | 2.002 | 1.047 | 2.05 | 6.14   | 3.40 |
| HUZ  |       | 2.002 | 1.400 | 2.72 | 5.01   | 2.99 | 2.002 | 1.089 | 2.05 | 0.14   | 2.97 |
| HU2  |       | 2.002 | 1.089 | 2.57 | 0.14   | 2.74 | 2.002 | 1.400 | 2.70 | 3.01   | 3.25 |
| HUZ  | HU3   | 2.002 | 0.924 | 6.82 |        |      | 2.002 | 0.924 | 7.48 |        |      |
| HUZ  | HU4 a | 2.002 | 1.270 | 5.80 |        |      | 2.002 | 1.270 | 6.20 |        |      |
| H02  | H04'b | 2.002 | 1.361 | 5.52 |        |      | 2.002 | 1.361 | 6.21 |        |      |
| H02  | H05'a | 2.002 | 1.817 | 5.28 |        |      | 2.002 | 1.562 | 6.24 |        |      |
| H02  | H05'b | 2.002 | 1.562 | 5.29 |        |      | 2.002 | 1.817 | 5.61 |        |      |
| H03  | H01a  | 4.166 | 2.527 | 3.91 |        |      | 4.166 | 2.267 | 3.68 | 6.40   | 2.95 |
| H03  | H01b  | 4.166 | 2.267 | 2.91 | 6.40   | 2.72 | 4.166 | 2.527 | 4.19 |        |      |
| H03  | H02   | 4.166 | 2.002 | 2.59 | 14.08  | 2.38 | 4.166 | 2.002 | 2.46 | 14.08  | 2.59 |
| H03  | H04a  | 4.166 | 2.561 | 2.43 | 17.07  | 2.31 | 4.166 | 2.561 | 2.71 | 17.07  | 2.50 |
| H03  | H04b  | 4.166 | 3.273 | 2.52 | 8.26   | 2.61 | 4.166 | 3.273 | 2.25 | 8.26   | 2.83 |
| H03  | H06   | 4.166 | 4.305 | 4.88 |        |      | 4.166 | 4.305 | 4.96 |        |      |
| H03  | H07   | 4.166 | 3.414 | 5.42 |        |      | 4.166 | 3.414 | 4.48 |        |      |
| H03  | H01'  | 4.166 | 1.047 | 3.09 | 8.76   | 3.10 | 4.166 | 1.047 | 2.89 | 8.76   | 3.36 |
| H03  | H02'a | 4.166 | 1.460 | 2.92 | 5.62   | 2.78 | 4.166 | 1.689 | 2.36 | 11.40  | 2.68 |
| H03  | H02'b | 4.166 | 1.689 | 2.57 | 11.40  | 2.47 | 4.166 | 1.460 | 3.13 | 5.62   | 3.01 |
| H03  | H03'  | 4.166 | 0.924 | 7.63 |        |      | 4.166 | 0.924 | 8.10 |        |      |
| H03  | H04'a | 4.166 | 1.270 | 6.75 |        |      | 4.166 | 1.270 | 7.17 |        |      |
| H03  | H04'b | 4.166 | 1.361 | 6.48 |        |      | 4.166 | 1.361 | 6.81 |        |      |
| H03  | H05'a | 4.166 | 1.817 | 5.14 |        |      | 4.166 | 1.562 | 6.61 |        |      |
| H03  | H05'b | 4.166 | 1.562 | 5.14 |        |      | 4.166 | 1.817 | 6.82 |        |      |
| H04a | H01a  | 2.561 | 2.527 | 4.40 |        |      | 2.561 | 2.267 | 3.57 |        |      |
| H04a | H01b  | 2.561 | 2.267 | 3.30 |        |      | 2.561 | 2.527 | 3.92 |        |      |
| H04a | H02   | 2.561 | 2.002 | 3.65 |        |      | 2.561 | 2.002 | 2.44 |        |      |
| H04a | H03   | 2.561 | 4.166 | 2.43 | 17.40  | 2.30 | 2.561 | 4.166 | 2.71 | 17.40  | 2.50 |
| H04a | H04b  | 2.561 | 3.273 | 1.76 | 66.22  | 1.84 | 2.561 | 3.273 | 1.75 | 66.22  | 2.00 |
| H04a | H06   | 2.561 | 4.305 | 3.30 | 2.05   | 3.29 | 2.561 | 4.305 | 2.67 | 2.05   | 3.57 |
| H04a | H07   | 2.561 | 3.414 | 4.43 |        |      | 2.561 | 3.414 | 3.44 |        |      |
| H04a | H01'  | 2.561 | 1.047 | 4.09 |        |      | 2.561 | 1.047 | 5.01 |        |      |
| H04a | H02'a | 2.561 | 1.460 | 2.83 |        |      | 2.561 | 1.689 | 4.39 |        |      |
| H04a | H02'b | 2 561 | 1 689 | 2.85 |        |      | 2 561 | 1 460 | 4 64 |        |      |
| H04a | H03'  | 2 561 | 0 924 | 7.06 |        |      | 2 561 | 0.924 | 6.90 |        |      |
| H04a | H04'a | 2.561 | 1 270 | 5.05 |        |      | 2.501 | 1 270 | 5.50 |        |      |
| H04a | H04'b | 2.501 | 1.270 | 5.55 |        |      | 2.501 | 1 261 | 5.50 |        |      |
| H04a | H05'a | 2.501 | 1.301 | 4 20 |        |      | 2.501 | 1.501 | 5.06 |        |      |
| H04a |       | 2.501 | 1.017 | 4.50 |        |      | 2.501 | 1.502 | 3.00 |        |      |
| П04d |       | 2.501 | 1.502 | 3.70 |        |      | 2.501 | 1.017 | 4.81 |        |      |
| HU4D | HUIA  | 3.273 | 2.527 | 4.62 |        |      | 3.273 | 2.267 | 4.06 |        |      |
|      |       | 3.273 | 2.20/ | 3.76 | 4.05   | 2.02 | 3.2/3 | 2.527 | 4.88 | 4.05   | 2.40 |
|      | HU2   | 3.2/3 | 2.002 | 3.11 | 4.05   | 2.93 | 3.2/3 | 2.002 | 3.31 | 4.05   | 3.18 |
| HU4b | HU3   | 3.2/3 | 4.166 | 2.52 | 14.20  | 2.38 | 3.2/3 | 4.166 | 2.25 | 14.20  | 2.58 |
| HU4b | H04a  | 3.273 | 2.561 | 1.76 | 110.92 | 1.69 | 3.273 | 2.561 | 1.75 | 110.92 | 1.83 |
| HU4b | H06   | 3.273 | 4.305 | 3.40 | 4.73   |      | 3.273 | 4.305 | 3.36 | 4.73   |      |
| H04b | H07   | 3.273 | 3.414 | 4.41 |        |      | 3.273 | 3.414 | 3.83 |        |      |
| H04b | H01'  | 3.273 | 1.047 | 5.17 |        |      | 3.273 | 1.047 | 5.22 |        |      |
| H04b | H02'a | 3.273 | 1.460 | 4.35 |        |      | 3.273 | 1.689 | 4.45 |        |      |
| H04b | H02'b | 3.273 | 1.689 | 4.16 |        |      | 3.273 | 1.460 | 4.78 |        |      |

