Click Co Sandwich-Terminated Dendrimers as Polyhydride Reservoirs and Micellar Templates

Amalia Rapakousiou, Colette Belin, Lionel Salmon, Jaime Ruiz, Didier Astruc*

Electronic Supplementary Information (ESI)

Contents:

1.	General data	S04
2.	Preliminary studies using benzylmethyl-(trz-η⁴-C₅H₅Co^ICp) Synthesis of benzylmethyl-(trz-η⁴-C₅H₅Co^ICp)	S05 S05 S07
	V v-vis. studies	507
	Wass spectrometry studies	508
	Ovidation of hongylmethyl (trg n4 C H ColCn)	S10
	ESI MS spectra studios	S10
	Cyclic voltammetry studies	S10 S11
	Synthesis of honzylmothyl(triggolyl) n5 C H Collice (Cl)	S11 S12
	UNAD of honorulmothed(triogolar), m ⁵ C II Collice (Cl)	S12 S13
	¹ H NIVIR OI Denzyimetinyi(triazolyi)- 1 ^o -C ₅ H ₄ CO ²⁰ Cp (Cl)	S13 S14
	UV-VIS. OI DERZYIMETRYI(triazoiyi)- η^{-} -C ₅ H ₄ Co Cp (CI)	514
	benzylmethyl(triazolyl)-η ⁵ -C ₅ H ₄ Co ^{III} Cp (Cl)	S15
3.	Filled DHR 4	S16
	Experimental procedure for DHR 4	S17
	UV-vis of DHR 4	S18
	IR of DHR 4	S19
	ESI MS of DHR 4	S20
	AFM studies of DHR 4	S21
	¹ H NMR spectrum of DHR 4	S23
	¹³ C NMR spectrum of DHR 4	S24
	HSQC 2D NMR of DHR 4	S25
4.	Filled DHR 5	S26
	Experimental procedure for DHR 5	S27
	UV-vis. of DHR 5	S28
	IR of DHR 5	S29
	AFM studies of DHR 5	S30
	¹ H NMR spectrum of DHR 5	S31
	¹³ C NMR spectrum of DHR 5	S32
	HSQC 2D NMR of DHR 5	
_		S33
5.	Filled DHK 0 Even stimental proceedure for DHD (024
	Experimental procedure for DHK 6	S34
	AFMI STUDIES OF DHK 6	834

	UV-vis. of DHR 6 IR of DHR 6	S35 S36
6.	Empty DHR 1(Cl) Experimental procedure for DHR 1(Cl) ¹ H NMR spectrum of DHR 1(Cl) UV-vis. of DHR 1(Cl) IR of DHR 1(Cl)	S37 S38 S39 S40 S41
7.	Empty DHR 2(Cl) Experimental proceure for DHR 2(Cl) UV-vis. of DHR 2(Cl) ¹ H NMR spectrum of DHR 2(Cl)	S42 S43 S44 S45
8.	Empty DHR 3(Cl) Experimental procedure for DHR 3(Cl) ¹ H NMR spectrum of DHR 3(Cl) UV-vis. of DHR 3(Cl)	S46 S46 S47 S48
9.	AuNPs-7 and AuNPs-8 General information Experimental procedure of AuNPs-7 and AuNPs-8 UV-vis. of AuNPs-7 TEM of AuNPs-7 Size distribution of AuNPs-7 UV-vis. of AuNPs-8 Size distribution of AuNPs-8 AFM studies of AuNPs-8	\$49 \$49 \$50 \$51 \$52 \$53 \$54 \$55 \$56
10.	AuNPs-9 General information Experimental procedure for AuNPs-9 Size distribution of AuNPs-9	S58 S58 S59 S60
11.	AuNPs-10 General information Experimental procedure of AuNPs-10 TEM of AuNPs-10 Size distribution of AuNPs-10 UV-vis. of AuNPs-10	S61 S62 S63 S64 S64 S65
12.	Stability comparison of AuNPs-8 and AuNPs-10 UV-vis of AuNPs-8 after 6 months UV-vis. of AuNPs-8 after heating at 100°C during 1h	S66 S66 S67
13.	AuNPs-11 and AuNPs-12 General information Experimental procedure for AuNPs-11 UV-vis. of AuNPs-11 TEM of AuNPs-11	S68 S68 S69 S70 S71