| H04b  | H03'             | 3.273          | 0.924 | 7.35 |       |      | 3.273  | 0.924 | 7.77         |       |      |
|-------|------------------|----------------|-------|------|-------|------|--------|-------|--------------|-------|------|
| H04b  | H04'a            | 3.273          | 1.270 | 6.09 |       |      | 3.273  | 1.270 | 6.73         |       |      |
| H04b  | H04'b            | 3.273          | 1.361 | 5.80 |       |      | 3.273  | 1.361 | 6.41         |       |      |
| H04b  | H05'a            | 3.273          | 1.817 | 4.93 |       |      | 3.273  | 1.562 | 5.66         |       |      |
| H04b  | H05'b            | 3.273          | 1.562 | 4.97 |       |      | 3.273  | 1.817 | 5.82         |       |      |
| H06   | H01a             | 4.305          | 2.527 | 5.33 |       |      | 4.305  | 2.267 | 4.65         | 1.09  | 3.96 |
| H06   | H01b             | 4.305          | 2.267 | 4.00 | 1.09  | 3.65 | 4.305  | 2.527 | 5.22         |       |      |
| H06   | H02              | 4.305          | 2.002 | 5.25 |       |      | 4.305  | 2.002 | 4.91         |       |      |
| H06   | H03              | 4.305          | 4.166 | 4.88 |       |      | 4.305  | 4.166 | 4.96         |       |      |
| H06   | H04a             | 4.305          | 2.561 | 3.30 | 1.59  | 3.43 | 4.305  | 2.561 | 2.67         | 1.59  | 3.72 |
| H06   | H04b             | 4.305          | 3.273 | 3.40 | 1.67  | 3.40 | 4.305  | 3.273 | 3.36         | 1.67  | 3.69 |
| H06   | H07              | 4.305          | 3.414 | 2.44 | 12.51 | 2.43 | 4.305  | 3.414 | 2.93         | 12.51 | 2.64 |
| H06   | H01 <sup>r</sup> | 4.305          | 1.047 | 7.32 |       |      | 4.305  | 1.047 | 7.50         |       |      |
| H06   | H02'a            | 4.305          | 1.460 | 5.93 |       |      | 4.305  | 1.689 | 6.66         |       |      |
| H06   | H02'b            | 4.305          | 1.689 | 6.13 |       |      | 4.305  | 1.460 | 6.70         |       |      |
| HUG   | HU3              | 4.305          | 0.924 | 4.50 | 2.69  | 2.14 | 4.305  | 0.924 | 5.44         | 2.69  | 2 41 |
| HUD   | H04 a            | 4.305          | 1.270 | 3.17 | 2.08  | 3.14 | 4.305  | 1.270 | 4.22<br>2.95 | 2.08  | 3.41 |
| нос   |                  | 4.305          | 1.301 | 2.00 | 4.30  | 2.90 | 4.305  | 1.501 | 2.05         | 4.50  | 2.14 |
| HUD   | HUS a            | 4.305          | 1.817 | 2.05 | 2 11  | 2.49 | 4.305  | 1.562 | 3.12         | 2.11  | 3.55 |
|       |                  | 4.305          | 1.502 | 3.21 | 2.11  | 3.27 | 4.305  | 1.017 | 2.80         | 10.85 | 2.70 |
|       |                  | 3.414<br>2.414 | 2.527 | 3.89 |       |      | 2 414  | 2.207 | 2.31         |       |      |
|       |                  | 2 414          | 2.207 | 4.15 |       |      | 2 414  | 2.527 | 3.72         |       |      |
| H07   | H02              | 2 /1/          | 2.002 | 5.42 |       |      | 2 /1/  | 2.002 | 4.40         |       |      |
| H07   | H04a             | 2 /1/          | 2 561 | J.42 |       |      | 2 /1/  | 2 561 | 4.40         |       |      |
| H07   | H04b             | 3.414          | 3 273 | 4.43 |       |      | 3 / 1/ | 3 273 | 3.44         |       |      |
| H07   | H06              | 3 414          | 4 305 | 7.41 | 23.05 | 2 20 | 3 414  | 4 305 | 2 93         | 23.05 | 2 38 |
| H07   | H01'             | 3 414          | 1.047 | 6.03 | 23.05 | 2.20 | 3 414  | 1 047 | 6.26         | 23.05 | 2.50 |
| H07   | H02'a            | 3 414          | 1.047 | 5.89 |       |      | 3 414  | 1 689 | 5 14         |       |      |
| H07   | H02'h            | 3 414          | 1 689 | 5.05 |       |      | 3 414  | 1 460 | 4 90         |       |      |
| H07   | H03'             | 3 414          | 0.924 | 3 46 |       |      | 3 414  | 0.924 | 3 36         |       |      |
| H07   | H04'a            | 3 414          | 1 270 | 2 77 | 4 29  | 2 91 | 3 414  | 1 270 | 3.05         | 4 29  | 3 15 |
| H07   | H04'b            | 3 414          | 1 361 | 2.68 | 5 30  | 2.81 | 3 414  | 1 361 | 2 59         | 5 30  | 3.04 |
| H07   | H05'a            | 3.414          | 1.817 | 2.60 | 10.65 | 2.50 | 3.414  | 1.562 | 2.48         | 3.88  | 3.21 |
| H07   | H05'b            | 3.414          | 1.562 | 2.72 | 3.88  | 2.96 | 3.414  | 1.817 | 2.98         | 10.65 | 2.71 |
| H01'  | H01a             | 1.047          | 2.527 | 2.70 | 4.97  | 2.84 | 1.047  | 2.267 | 3.76         |       |      |
| H01'  | H01b             | 1.047          | 2.267 | 3.45 |       |      | 1.047  | 2.527 | 2.72         | 4.97  | 3.08 |
| H01'  | H02              | 1.047          | 2.002 | 2.93 | 3.73  | 2.97 | 1.047  | 2.002 | 2.89         | 3.73  | 3.23 |
| H01'  | H03              | 1.047          | 4.166 | 3.09 | 2.42  | 3.20 | 1.047  | 4.166 | 2.89         | 2.42  | 3.47 |
| H01'  | H04a             | 1.047          | 2.561 | 4.09 |       |      | 1.047  | 2.561 | 5.01         |       |      |
| H01'  | H04b             | 1.047          | 3.273 | 5.17 |       |      | 1.047  | 3.273 | 5.22         |       |      |
| H01'  | H06              | 1.047          | 4.305 | 7.32 |       |      | 1.047  | 4.305 | 7.50         |       |      |
| H01'  | H07              | 1.047          | 3.414 | 6.03 |       |      | 1.047  | 3.414 | 6.26         |       |      |
| H01'  | H02'a            | 1.047          | 1.460 | 2.62 |       |      | 1.047  | 1.689 | 2.61         |       |      |
| H01'  | H02'b            | 1.047          | 1.689 | 2.61 | 2.89  |      | 1.047  | 1.460 | 2.62         |       |      |
| H01'  | H03'             | 1.047          | 0.924 | 7.75 |       |      | 1.047  | 0.924 | 9.00         |       |      |
| H01'  | H04'a            | 1.047          | 1.270 | 7.10 |       |      | 1.047  | 1.270 | 7.66         |       |      |
| H01'  | H04'b            | 1.047          | 1.361 | 6.92 |       |      | 1.047  | 1.361 | 7.60         |       |      |
| H01'  | H05'a            | 1.047          | 1.817 | 6.44 |       |      | 1.047  | 1.562 | 8.43         |       |      |
| H01'  | H05'b            | 1.047          | 1.562 | 6.17 |       |      | 1.047  | 1.817 | 8.30         |       |      |
| H02'a | H01a             | 1.460          | 2.527 | 2.68 |       |      | 1.689  | 2.267 | 3.08         | 4.49  | 3.13 |
| H02'a | H01b             | 1.460          | 2.267 | 2.65 | 8.54  | 2.59 | 1.689  | 2.527 | 3.07         | 3.46  |      |
| H02'a | H02              | 1.460          | 2.002 | 2.72 | 6.91  | 2.68 | 1.689  | 2.002 | 2.65         | 10.56 | 2.71 |
| H02'a | H03              | 1.460          | 4.166 | 2.92 | 4.76  | 2.86 | 1.689  | 4.166 | 2.36         | 9.98  | 2.74 |
| H02'a | H04a             | 1.460          | 2.561 | 2.83 |       |      | 1.689  | 2.561 | 4.39         | 8.00  |      |
| H02'a | H04b             | 1.460          | 3.273 | 4.35 |       |      | 1.689  | 3.273 | 4.45         |       |      |
| H02'a | H06              | 1.460          | 4.305 | 5.93 |       |      | 1.689  | 4.305 | 6.66         |       |      |
| H02'a | H07              | 1.460          | 3.414 | 5.89 |       |      | 1.689  | 3.414 | 5.14         |       |      |
| H02'a | H01'             | 1.460          | 1.047 | 2.62 |       |      | 1.689  | 1.047 | 2.61         | 13.08 | 3.14 |
| H02'a | H02'b            | 1.460          | 1.689 | 1.75 |       |      | 1.689  | 1.460 | 1.75         | 61.20 | 2.02 |
| H02'a | H03'             | 1.460          | 0.924 | 7.39 |       |      | 1.689  | 0.924 | 7.60         |       |      |

| H02'a            | H04'a | 1.460 | 1.270 | 6.68         |       |      | 1.689 | 1.270 | 7.36 |      |      |
|------------------|-------|-------|-------|--------------|-------|------|-------|-------|------|------|------|
| H02'a            | H04'b | 1.460 | 1.361 | 6.69         |       |      | 1.689 | 1.361 | 6.93 |      |      |
| H02'a            | H05'a | 1.460 | 1.817 | 5.33         |       |      | 1.689 | 1.562 | 7.49 |      |      |
| H02'a            | H05'b | 1.460 | 1.562 | 5.15         |       |      | 1.689 | 1.817 | 7.65 |      |      |
| H02'b            | H01a  | 1.689 | 2.527 | 3.03         | 3.46  |      | 1.460 | 2.267 | 2.77 | 8.54 | 2.81 |
| H02'b            | H01b  | 1.689 | 2.267 | 3.07         | 4.49  | 2.88 | 1.460 | 2.527 | 2.48 |      |      |
| H02'b            | H02   | 1.689 | 2.002 | 2.57         | 10.56 | 2.50 | 1.460 | 2.002 | 2.70 | 6.91 | 2.91 |
| H02'b            | H03   | 1.689 | 4.166 | 2.57         | 9.98  | 2.52 | 1.460 | 4.166 | 3.13 | 4.76 | 3.10 |
| H02'b            | H04a  | 1.689 | 2.561 | 2.85         | 8.00  |      | 1.460 | 2.561 | 4.64 |      |      |
| H02'b            | H04b  | 1.689 | 3.273 | 4.16         |       |      | 1.460 | 3.273 | 4.78 |      |      |
| H02'b            | H06   | 1.689 | 4.305 | 6.13         |       |      | 1.460 | 4.305 | 6.70 |      |      |
| H02'b            | H07   | 1.689 | 3.414 | 5.77         |       |      | 1.460 | 3.414 | 4.90 |      |      |
| H02'b            | H01'  | 1.689 | 1.047 | 2.61         | 13.08 | 2.90 | 1.460 | 1.047 | 2.62 |      |      |
| H02'b            | H02'a | 1.689 | 1.460 | 1.75         | 61.20 | 1.87 | 1.460 | 1.689 | 1.75 |      |      |
| H02'b            | H03'  | 1.689 | 0.924 | 7.88         |       |      | 1.460 | 0.924 | 7.65 |      |      |
| H02'b            | H04'a | 1.689 | 1.270 | 7.08         |       |      | 1.460 | 1.270 | 6.79 |      |      |
| H02'b            | H04'b | 1.689 | 1.361 | 6.90         |       |      | 1.460 | 1.361 | 6.35 |      |      |
| H02'b            | H05'a | 1.689 | 1.817 | 5.79         |       |      | 1.460 | 1.562 | 7.21 |      |      |
| H02'b            | H05'b | 1.689 | 1.562 | 5.73         |       |      | 1.460 | 1.817 | 7.33 |      |      |
| H03'             | H01a  | 0.924 | 2.527 | 5.57         |       |      | 0.924 | 2.267 | 4.25 |      |      |
| H03'             | H01b  | 0.924 | 2.267 | 5.08         |       |      | 0.924 | 2.527 | 5.48 |      |      |
| H03'             | H02   | 0.924 | 2.002 | 6.82         |       |      | 0.924 | 2.002 | 7.48 |      |      |
| H03'             | H03   | 0.924 | 4.166 | 7.63         |       |      | 0.924 | 4.166 | 8.10 |      |      |
| H03'             | H04a  | 0.924 | 2.561 | 7.06         |       |      | 0.924 | 2.561 | 6.90 |      |      |
| H03'             | H04b  | 0.924 | 3.273 | 7.35         |       |      | 0.924 | 3.273 | 7.77 |      |      |
| H03'             | H06   | 0.924 | 4.305 | 4.50         |       |      | 0.924 | 4.305 | 5.44 |      |      |
| H03'             | H07   | 0.924 | 3.414 | 3.46         |       |      | 0.924 | 3.414 | 3.36 |      |      |
| H03'             | H01'  | 0.924 | 1.047 | 7.75         |       |      | 0.924 | 1.047 | 9.00 |      |      |
| H03'             | H02'a | 0.924 | 1.460 | 7.39         |       |      | 0.924 | 1.689 | 7.60 |      |      |
| H03'             | H02'b | 0.924 | 1.689 | 1.76         |       |      | 0.924 | 1.460 | 1.76 |      |      |
| H03'             | H04'a | 0.924 | 1.270 | 2.62         |       |      | 0.924 | 1.270 | 2.61 |      |      |
| H03 <sup>°</sup> | H04'b | 0.924 | 1.361 | 2.62         | • • • |      | 0.924 | 1.361 | 2.62 |      |      |
| H03 <sup>°</sup> | HUS'a | 0.924 | 1.817 | 2.95         | 2.90  | 3.10 | 0.924 | 1.562 | 2.92 | 2.36 | 3.48 |
| HU3              | HUS D | 0.924 | 1.562 | 2.95         | 2.36  | 3.21 | 0.924 | 1.817 | 3.03 | 2.90 | 3.37 |
| п04 a            |       | 1.270 | 2.527 | 4.42         |       |      | 1.270 | 2.207 | 4.12 |      |      |
|                  |       | 1.270 | 2.207 | 4.14<br>E 96 |       |      | 1.270 | 2.527 | 4.05 |      |      |
| H04'a            | H02   | 1.270 | 2.002 | 5.00         |       |      | 1.270 | 2.002 | 7 17 |      |      |
| H04'a            | H0/1a | 1.270 | 2 561 | 5.95         |       |      | 1.270 | 4.100 | 5.58 |      |      |
| H04'a            | H04b  | 1 270 | 3 273 | 6.09         |       |      | 1 270 | 3 273 | 6.73 |      |      |
| H04'a            | H06   | 1 270 | 4 305 | 3 17         | 2 27  | 3 73 | 1 270 | 4 305 | 4 22 | 2 27 | 3 51 |
| H04'a            | H07   | 1.270 | 3.414 | 2.77         | 3.23  | 3.05 | 1.270 | 3.414 | 3.05 | 3.21 | 3.31 |
| H04'a            | H01'  | 1.270 | 1.047 | 7.10         |       |      | 1.270 | 1.047 | 7.66 |      |      |
| H04'a            | H02'a | 1.270 | 1.460 | 6.68         |       |      | 1.270 | 1.689 | 7.36 |      |      |
| H04'a            | H02'b | 1.270 | 1.689 | 7.08         |       |      | 1.270 | 1.460 | 6.79 |      |      |
| H04'a            | H03'  | 1.270 | 0.924 | 2.62         |       |      | 1.270 | 0.924 | 2.61 |      |      |
| H04'a            | H04'b | 1.270 | 1.270 | 1.75         |       |      | 1.270 | 1.361 | 1.75 |      |      |
| H04'a            | H05'a | 1.270 | 1.817 | 2.88         |       |      | 1.270 | 1.562 | 2.85 |      |      |
| H04'a            | H05'b | 1.270 | 1.562 | 2.52         |       |      | 1.270 | 1.817 | 2.49 |      |      |
| H04'b            | H01a  | 1.361 | 2.527 | 4.70         |       |      | 1.361 | 2.267 | 3.70 | 2.07 |      |
| H04'b            | H01b  | 1.361 | 2.267 | 4.41         | 2.07  |      | 1.361 | 2.527 | 4.64 |      |      |
| H04'b            | H02   | 1.361 | 2.002 | 5.52         |       |      | 1.361 | 2.002 | 6.21 |      |      |
| H04'b            | H03   | 1.361 | 4.166 | 6.48         |       |      | 1.361 | 4.166 | 6.81 |      |      |
| H04'b            | H04a  | 1.361 | 2.561 | 5.66         |       |      | 1.361 | 2.561 | 5.58 |      |      |
| H04'b            | H04b  | 1.361 | 3.273 | 5.80         |       |      | 1.361 | 3.273 | 6.41 |      |      |
| H04'b            | H06   | 1.361 | 4.305 | 2.68         | 5.14  | 2.82 | 1.361 | 4.305 | 3.85 | 5.14 | 3.06 |
| H04'b            | H07   | 1.361 | 3.414 | 2.68         | 5.36  | 2.80 | 1.361 | 3.414 | 2.59 | 5.36 | 3.04 |
| H04'b            | H01'  | 1.361 | 1.047 | 6.92         |       |      | 1.361 | 1.047 | 7.60 |      |      |
| H04'b            | H02'a | 1.361 | 1.460 | 6.69         |       |      | 1.361 | 1.689 | 6.93 |      |      |
| H04'b            | H02'b | 1.361 | 1.689 | 6.90         |       |      | 1.361 | 1.460 | 6.35 |      |      |
| H04'b            | H03'  | 1.361 | 0.924 | 2.62         |       |      | 1.361 | 0.924 | 2.62 |      |      |

| H04'b | H04'a | 1.361 | 1.361 | 1.75 |       |      | 1.361 | 1.270 | 1.75 |       |      |
|-------|-------|-------|-------|------|-------|------|-------|-------|------|-------|------|
| H04'b | H05'a | 1.361 | 1.817 | 2.52 |       |      | 1.361 | 1.562 | 2.57 |       |      |
| H04'b | H05'b | 1.361 | 1.562 | 2.88 |       |      | 1.361 | 1.817 | 2.86 |       |      |
| H05'a | H01a  | 1.817 | 2.527 | 3.80 |       |      | 1.562 | 2.267 | 4.60 | 16.16 | 2.53 |
| H05'a | H01b  | 1.817 | 2.267 | 2.61 | 9.72  | 2.54 | 1.562 | 2.527 | 4.05 |       |      |
| H05'a | H02   | 1.817 | 2.002 | 5.28 |       |      | 1.562 | 2.002 | 6.24 |       |      |
| H05'a | H03   | 1.817 | 4.166 | 5.14 |       |      | 1.562 | 4.166 | 6.61 |       |      |
| H05'a | H04a  | 1.817 | 2.561 | 4.30 |       |      | 1.562 | 2.561 | 5.06 |       |      |
| H05'a | H04b  | 1.817 | 3.273 | 4.93 |       |      | 1.562 | 3.273 | 5.66 |       |      |
| H05'a | H06   | 1.817 | 4.305 | 2.65 | 12.53 | 2.43 | 1.562 | 4.305 | 3.12 | 2.38  | 3.48 |
| H05'a | H07   | 1.817 | 3.414 | 2.60 | 8.97  | 2.57 | 1.562 | 3.414 | 2.48 | 4.04  | 3.18 |
| H05'a | H01'  | 1.817 | 1.047 | 6.44 |       |      | 1.562 | 1.047 | 8.43 |       |      |
| H05'a | H02'a | 1.817 | 1.460 | 5.33 |       |      | 1.562 | 1.689 | 7.49 |       |      |
| H05'a | H02'b | 1.817 | 1.689 | 5.79 |       |      | 1.562 | 1.460 | 7.21 |       |      |
| H05'a | H03'  | 1.817 | 0.924 | 2.95 | 7.59  | 3.17 | 1.562 | 0.924 | 2.92 |       |      |
| H05'a | H04'a | 1.817 | 1.270 | 2.88 |       |      | 1.562 | 1.270 | 2.85 |       |      |
| H05'a | H04'b | 1.817 | 1.361 | 2.52 |       |      | 1.562 | 1.361 | 2.57 |       |      |
| H05'a | H05'b | 1.817 | 1.562 | 1.75 |       |      | 1.562 | 1.817 | 1.75 |       |      |
| H05'b | H01a  | 1.562 | 2.527 | 3.85 |       |      | 1.817 | 2.267 | 4.73 | 9.72  | 2.75 |
| H05'b | H01b  | 1.562 | 2.267 | 2.51 | 16.16 | 2.33 | 1.817 | 2.527 | 3.97 |       |      |
| H05'b | H02   | 1.562 | 2.002 | 5.29 |       |      | 1.817 | 2.002 | 5.61 |       |      |
| H05'b | H03   | 1.562 | 4.166 | 5.14 |       |      | 1.817 | 4.166 | 6.82 |       |      |
| H05'b | H04a  | 1.562 | 2.561 | 3.76 |       |      | 1.817 | 2.561 | 4.81 |       |      |
| H05'b | H04b  | 1.562 | 3.273 | 4.97 |       |      | 1.817 | 3.273 | 5.82 |       |      |
| H05'b | H06   | 1.562 | 4.305 | 3.21 | 2.38  | 3.21 | 1.817 | 4.305 | 2.86 | 12.53 | 2.64 |
| H05'b | H07   | 1.562 | 3.414 | 2.72 | 4.04  | 2.94 | 1.817 | 3.414 | 2.98 | 8.97  | 2.79 |
| H05'b | H01'  | 1.562 | 1.047 | 6.17 |       |      | 1.817 | 1.047 | 8.30 |       |      |
| H05'b | H02'a | 1.562 | 1.460 | 5.15 |       |      | 1.817 | 1.689 | 7.65 |       |      |
| H05'b | H02'b | 1.562 | 1.689 | 5.73 |       |      | 1.817 | 1.460 | 7.33 |       |      |
| H05'b | H03'  | 1.562 | 0.924 | 2.95 |       |      | 1.817 | 0.924 | 3.03 | 7.59  | 3.44 |
| H05'b | H04'a | 1.562 | 1.270 | 2.52 |       |      | 1.817 | 1.270 | 2.49 |       |      |
| H05'b | H04'b | 1.562 | 1.361 | 2.88 |       |      | 1.817 | 1.361 | 2.86 |       |      |
| H05'b | H05'a | 1.562 | 1.817 | 1.75 |       |      | 1.817 | 1.562 | 1.75 |       |      |