Size distribution of AuNPs-11	S72
Oxidation of AuNPs-11 to AuNPs-12 (experimental procedure)	S73
TEM of AuNPs-12	S74
Size distribution of AuNPs-12	S75
UV-vis. of AuNPs-12	S76

14. References

S77

ABBREVIATIONS :

DHR : Dendritic hydride reservoir
DER : Dendritic electron reservoir
IR : Infrared spectroscopy
CV : Cyclic voltammogram
TEM : Transmission electron microscopy
AFM : Atomic force microscopy
Trz : 1,2,3-Triazolyl group
MS : Mass spectrum
DCM : Dichloromethane
UV-vis. : UV-visible
AuNPs : Gold nanoparticles
AgNPs : Silver nanoparticles
PdNPs : Palladium nanoparticles

General data

Reagent-grade tetrahydrofuran (**THF**) was predried over Na foil and distilled from sodiumbenzophenone anion under argon immediately prior to use. All other solvents and chemicals were used as received.

The ¹**H** NMR spectra were recorded at 25°C with a Bruker AVANCE II 400 MHz spectrometer. The ¹³C NMR spectra were obtained in the pulsed FT mode at 100 MHz with a Bruker AVANCE 400 spectrometer. All chemical shifts are reported in parts per million (δ , ppm) with reference to Me₄Si (TMS). The infrared (IR) spectra were recorded on an ATI Mattson Genesis series FT-IR spectrophotometer.

The **mass spectra** were performed at the CESAMO (University of Bordeaux, France) on a QStar Elite mass spectrometer (Applied Biosystems). The instrument is equipped with an ESI source, and spectra were recorded in the positive mode. The electrospray needle was maintained at 5000V and operated at room temperature. Samples were introduced by injection through a 20 μ L sample loop into a 4500 μ L/min flow of methanol from the LC pump. The mass spectrum of benzylmethyl-(trz- η^4 -C₅H₅Co^ICp) was recorded by the CESAMO on a AccuTOF- GcV (JEOL) that is a GC-TOF. The instrument is equipped with a sample introduction system named FD (Field Desorption). The MALDI-TOF mass spectra were performed on a PerSeptive Biosystems Voyager Elite (Framingham, MA) time of flight mass spectrometer.

All **electrochemical measurements** (CV) were recorded under the following conditions. Solvent: dry DMF; temperature: 20°C; supporting electrolyte: [nBu_4N][PF₆] 0.1M; working and counter electrodes: Pt; reference electrode: Ag; internal reference: FeCp*₂ (Cp* = η^5 -C₅Me₅); scan rate: 0.200 V.s⁻¹.

UV-visible: UV-visible absorption spectra were measured with a Perkin–Elmer Lambda 19 UV visible spectrometer.

AFM of filled DHR 4, 5 and 6: All measurements were made using tapping mode operation with an Agilent Technologies 5500 microscope and a Nanosensor "PPP-NCL®" TIP.

AFM of AuNPs-8: Dimension ICON (BRUKER), mode PEAK FORCE TAPPING (exclusivity BRUKER): every interaction between tip and sample is analyzed, allowing the benefits of Peak Force Tapping. Modulus, adhesion, dissipation, deformation are mapped simultaneously with topography. Individual curves can be examined and analyzed offline (5peakForce Capture). Nanosensor tip used: 'PFQNE-Al'.

Preliminary studies:

A triazolyl-cobalticinium (Co^{III}) model (benzyl-methyl-triazolylcobalticinium hexafluorophosphate) proved to be an efficient hydride reservoir (\pm **H**⁻). The stability of the reduction product (Co^I) and the reversibility of the system (Co^I/Co^{III}) is of utmost importance when similar procedures are envisaged for large nanosystems.

Scheme S1: Reaction of benzyl-methyl-triazolyl(η^5 -C₅H₄Co^{III}Cp) with NaBH₄ giving the neutral benzylmethyl-(trz- η^4 -C₅H₅Co^ICp) product by addition of an hydride on the Cp ring, which then in the presence of a protonic source will react with H⁺ giving back the cationic product benzyl-methyl-triazolyl(η^5 -C₅H₄Co^{III}Cp)⁺ (X⁻) by production of molecular hydrogen. (Cp = η^5 -C₅H₅) X⁻ = PF₆⁻ or Cl⁻. A single Co^I isomer is represented. For the structures of the four isomers, see Figure S1.