# **Table S24:** Experimental ${}^{1}$ H- ${}^{1}$ H distances **10B**. $\eta^{ref}$ was 87.40 (H1a-H1b) and $r^{ref}$ set to 1.894Å for **10-RRRS** and 1.829Å for**10-SRRS**.

|             |             |                             | 10                          | D-RRRS                        |       |                            |                             | 10                          | -SRRS                         |       |                            |
|-------------|-------------|-----------------------------|-----------------------------|-------------------------------|-------|----------------------------|-----------------------------|-----------------------------|-------------------------------|-------|----------------------------|
| F1<br>Label | F2<br>Label | δ <sub>exp</sub> F1<br>/ppm | δ <sub>exp</sub> F2<br>/ppm | r <sub>effective</sub><br>/ Å | η     | r <sub>exp</sub><br>10B /Å | δ <sub>exp</sub> F1<br>/ppm | δ <sub>exp</sub> F2<br>/ppm | r <sub>effective</sub><br>/ Å | η     | r <sub>exp</sub><br>10B /Å |
| H01a        | H01b        | 2.435                       | 2.710                       | 1.75                          | 70.04 | 1.97                       | 2.710                       | 2.435                       | 1.76                          | 87.43 | 1.83                       |
| H01a        | H02         | 2.435                       | 1.735                       | 2.49                          | 13.63 | 2.58                       | 2.710                       | 1.735                       | 2.97                          | 5.58  | 2.89                       |
| H01a        | H03         | 2.435                       | 4.235                       | 3.91                          |       |                            | 2.710                       | 4.235                       | 3.68                          | 1.27  | 3.70                       |
| H01a        | H04a        | 2.435                       | 2.653                       | 4.40                          |       |                            | 2.710                       | 2.653                       | 3.57                          |       |                            |
| H01a        | H04b        | 2.435                       | 3.138                       | 4.62                          |       |                            | 2.710                       | 3.138                       | 4.06                          | 5.07  | 2.94                       |
| H01a        | H06         | 2.435                       | 4.140                       | 5.33                          |       |                            | 2.710                       | 4.140                       | 4.65                          |       |                            |
| H01a        | H07         | 2.435                       | 3.259                       | 3.89                          |       |                            | 2.710                       | 3.259                       | 2.31                          | 20.45 | 2.33                       |
| H01a        | H01'        | 2.435                       | 1.039                       | 2.70                          | 8.79  | 3.34                       | 2.710                       | 1.039                       | 3.76                          | 4.28  | 3.63                       |
| H01a        | H02'a       | 2.435                       | 1.622/1.592                 | 2.68                          |       |                            | 2.710                       | 1.622/1.592                 | 3.08                          |       |                            |
| H01a        | H02'b       | 2.435                       | 1.592/1.622                 | 3.03                          |       |                            | 2.710                       | 1.592/1.622                 | 2.77                          |       |                            |
| H01a        | H03'        | 2.435                       | 0.916                       | 5.57                          |       |                            | 2.710                       | 0.916                       | 4.25                          |       |                            |
| H01a        | H04'a       | 2.435                       | 1.229/1.283                 | 4.42                          |       |                            | 2.710                       | 1.229/1.283                 | 4.12                          |       |                            |
| H01a        | H04'b       | 2.435                       | 1.229/1.283                 | 4.70                          |       |                            | 2.710                       | 1.229/1.283                 | 3.70                          |       |                            |
| H01a        | H05'a       | 2.435                       | 2.029                       | 3.80                          | 3.14  | 3.30                       | 2.710                       | 2.029                       | 4.60                          |       |                            |
| H01a        | H05'b       | 2.435                       | 1.955                       | 3.85                          | 2.17  | 3.51                       | 2.710                       | 1.955                       | 4.73                          |       |                            |
| H01b        | H01a        | 2.710                       | 2.710                       | 1.75                          | 87.43 | 1.89                       | 2.435                       | 2.710                       | 1.76                          | 70.04 | 1.90                       |
| H01b        | H02         | 2.710                       | 1.735                       | 2.99                          | 5.58  | 3.00                       | 2.435                       | 1.735                       | 2.58                          | 13.63 | 2.49                       |
| H01b        | H03         | 2.710                       | 4.235                       | 2.91                          | 1.27  | 3.83                       | 2.435                       | 4.235                       | 4.19                          |       |                            |
| H01b        | H04a        | 2.710                       | 2.653                       | 3.30                          |       |                            | 2.435                       | 2.653                       | 3.92                          |       |                            |
| H01b        | H04b        | 2.710                       | 3.138                       | 3.76                          | 5.07  | 3.04                       | 2.435                       | 3.138                       | 4.88                          |       |                            |

| H01b | H06    | 2.710 | 4.140       | 4.00 |        |       | 2.435 | 4.140       | 5.22 |        |       |
|------|--------|-------|-------------|------|--------|-------|-------|-------------|------|--------|-------|
| H01b | H07    | 2.710 | 3.259       | 4.15 | 20.45  | 2.41  | 2.435 | 3.259       | 3.72 |        |       |
| H01b | H01'   | 2.710 | 1.039       | 3.45 | 4.28   | 3.76  | 2.435 | 1.039       | 2.72 | 8.79   | 3.22  |
| H01b | H02'a  | 2.710 | 1.622/1.592 | 2.65 |        |       | 2.435 | 1.622/1.592 | 3.07 |        |       |
| H01b | H02'b  | 2.710 | 1.592/1.622 | 3.07 |        |       | 2.435 | 1.592/1.622 | 2.48 |        |       |
| H01b | H03'   | 2.710 | 0.916       | 5.08 |        |       | 2.435 | 0.916       | 5.48 |        |       |
| H01b | H04'a  | 2.710 | 1.229/1.283 | 4.14 |        |       | 2.435 | 1.229/1.283 | 4.63 |        |       |
| H01b | H04'b  | 2.710 | 1.229/1.283 | 4.41 |        |       | 2.435 | 1.229/1.283 | 4.64 |        |       |
| H01b | H05'a  | 2.710 | 2.029       | 2.61 |        |       | 2.435 | 2.029       | 4.05 | 3.14   | 3.18  |
| H01b | H05'b  | 2 710 | 1 955       | 2 51 |        |       | 2 435 | 1 955       | 3 97 | 2 17   | 3 39  |
| H02  | H01a   | 1 735 | 2 435       | 2 49 | 10.69  | 2 69  | 1 735 | 2 710       | 2 97 |        | 5.55  |
| H02  | H01b   | 1 725 | 2.435       | 2.45 | 10.05  | 2.05  | 1.735 | 2.710       | 2.57 | 10.60  | 2 60  |
|      |        | 1.755 | 2.710       | 2.99 | 14.07  | 2 5 4 | 1.735 | 2.435       | 2.50 | 14.07  | 2.00  |
| 102  | 1040   | 1.755 | 4.233       | 2.59 | 14.97  | 2.54  | 1.735 | 4.255       | 2.40 | 14.97  | 2.45  |
| 102  | H04a   | 1.755 | 2.035       | 3.05 | 9.90   | 2.72  | 1.735 | 2.035       | 2.44 | 9.90   | 2.05  |
| HUZ  | HU4b   | 1./35 | 3.138       | 3.11 |        |       | 1.735 | 3.138       | 3.31 |        |       |
| HUZ  | HUG    | 1./35 | 4.140       | 5.25 |        |       | 1.735 | 4.140       | 4.91 |        |       |
| H02  | H07    | 1./35 | 3.259       | 2.87 |        |       | 1.735 | 3.259       | 4.40 |        |       |
| H02  | H01'   | 1.735 | 1.039       | 2.93 | 9.68   | 3.28  | 1.735 | 1.039       | 2.89 | 9.68   | 3.17  |
| H02  | H02'a  | 1.735 | 1.622/1.592 | 2.72 |        |       | 1.735 | 1.622/1.592 | 2.65 |        |       |
| H02  | H02'b  | 1.735 | 1.592/1.622 | 2.57 |        |       | 1.735 | 1.592/1.622 | 2.70 |        |       |
| H02  | H03'   | 1.735 | 0.916       | 6.82 |        |       | 1.735 | 0.916       | 7.48 |        |       |
| H02  | H04'a  | 1.735 | 1.229/1.283 | 5.86 |        |       | 1.735 | 1.229/1.283 | 6.20 |        |       |
| H02  | H04'b  | 1.735 | 1.229/1.283 | 5.52 |        |       | 1.735 | 1.229/1.283 | 6.21 |        |       |
| H02  | H05'a  | 1.735 | 2.029       | 5.28 |        |       | 1.735 | 2.029       | 6.24 |        |       |
| H02  | H05'b  | 1.735 | 1.955       | 5.29 |        |       | 1.735 | 1.955       | 5.61 |        |       |
| H03  | H01a   | 4.235 | 2.435       | 3.91 |        |       | 4.235 | 2.710       | 3.68 | 1.10   | 3.79  |
| H03  | H01b   | 4.235 | 2.710       | 2.91 | 1.10   | 3.93  | 4.235 | 2.435       | 4.19 |        |       |
| H03  | H02    | 4.235 | 1.735       | 2.59 | 16.87  | 2.49  | 4.235 | 1.735       | 2.46 | 16.87  | 2.41  |
| H03  | H04a   | 4.235 | 2.653       | 2.43 | 12.54  | 2.62  | 4.235 | 2.653       | 2.71 | 12.54  | 2.53  |
| H03  | H04b   | 4.235 | 3.138       | 2.52 | 15.07  | 2.54  | 4.235 | 3.138       | 2.25 | 15.07  | 2.45  |
| H03  | H06    | 4.235 | 4.140       | 4.88 |        |       | 4.235 | 4.140       | 4.96 |        |       |
| H03  | H07    | 4.235 | 3.259       | 5.42 |        |       | 4.235 | 3.259       | 4.48 |        |       |
| H03  | H01'   | 4.235 | 1.039       | 3.09 | 9.87   | 3.27  | 4.235 | 1.039       | 2.89 | 9.87   | 3.16  |
| H03  | H02'a  | 4,235 | 1.622/1.592 | 2.92 |        |       | 4.235 | 1.622/1.592 | 2.36 |        |       |
| H03  | H02'b  | 4,235 | 1.592/1.622 | 2.57 |        |       | 4.235 | 1.592/1.622 | 3.13 |        |       |
| H03  | H03'   | 4,235 | 0.916       | 7.63 |        |       | 4.235 | 0.916       | 8.10 |        |       |
| H03  | H04'a  | 4 235 | 1 229/1 283 | 6 75 |        |       | 4 235 | 1 229/1 283 | 7 17 |        |       |
| ноз  | H04'h  | 4 235 | 1 229/1 283 | 6.48 |        |       | 4 235 | 1 229/1 283 | 6.81 |        |       |
| H03  | H05'a  | 4.235 | 2 029       | 5 1/ |        |       | 4.235 | 2 029       | 6.61 |        |       |
|      |        | 4.235 | 1.055       | 5.14 |        |       | 4.235 | 1.055       | 6.01 |        |       |
| 1103 | 1103 0 | 4.255 | 1.955       | 4.40 |        |       | 4.235 | 2,710       | 2.52 |        |       |
| HU4a |        | 2.053 | 2.435       | 4.40 |        |       | 2.053 | 2.710       | 3.57 |        |       |
| HU4a |        | 2.053 | 2.710       | 3.30 | 11.21  | 2.00  | 2.053 | 2.435       | 3.92 | 11.21  | 2 5 7 |
| ноча | HUZ    | 2.653 | 1.735       | 3.65 | 11.31  | 2.66  | 2.653 | 1.735       | 2.44 | 11.31  | 2.57  |
| HU4a | HU3    | 2.653 | 4.235       | 2.43 | 13.54  | 2.58  | 2.653 | 4.235       | 2./1 | 13.54  | 2.50  |
| H04a | H04b   | 2.653 | 3.138       | 1.76 | 94.58  | 1.87  | 2.653 | 3.138       | 1.75 | 94.58  | 1.81  |
| H04a | H06    | 2.653 | 4.140       | 3.30 | 5.66   | 2.99  | 2.653 | 4.140       | 2.67 | 5.66   | 2.89  |
| H04a | H07    | 2.653 | 3.259       | 4.43 | 1.09   | 3.93  | 2.653 | 3.259       | 3.44 | 1.09   | 3.80  |
| H04a | H01'   | 2.653 | 1.039       | 4.09 |        |       | 2.653 | 1.039       | 5.01 |        |       |
| H04a | H02'a  | 2.653 | 1.622/1.592 | 2.83 |        |       | 2.653 | 1.622/1.592 | 4.39 |        |       |
| H04a | H02'b  | 2.653 | 1.592/1.622 | 2.85 |        |       | 2.653 | 1.592/1.622 | 4.64 |        |       |
| H04a | H03'   | 2.653 | 0.916       | 7.06 |        |       | 2.653 | 0.916       | 6.90 |        |       |
| H04a | H04'a  | 2.653 | 1.229/1.283 | 5.95 |        |       | 2.653 | 1.229/1.283 | 5.58 |        |       |
| H04a | H04'b  | 2.653 | 1.229/1.283 | 5.66 |        |       | 2.653 | 1.229/1.283 | 5.58 |        |       |
| H04a | H05'a  | 2.653 | 2.029       | 4.30 |        |       | 2.653 | 2.029       | 5.06 |        |       |
| H04a | H05'b  | 2.653 | 1.955       | 3.76 |        |       | 2.653 | 1.955       | 4.81 |        |       |
| H04b | H01a   | 3.138 | 2.435       | 4.62 |        |       | 3.138 | 2.710       | 4.06 | 4.84   | 2.96  |
| H04b | H01b   | 3.138 | 2.710       | 3.76 | 4.84   | 3.07  | 3.138 | 2.435       | 4.88 |        |       |
| H04b | H02    | 3.138 | 1.735       | 3.11 |        |       | 3.138 | 1.735       | 3.31 |        |       |
| H04b | H03    | 3.138 | 4.235       | 2.52 | 16.99  | 2.49  | 3.138 | 4.235       | 2.25 | 16.99  | 2.40  |
| H04b | H04a   | 3.138 | 2.653       | 1.76 | 105.94 | 1.83  | 3.138 | 2.653       | 1.75 | 105.94 | 1.77  |
| H04b | H06    | 3.138 | 4.140       | 3.40 | 1.53   | 3.72  | 3.138 | 4.140       | 3.36 | 1.53   | 3.59  |
|      |        |       |             |      |        |       |       |             |      |        |       |

| H04b  | H07   | 3.138       | 3.259       | 4.41 | 4.23  | 3.14 | 3.138       | 3.259       | 3.83 | 4.23  | 3.03 |
|-------|-------|-------------|-------------|------|-------|------|-------------|-------------|------|-------|------|
| H04b  | H01'  | 3.138       | 1.039       | 5.17 |       |      | 3.138       | 1.039       | 5.22 |       |      |
| H04b  | H02'a | 3.138       | 1.622/1.592 | 4.35 |       |      | 3.138       | 1.622/1.592 | 4.45 |       |      |
| H04b  | H02'b | 3.138       | 1.592/1.622 | 4.16 |       |      | 3.138       | 1.592/1.622 | 4.78 |       |      |
| H04b  | H03'  | 3.138       | 0.916       | 7.35 |       |      | 3.138       | 0.916       | 7.77 |       |      |
| H04b  | H04'a | 3.138       | 1.229/1.283 | 6.09 |       |      | 3.138       | 1.229/1.283 | 6.73 |       |      |
| H04b  | H04'b | 3.138       | 1.229/1.283 | 5.80 |       |      | 3.138       | 1.229/1.283 | 6.41 |       |      |
| H04b  | H05'a | 3.138       | 2.029       | 4.93 |       |      | 3.138       | 2.029       | 5.66 |       |      |
| H04b  | H05'b | 3.138       | 1.955       | 4.97 |       |      | 3.138       | 1.955       | 5.82 |       |      |
| H06   | H01a  | 4.140       | 2.435       | 5.33 |       |      | 4.140       | 2.710       | 4.65 |       |      |
| H06   | H01b  | 4.140       | 2.710       | 4.00 |       |      | 4.140       | 2.435       | 5.22 |       |      |
| H06   | H02   | 4.140       | 1.735       | 5.25 |       |      | 4.140       | 1.735       | 4.91 |       |      |
| H06   | H03   | 4.140       | 4.235       | 4.88 |       |      | 4.140       | 4.235       | 4.96 |       |      |
| H06   | H04a  | 4.140       | 2.653       | 3.30 | 5.44  | 3.01 | 4.140       | 2.653       | 2.67 | 5.44  | 2.91 |
| H06   | H04b  | 4.140       | 3.138       | 3.40 | 1.70  | 3.65 | 4.140       | 3.138       | 3.36 | 1.70  | 3.53 |
| H06   | H07   | 4.140       | 3.259       | 2.44 | 8.82  | 2.78 | 4.140       | 3.259       | 2.93 | 8.82  | 2.68 |
| H06   | H01'  | 4.140       | 1.039       | 7.32 |       |      | 4.140       | 1.039       | 7.50 |       |      |
| H06   | H02'a | 4.140       | 1.622/1.592 | 5.93 |       |      | 4.140       | 1.622/1.592 | 6.66 |       |      |
| H06   | H02'b | 4.140       | 1.592/1.622 | 6.13 |       |      | 4.140       | 1.592/1.622 | 6.70 |       |      |
| H06   | H03'  | 4.140       | 0.916       | 4.50 |       |      | 4.140       | 0.916       | 5.44 |       |      |
| H06   | H04'a | 4.140       | 1.229/1.283 | 3.17 |       |      | 4.140       | 1.229/1.283 | 4.22 |       |      |
| H06   | H04'b | 4.140       | 1.229/1.283 | 2.68 |       |      | 4.140       | 1.229/1.283 | 3.85 |       |      |
| H06   | H05'a | 4.140       | 2.029       | 2.65 | 5.80  | 2.98 | 4.140       | 2.029       | 3.12 | 5.80  | 2.88 |
| H06   | H05'b | 4.140       | 1.955       | 3.21 | 4.73  | 3.08 | 4.140       | 1.955       | 2.86 | 4.73  | 2.97 |
| H07   | H01a  | 3.259       | 2.435       | 3.89 | 17.33 | 2.48 | 3.259       | 2.710       | 2.31 | 17.33 | 2.40 |
| H07   | H01b  | 3.259       | 2.710       | 4.15 |       |      | 3.259       | 2.435       | 3.72 |       |      |
| H07   | H02   | 3.259       | 1.735       | 2.87 |       |      | 3.259       | 1.735       | 4.40 |       |      |
| H07   | H03   | 3.259       | 4.235       | 5.42 |       |      | 3.259       | 4.235       | 4.48 |       |      |
| H07   | H04a  | 3.259       | 2.653       | 4.43 |       |      | 3.259       | 2.653       | 3.44 |       |      |
| H07   | H04b  | 3.259       | 3.138       | 4.41 | 4.11  | 3.15 | 3.259       | 3.138       | 3.83 | 4.11  | 3.04 |
| H07   | H06   | 3.259       | 4.140       | 2.44 |       |      | 3.259       | 4.140       | 2.93 |       |      |
| H07   | H01'  | 3.259       | 1.039       | 6.03 |       |      | 3.259       | 1.039       | 6.26 |       |      |
| H07   | H02'a | 3.259       | 1.622/1.592 | 5.89 |       |      | 3.259       | 1.622/1.592 | 5.14 |       |      |
| H07   | H02'b | 3.259       | 1.592/1.622 | 5.77 |       |      | 3.259       | 1.592/1.622 | 4.90 |       |      |
| H07   | H03'  | 3.259       | 0.916       | 3.46 | 4.56  | 3.72 | 3.259       | 0.916       | 3.36 | 4.56  | 3.59 |
| H07   | H04'a | 3.259       | 1.229/1.283 | 2.77 |       |      | 3.259       | 1.229/1.283 | 3.05 |       |      |
| H07   | H04'b | 3.259       | 1.229/1.283 | 2.68 |       |      | 3.259       | 1.229/1.283 | 2.59 |       |      |
| H07   | H05'a | 3.259       | 2.029       | 2.60 | 4.92  | 3.06 | 3.259       | 2.029       | 2.48 | 4.92  | 2.95 |
| H07   | H05'b | 3.259       | 1.955       | 2.72 | 11.04 | 2.67 | 3.259       | 1.955       | 2.98 | 11.04 | 2.58 |
| H01'  | H01a  | 1.039       | 2.435       | 2.70 | 2.39  | 3.45 | 1.039       | 2.710       | 3.76 | 1.22  | 3.73 |
| H01'  | H01b  | 1.039       | 2.710       | 3.45 | 1.22  | 3.86 | 1.039       | 2.435       | 2.72 | 2.39  | 3.33 |
| H01'  | H02   | 1.039       | 1.735       | 2.93 | 3.58  | 3.23 | 1.039       | 1.735       | 2.89 | 3.58  | 3.12 |
| H01'  | H03   | 1.039       | 4.235       | 3.09 | 3.29  | 3.27 | 1.039       | 4.235       | 2.89 | 3.29  | 3.16 |
| H01'  | H04a  | 1.039       | 2.653       | 4.09 |       |      | 1.039       | 2.653       | 5.01 |       |      |
| H01'  | H04b  | 1.039       | 3.138       | 5.17 |       |      | 1.039       | 3.138       | 5.22 |       |      |
| H01'  | H06   | 1.039       | 4.140       | 7.32 |       |      | 1.039       | 4.140       | 7.50 |       |      |
| H01'  | H07   | 1.039       | 3.259       | 6.03 |       |      | 1.039       | 3.259       | 6.26 |       |      |
| H01'  | H02'a | 1.039       | 1.622/1.592 | 2.62 |       |      | 1.039       | 1.622/1.592 | 2.61 |       |      |
| H01'  | H02'b | 1.039       | 1.592/1.622 | 2.61 |       |      | 1.039       | 1.592/1.622 | 2.62 |       |      |
| H01'  | H03'  | 1.039       | 0.916       | 7.75 |       |      | 1.039       | 0.916       | 9.00 |       |      |
| H01'  | H04'a | 1.039       | 1.229/1.283 | 7.10 |       |      | 1.039       | 1.229/1.283 | 7.66 |       |      |
| H01'  | H04'b | 1.039       | 1.229/1.283 | 6.92 |       |      | 1.039       | 1.229/1.283 | 7.60 |       |      |
| H01'  | H05'a | 1.039       | 2.029       | 6.44 |       |      | 1.039       | 2.029       | 8.43 |       |      |
| H01'  | H05'b | 1.039       | 1.955       | 6.17 |       |      | 1.039       | 1.955       | 8.30 |       |      |
| H02'a | H01a  | 1.622/1.592 | 2.435       | 2.68 |       |      | 1.622/1.592 | 2.710       | 3.08 |       |      |
| HUZ'a | H01b  | 1.622/1.592 | 2.710       | 2.65 |       |      | 1.622/1.592 | 2.435       | 3.07 |       |      |
| ног'а | H02   | 1.622/1.592 | 1.735       | 2.72 |       |      | 1.622/1.592 | 1.735       | 2.65 |       |      |
| H02'a | H03   | 1.622/1.592 | 4.235       | 2.92 |       |      | 1.622/1.592 | 4.235       | 2.36 |       |      |
| H02'a | H04a  | 1.622/1.592 | 2.653       | 2.83 |       |      | 1.622/1.592 | 2.653       | 4.39 |       |      |
| HUZ'a | H04b  | 1.622/1.592 | 3.138       | 4.35 |       |      | 1.622/1.592 | 3.138       | 4.45 |       |      |
| H02'a | H06   | 1.622/1.592 | 4.140       | 5.93 |       |      | 1.622/1.592 | 4.140       | 6.66 |       |      |

| H02'a | H07   | 1.622/1.592 | 3.259       | 5.89 |      |      | 1.622/1.592 | 3.259       | 5.14 |      |      |
|-------|-------|-------------|-------------|------|------|------|-------------|-------------|------|------|------|
| H02'a | H01'  | 1.622/1.592 | 1.039       | 2.62 |      |      | 1.622/1.592 | 1.039       | 2.61 |      |      |
| H02'a | H02'b | 1.622/1.592 | 1.592/1.622 | 1.75 |      |      | 1.622/1.592 | 1.592/1.622 | 1.75 |      |      |
| H02'a | H03'  | 1.622/1.592 | 0.916       | 7.39 |      |      | 1.622/1.592 | 0.916       | 7.60 |      |      |
| H02'a | H04'a | 1.622/1.592 | 1.229/1.283 | 6.68 |      |      | 1.622/1.592 | 1.229/1.283 | 7.36 |      |      |
| H02'a | H04'b | 1.622/1.592 | 1.229/1.283 | 6.69 |      |      | 1.622/1.592 | 1.229/1.283 | 6.93 |      |      |
| H02'a | H05'a | 1.622/1.592 | 2.029       | 5.33 |      |      | 1.622/1.592 | 2.029       | 7.49 |      |      |
| H02'a | H05'b | 1.622/1.592 | 1.955       | 5.15 |      |      | 1.622/1.592 | 1.955       | 7.65 |      |      |
| H02'b | H01a  | 1.592/1.622 | 2.435       | 3.03 |      |      | 1.592/1.622 | 2.710       | 2.77 |      |      |
| H02'b | H01b  | 1.592/1.622 | 2.710       | 3.07 |      |      | 1.592/1.622 | 2.435       | 2.48 |      |      |
| H02'b | H02   | 1.592/1.622 | 1.735       | 2.57 |      |      | 1.592/1.622 | 1.735       | 2.70 |      |      |
| H02'h | H03   | 1 592/1 622 | 4 235       | 2 57 |      |      | 1 592/1 622 | 4 235       | 3 13 |      |      |
| H02'h | H04a  | 1 592/1 622 | 2 653       | 2.85 |      |      | 1 592/1 622 | 2 653       | 4 64 |      |      |
| H02'h | H04b  | 1 592/1 622 | 3 138       | 4 16 |      |      | 1 592/1 622 | 3 138       | 4 78 |      |      |
| H02'b | H06   | 1.592/1.622 | 4 140       | 6.13 |      |      | 1 592/1 622 | 4 140       | 6.70 |      |      |
| H02'b | H07   | 1.592/1.022 | 2 250       | 5 77 |      |      | 1.592/1.022 | 2 250       | 4 90 |      |      |
| HU2 D |       | 1.592/1.022 | 1.020       | 2.77 |      |      | 1.592/1.022 | 1.020       | 4.90 |      |      |
|       |       | 1.592/1.622 | 1.039       | 2.01 |      |      | 1.592/1.622 | 1.039       | 2.02 |      |      |
| HUZD  | HUZa  | 1.592/1.622 | 1.622/1.592 | 1.75 |      |      | 1.592/1.622 | 1.622/1.592 | 1.75 |      |      |
| H02'b | H03   | 1.592/1.622 | 0.916       | 7.88 |      |      | 1.592/1.622 | 0.916       | 7.65 |      |      |
| H02'b | H04'a | 1.592/1.622 | 1.229/1.283 | 7.08 |      |      | 1.592/1.622 | 1.229/1.283 | 6.79 |      |      |
| H02'b | H04'b | 1.592/1.622 | 1.229/1.283 | 6.90 |      |      | 1.592/1.622 | 1.229/1.283 | 6.35 |      |      |
| H02'b | H05'a | 1.592/1.622 | 2.029       | 5.79 |      |      | 1.592/1.622 | 2.029       | 7.21 |      |      |
| H02'b | H05'b | 1.592/1.622 | 1.955       | 5.73 |      |      | 1.592/1.622 | 1.955       | 7.33 |      |      |
| H03'  | H01a  | 0.916       | 2.435       | 5.57 |      |      | 0.916       | 2.710       | 4.25 |      |      |
| H03'  | H01b  | 0.916       | 2.710       | 5.08 |      |      | 0.916       | 2.435       | 5.48 |      |      |
| H03'  | H02   | 0.916       | 1.735       | 6.82 |      |      | 0.916       | 1.735       | 7.48 |      |      |
| H03'  | H03   | 0.916       | 4.235       | 7.63 |      |      | 0.916       | 4.235       | 8.10 |      |      |
| H03'  | H04a  | 0.916       | 2.653       | 7.06 |      |      | 0.916       | 2.653       | 6.90 |      |      |
| H03'  | H04b  | 0.916       | 3.138       | 7.35 |      |      | 0.916       | 3.138       | 7.77 |      |      |
| H03'  | H06   | 0.916       | 4.140       | 4.50 |      |      | 0.916       | 4.140       | 5.44 |      |      |
| H03'  | H07   | 0.916       | 3.259       | 3.46 | 1.15 | 3.90 | 0.916       | 3.259       | 3.36 | 1.15 | 3.76 |
| H03'  | H01'  | 0.916       | 1.039       | 7.75 |      |      | 0.916       | 1.039       | 9.00 |      |      |
| H03'  | H02'a | 0.916       | 1.622/1.592 | 7.39 |      |      | 0.916       | 1.622/1.592 | 7.60 |      |      |
| H03'  | H02'b | 0.916       | 1.592/1.622 | 1.76 |      |      | 0.916       | 1.592/1.622 | 1.76 |      |      |
| H03'  | H04'a | 0.916       | 1.229/1.283 | 2.62 |      |      | 0.916       | 1.229/1.283 | 2.61 |      |      |
| H03'  | H04'b | 0.916       | 1.229/1.283 | 2.62 |      |      | 0.916       | 1.229/1.283 | 2.62 |      |      |
| H03'  | H05'a | 0.916       | 2 029       | 2 95 | 2.06 | 3 54 | 0.916       | 2 029       | 2 92 | 2.06 | 3 42 |
| H03'  | H05'h | 0.916       | 1 955       | 2.95 | 2 58 | 3 41 | 0.916       | 1 955       | 3.03 | 2.58 | 3 29 |
| H04'a | H01a  | 1 229/1 283 | 2 /35       | 1 12 | 2.50 | 5.41 | 1 229/1 283 | 2 710       | 1 12 | 2.50 | 5.25 |
| H04'a | H01b  | 1 220/1 282 | 2.435       | 4.42 |      |      | 1 220/1 282 | 2.710       | 4.12 |      |      |
|       | 1010  | 1 220/1 282 | 1 725       | T.17 |      |      | 1 220/1 282 | 1 725       | 6.20 |      |      |
|       | 102   | 1.229/1.203 | 1.735       | 5.80 |      |      | 1.229/1.205 | 1.735       | 7.17 |      |      |
|       |       | 1.229/1.203 | 4.233       | 0.75 |      |      | 1.229/1.205 | 4.233       | 7.17 |      |      |
|       | HU4a  | 1.229/1.283 | 2.053       | 5.95 |      |      | 1.229/1.283 | 2.053       | 5.58 |      |      |
| H04'a | HU4b  | 1.229/1.283 | 3.138       | 6.09 |      |      | 1.229/1.283 | 3.138       | 6.73 |      |      |
| H04'a | H06   | 1.229/1.283 | 4.140       | 3.17 |      |      | 1.229/1.283 | 4.140       | 4.22 |      |      |
| H04'a | H07   | 1.229/1.283 | 3.259       | 2.77 |      |      | 1.229/1.283 | 3.259       | 3.05 |      |      |
| H04'a | H01'  | 1.229/1.283 | 1.039       | 7.10 |      |      | 1.229/1.283 | 1.039       | 7.66 |      |      |
| H04'a | H02'a | 1.229/1.283 | 1.622/1.592 | 6.68 |      |      | 1.229/1.283 | 1.622/1.592 | 7.36 |      |      |
| H04'a | H02'b | 1.229/1.283 | 1.592/1.622 | 7.08 |      |      | 1.229/1.283 | 1.592/1.622 | 6.79 |      |      |
| H04'a | H03'  | 1.229/1.283 | 0.916       | 2.62 |      |      | 1.229/1.283 | 0.916       | 2.61 |      |      |
| H04'a | H04'b | 1.229/1.283 | 1.229/1.283 | 1.75 |      |      | 1.229/1.283 | 1.229/1.283 | 1.75 |      |      |
| H04'a | H05'a | 1.229/1.283 | 2.029       | 2.88 |      |      | 1.229/1.283 | 2.029       | 2.85 |      |      |
| H04'a | H05'b | 1.229/1.283 | 1.955       | 2.52 |      |      | 1.229/1.283 | 1.955       | 2.49 |      |      |
| H04'b | H01a  | 1.229/1.283 | 2.435       | 4.70 |      |      | 1.229/1.283 | 2.710       | 3.70 |      |      |
| H04'b | H01b  | 1.229/1.283 | 2.710       | 4.41 |      |      | 1.229/1.283 | 2.435       | 4.64 |      |      |
| H04'b | H02   | 1.229/1.283 | 1.735       | 5.52 |      |      | 1.229/1.283 | 1.735       | 6.21 |      |      |
| H04'b | H03   | 1.229/1.283 | 4.235       | 6.48 |      |      | 1.229/1.283 | 4.235       | 6.81 |      |      |
| H04'b | H04a  | 1.229/1.283 | 2.653       | 5.66 |      |      | 1.229/1.283 | 2.653       | 5.58 |      |      |
| H04'b | H04b  | 1.229/1.283 | 3.138       | 5.80 |      |      | 1.229/1.283 | 3.138       | 6.41 |      |      |
| H04'b | H06   | 1.229/1.283 | 4.140       | 2.68 |      |      | 1.229/1.283 | 4.140       | 3.85 |      |      |
| H04'b | H07   | 1.229/1.283 | 3.259       | 2.68 |      |      | 1.229/1.283 | 3.259       | 2.59 |      |      |
| -     |       |             |             | -    |      |      | 1           | -           | -    |      |      |

| H04'b | H01'  | 1.229/1.283 | 1.039       | 6.92 | 1.229/1.283 | 1.039       | 7.60 |
|-------|-------|-------------|-------------|------|-------------|-------------|------|
| H04'b | H02'a | 1.229/1.283 | 1.622/1.592 | 6.69 | 1.229/1.283 | 1.622/1.592 | 6.93 |
| H04'b | H02'b | 1.229/1.283 | 1.592/1.622 | 6.90 | 1.229/1.283 | 1.592/1.622 | 6.35 |
| H04'b | H03'  | 1.229/1.283 | 0.916       | 2.62 | 1.229/1.283 | 0.916       | 2.62 |
| H04'b | H04'a | 1.229/1.283 | 1.229/1.283 | 1.75 | 1.229/1.283 | 1.229/1.283 | 1.75 |
| H04'b | H05'a | 1.229/1.283 | 2.029       | 2.52 | 1.229/1.283 | 2.029       | 2.57 |
| H04'b | H05'b | 1.229/1.283 | 1.955       | 2.88 | 1.229/1.283 | 1.955       | 2.86 |
| H05'a | H01a  | 2.029       | 2.435       | 3.80 | 2.029       | 2.710       | 4.60 |
| H05'a | H01b  | 2.029       | 2.710       | 2.61 | 2.029       | 2.435       | 4.05 |
| H05'a | H02   | 2.029       | 1.735       | 5.28 | 2.029       | 1.735       | 6.24 |
| H05'a | H03   | 2.029       | 4.235       | 5.14 | 2.029       | 4.235       | 6.61 |
| H05'a | H04a  | 2.029       | 2.653       | 4.30 | 2.029       | 2.653       | 5.06 |
| H05'a | H04b  | 2.029       | 3.138       | 4.93 | 2.029       | 3.138       | 5.66 |
| H05'a | H06   | 2.029       | 4.140       | 2.65 | 2.029       | 4.140       | 3.12 |
| H05'a | H07   | 2.029       | 3.259       | 2.60 | 2.029       | 3.259       | 2.48 |
| H05'a | H01'  | 2.029       | 1.039       | 6.44 | 2.029       | 1.039       | 8.43 |
| H05'a | H02'a | 2.029       | 1.622/1.592 | 5.33 | 2.029       | 1.622/1.592 | 7.49 |
| H05'a | H02'b | 2.029       | 1.592/1.622 | 5.79 | 2.029       | 1.592/1.622 | 7.21 |
| H05'a | H03'  | 2.029       | 0.916       | 2.95 | 2.029       | 0.916       | 2.92 |
| H05'a | H04'a | 2.029       | 1.229/1.283 | 2.88 | 2.029       | 1.229/1.283 | 2.85 |
| H05'a | H04'b | 2.029       | 1.229/1.283 | 2.52 | 2.029       | 1.229/1.283 | 2.57 |
| H05'a | H05'b | 2.029       | 1.955       | 1.75 | 2.029       | 1.955       | 1.75 |
| H05'b | H01a  | 1.955       | 2.435       | 3.85 | 1.955       | 2.710       | 4.73 |
| H05'b | H01b  | 1.955       | 2.710       | 2.51 | 1.955       | 2.435       | 3.97 |
| H05'b | H02   | 1.955       | 1.735       | 5.29 | 1.955       | 1.735       | 5.61 |
| H05'b | H03   | 1.955       | 4.235       | 5.14 | 1.955       | 4.235       | 6.82 |
| H05'b | H04a  | 1.955       | 2.653       | 3.76 | 1.955       | 2.653       | 4.81 |
| H05'b | H04b  | 1.955       | 3.138       | 4.97 | 1.955       | 3.138       | 5.82 |
| H05'b | H06   | 1.955       | 4.140       | 3.21 | 1.955       | 4.140       | 2.86 |
| H05'b | H07   | 1.955       | 3.259       | 2.72 | 1.955       | 3.259       | 2.98 |
| H05'b | H01'  | 1.955       | 1.039       | 6.17 | 1.955       | 1.039       | 8.30 |
| H05'b | H02'a | 1.955       | 1.622/1.592 | 5.15 | 1.955       | 1.622/1.592 | 7.65 |
| H05'b | H02'b | 1.955       | 1.592/1.622 | 5.73 | 1.955       | 1.592/1.622 | 7.33 |
| H05'b | H03'  | 1.955       | 0.916       | 2.95 | 1.955       | 0.916       | 3.03 |
| H05'b | H04'a | 1.955       | 1.229/1.283 | 2.52 | 1.955       | 1.229/1.283 | 2.49 |
| H05'b | H04'b | 1.955       | 1.229/1.283 | 2.88 | 1.955       | 1.229/1.283 | 2.86 |
| H05'b | H05'a | 1.955       | 2.029       | 1.75 | 1.955       | 2.029       | 1.75 |

Comparison of  ${}^{n}J_{HH}$  measured from the  ${}^{1}H$  spectra and the computational  ${}^{n}J_{HH}$  (Figure S53) show that the lowest deviations (MAD 0.8-0.9 Hz) between datasets are found when comparing **10A** with **10-RRRS** and **10B** with **10-SRRS** (Table S25).



Figure S53: <sup>n</sup>J<sub>HH</sub> measured experimentally for A,B) 10A and C,D) 10B compared to DFT-derived values for 10-RRRS and 10-SRRS. The coloured solid lines indicate the line of best fit between the data.

**Table S25:** Summary of all statistics comparing  $"J_{HH}$  from experimental data (**10A** and **10B**) to the computational data (**10-RRRS** and **10-SRRS**).

|         | 10A     |         | 10B     |         |
|---------|---------|---------|---------|---------|
|         | 10-RRRS | 10-SRRS | 10-RRRS | 10-SRRS |
| MAD /Å  | 0.84    | 1.44    | 1.42    | 0.88    |
| SD /Å   | 0.84    | 1.81    | 1.82    | 1.04    |
| RMSD /Å | 0.99    | 1.87    | 1.79    | 1.07    |

Comparison of experimentally determined  ${}^{1}\text{H}{}^{-1}\text{H}$  distances and the computational values (Figure S54) confirm the findings from  ${}^{1}J_{\text{HH}}$  showing that the lowest deviations (MA%D 4.8-9.5%) between datasets are found when comparing **10A** with **10-RRRS** and **10B** with **10-SRRS** (Table S26).



**Figure S54:** Experimental <sup>1</sup>H-<sup>1</sup>H distances determined by NOE (Equations 2-3) for A,B) **10A** and C,D) **10B** compared to DFTderived effective distances (Equation 10-11) for **10-RRRS** and **10-SRRS**. The coloured solid lines indicate the line of best fit between the data.

|         | 10A     |         | 10B     |         |
|---------|---------|---------|---------|---------|
|         | 10-RRRS | 10-SRRS | 10-RRRS | 10-SRRS |
| MA%     | 4.8%    | 15.9%   | 14.8%   | 9.5%    |
| %SD     | 5.8%    | 22.9%   | 20.8%   | 13.1%   |
| MAD /Å  | 0.13    | 0.47    | 0.45    | 0.29    |
| SD /Å   | 0.16    | 0.66    | 0.61    | 0.40    |
| RMSD /Å | 0.16    | 0.65    | 0.60    | 0.40    |

 Table S26: Summary of all statistics comparing <sup>1</sup>H-<sup>1</sup>H distances from experimental data (10A and 10B) to the DFT-derived data (10-RRRS and 10-SRRS).

Note that calculations for the diastereomers **10A** and **10B** were performed before the absolute configuration of **1** was known and used the *enantiomeric* structures of **10A** and **10B**. This does not alter the conclusion that the 2*S*, *3S*, *6S*, *7R* stereoisomer is the best match for **10A**.

# 25 Crystallisation of Cornexistin and X-ray Analysis

Cornexistin (2 mg) was dissolved in dichloromethane (75  $\mu$ l) in an open tube. Isohexane (50  $\mu$ l) was added, the solution went cloudy, then dichloromethane (15  $\mu$ l) was added to homogenise. This tube was placed upright in a larger outer vessel that had a small amount isohexane in the bottom, and the outer vessel was sealed and allowed to stand at room temperature. Needles formed in the inner tube and were submitted for X-ray crystallography (Figure S55).



Figure S55: X-ray crystal structure of cornexistin 1 with 50% probability of the thermal ellipsoids.

There is very clear H-bonding between molecules in the crystal lattice (H-bonds depicted as dotted orange lines, Figure S56), with geometrical details available in the CIF.



**Figure S56:** Intermolecular hydrogen bonding in the crystal of cornexistin **1** with 50% probability of the thermal ellipsoids. Four molecules pack together in the crystal unit cell (Figure S57)



Figure S57: Unit cell of cornexistin 1 crystal structure with 50% probability of the thermal ellipsoids.

The value of the Flack parameter [-0.05(14)] establishes the absolute configuration of cornexistin 1. It can be stated with 99% confidence that this absolute stereochemistry is the correct one:



Figure S58: Absolute configuration of cornexistin 1 with 50% probability of the thermal ellipsoids.

#### 26 References

- 1. J. Sambrook and D. W. Russell, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, New York, 3rd ed., 2001.
- 2. J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones and I. Birol, *Genome Res.*, 2009, **19**, 1117-1123.
- 3. M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler and W. Pirovano, *Bioinformatics*, 2011, **27**, 578-579.
- 4. C. Trapnell, L. Pachter and S. L. Salzberg, *Bioinformatics*, 2009, **25**, 1105-1111.
- 5. V. Solovyev, P. Kosarev, I. Seledsov and D. Vorobyev, *Genome Biol.*, 2006, **7**, S10.
- 6. S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. Lipman, *Nucleic Acids Res.*, 1997, **25**, 3389 3402.
- S. Hunter, P. Jones, A. Mitchell, R. Apweiler, T. K. Attwood, A. Bateman, T. Bernard, D. Binns, P. Bork, S. Burge, E. de Castro, P. Coggill, M. Corbett, U. Das, L. Daugherty, L. Duquenne, R. D. Finn, M. Fraser, J. Gough, D. Haft, N. Hulo, D. Kahn, E. Kelly, I. Letunic, D. Lonsdale, R. Lopez, M. Madera, J. Maslen, C. McAnulla, J. McDowall, C. McMenamin, H. Mi, P. Mutowo-Muellenet, N. Mulder, D. Natale, C. Orengo, S.

Pesseat, M. Punta, A. F. Quinn, C. Rivoire, A. Sangrador-Vegas, J. D. Selengut, C. J. A. Sigrist, M. Scheremetjew, J. Tate, M. Thimmajanarthanan, P. D. Thomas, C. H. Wu, C. Yeats and S.-Y. Yong, *Nucleic Acids Res.*, 2012, **40**, 4725-4725.

- 8. D. W. Brown, S. H. Lee, L. H. Kim, J. G. Ryu, S. Lee, Y. Seo, Y. H. Kim, M. Busman, S. H. Yun, R. H. Proctor and T. Lee, *Mol. Plant-Microbe Interact.*, 2015, **28**, 319-332.
- 9. L. Blank, J. Green and J. R. Guest, *Microbiology*, 2002, **148**, 133-146.
- 10. P. A. Nunes, S. Tenreiro and I. Sa-Correia, *Antimicrob. Agents Chemother.*, 2001, **45**, 1528-1534.
- 11. N. E. J. Appleford, D. J. Evans, J. R. Lenton, P. Gaskin, S. J. Croker, K. M. Devos, A. L. Phillips and P. Hedden, *Planta*, 2006, **223**, 568-582.
- 12. Y. C. Huang, Y. H. Chen, S. R. Lo, C. I. Liu, C. W. Wang and W. T. Chang, *Mol. Microbiol.*, 2004, **53**, 81-91.
- 13. J. W. Bok, D. Chung, S. A. Balajee, K. A. Marr, D. Andes, K. F. Nielsen, J. C. Frisvad, K. A. Kirby and N. P. Keller, *Infect. Immun.*, 2006, **74**, 6761-6768.
- 14. C. Zaugg, O. Jousson, B. Lechenne, P. Staib and M. Monod, *Int. J. Med. Microbiol.*, 2008, **298**, 669-682.
- 15. R. C. Vargas, S. Tenreiro, M. C. Teixeira, A. R. Fernandes and I. Sa-Correia, *Antimicrob. Agents Chemother.*, 2004, **48**, 2531-2537.
- 16. T. Ishizuka, I. Fujimori, M. Kato, C. Noji-Sakikawa, M. Saito, Y. Yoshigae, K. Kubota, A. Kurihara, T. Izumi, T. Ikeda and O. Okazaki, *J. Biol. Chem.*, 2010, **285**, 11892-11902.
- 17. F. K. Crutcher, J. G. Liu, L. S. Puckhaber, R. D. Stipanovic, A. A. Bell, R and L. Nichols, *Microbiology-SGM*, 2015, **161**, 875-883.
- 18. R. Fujii, A. Minami, T. Tsukagoshi, N. Sato, T. Sahara, S. Ohgiya, K. Gomi and H. Oikawa, *Biosci., Biotechnol., Biochem.,* 2011, **75**, 1813-1817.
- 19. J. Abdoul-Zabar, I. Sorel, V. Helaine, F. Charmantray, T. Devamani, D. Yi, V. de Berardinis, D. Louis, P. Marliere, W. D. Fessner and L. Hecquet, *Adv. Synth. Catal.*, 2013, **355**, 116-128.
- 20. A. Hidalgo, M. A. Akond, K. Kita, M. Kataoka and S. Shimizu, *Biosci., Biotechnol., Biochem.*, 2001, **65**, 2785-2788.
- 21. M. J. Banfield, R. L. Brady, J. Mol. Biol., 2000, 297, 1159-1170.
- 22 T. J. Carver, K. M. Rutherford, M. Berriman, M. A. Rajandream, B. G. Barrell, J. Parkhill, *Bioinformatics*, 2005, **21**, 3422-3423.
- 23. M. L. Nielsen, L. Albertsen, G. Lettier, J. B. Nielsen and U. H. Mortensen, *Fungal Genet. Biol.*, 2006, **43**, 54-64.
- 24. M. Nakajima, K. Itoi, Y. Takamatsu, S. Sato, Y. Furukawa, K. Furuya, T. Honma, J. Kadotani, M. Kozasa and T. Haneishi, *J. Antibiot.*, 1991, **44**, 1065-1072.
- 25 A. J. Szwalbe, K. Williams, D. E. O'Flynn, A. M. Bailey, N. P. Mulholland, J. L. Vincent,

C. L. Willis, R. J. Cox and T. J. Simpson, Chem. Commun., 2015, 51, 17088-17091.

- 26. MestReNova, Version 9.0.1, Mestrelab Research S.L., Santiago de Compostela, Spain, 2014.
- 27. S. Macura, B. T. Farmer and L.R. Brown, J. Magn. Reson., 1986, 70, 493–499.
- 28. G. Esposito and A. Pastore, J. Magn. Reson., 1988, 76, 331–336.
- 29. H.T. Hu and K. Krishnamurthy, J. Magn. Reson., 2006, **182**, 173-177.
- 30. D. Neuhaus and M. P. Williamson, Wiley. *The Nuclear Overhauser Effect in Structural and Conformational Analysis*, Wiley-VCH, New York, 2nd ed., 2000, 99-128.
- 31. C. P. Butts, C. R. Jones, E. C. Towers, J. L. Flynn, L. Appleby and N. J. Barron, *Org. Biomol. Chem.*, 2011, **9**, 177-184.
- 32. C. R. Jones, M. D. Greenhalgh, J. R. Bame, T. J. Simpson, R. J. Cox, J. W. Marshall and C. P. Butts, *Chem. Commun.*, 2016, **52**, 2920-2923
- 33. Schrödinger Release 2011-1: MacroModel, version 9.9, Schrödinger, LLC, New York, NY, 2011.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- 35. S. G. Smith and J. M. Goodman, J. Am. Chem. Soc., 2010, **132**, 12946–12959.