Synthesis of benzylmethyl-(trz-η⁴-C₅H₅Co^ICp)

The reduction of this 'model' monomer benzyl-triazolyl-cobalticenium hexafluorophosphate compound was studied in order to test if the triazole ligand is stable under these conditions. The orange cationic compound reacted in THF with NaBH₄ to produce the wine-red neutral triazolyl η^4 -cyclopentadiene-cobalt(I)- η^5 -cyclopentadienyl complex according to equation (S1).

Benzylmethyl-(trz- η^5 -C₅H₄Co^{III}Cp)⁺(PF₆)⁻ + NaBH₄ (s) \rightarrow benzylmethyl-(trz- η^4 -C₅H₅Co^ICp) + NaPF₆ (S1)

The color of the orange solution changed to wine-red and the neutral product benzylmethyl-(trz- η^4 -C₅H₅Co^ICp) was extracted in distilled diethyl ether under N₂ in which NaPF₆ salt –also formed- was not soluble. The addition of the hydride anion is added onto four different carbons of the Cp ring, providing isomers (figure S1).

Figure S1: Addition of a hydride anion occurs onto four different positions: i) ipso, ii) 1,2 or iii) 1,3 position of the cyclopentadienyl ligand attached to the triazole or iv) onto the free cyclopentadienyl ligand.

Experimental procedure¹:

A mixture of 1 equiv. of benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(PF₆) (150 mg, 0.31mmol) with 1.1 equiv. of NaBH₄ (12.71 mg, 0.34mmol) indistilled THF (20 mL) was stirred for 20 min at 0°C under N₂. Then, the solvent was evaporated under vacuum, and distilled diethyl ether was added to solubilize the neutral product. After filtration under N₂ and evaporation of the solvent, the product was obtained as a deep red powder; yield 95%. ¹H NMR (1D, 1H) CDCl₃ 400 MHz: δ = 7.41–7.31 (5H, CH of Ph), 7.13 and 6.66 (1H of trz), 5.51–5.34 (2H of Ph-CH₂ and 2H of diene), 4.88–4.52 (5H of free Cp and 4H of substituted Cp when H⁻ is added to free Cp), 2.93–2.88 (2H of diene), 2.09–2.04 (2H free) ppm.

UV-Vis. studies

The UV-vis spectroscopic technique proved to be an excellent way to differentiate the cationic benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(PF₆) compound from the benzylmethyl-(trz- η^4 -C₅H₅Co^IC_p) neutral compound. The hydride addition on the Cp ring of the cobalticenium complex leading to the neutral CpCo^I η^4 -cyclopentadiene causes a push-pull electronic effect between the electron-withdrawing triazolyl group and the electron-donor CpCo^Icyclopentadiene group. This results in a bathochromic shift (red shift) of the two absorption bands of the cationic compound at 350 nm and 420 nm in the UV-vis. spectrum that moved to 410 nm and 520 nm respectively. The absorption band at 410 nm is assigned to the d-d* transitions of the cobalt complex, whereas the band appearing at 530 nm is assigned to the d–d* transitions mixed with charge transfer from the ligand to the metal (L→MCT).

Figure S2: UV-vis. spectra of a) benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(PF₆) and b) the benzylmethyl-(trz- η^4 -C₅H₅Co^IC_p) compounds (a single isomer is represented, for the isomer structures, see Figure S1.

Mass spectrometry studies

The ass spectrum of benzylmethyl-(trz- η^4 -C₅H₅Co^IC_p) was performed at the CESAMO on a AccuTOF- GcV (JEOL) that is a GC-TOF. The instrument is equipped with a sample introduction system named FD (Field Desorption).

Figure S3: FD MS of neutral benzylmethyl-(trz- η^4 -C₅H₅Co^IC_p) (M = 347 Da), showing the successful addition of the hydride onto the complex benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp (PF₆) for which the calculated mass is 346 Da^[1].

¹H NMR of benzylmethyl-(trz-η⁴-C₅H₅Co^ICp)

NMR spectroscopy indicates the mixture of isomers.

Figure S4: ¹H NMR (1D 1H), (CDCl₃ 400 MHz): δ ppm: 7.41-7.31 (5H, CH of Ph), 7.13 and 6.66 (1H of triazole), 5.51-5.34 (2H of Ph-CH₂ and 2H of diene), 4.88-4.52 (5H of Cp free and 4H of Cp sub. when H⁻ is added to Cp free), 2.93-2.88 (2H of diene), 2.09-2.04 (2H free).

Oxidation of benzylmethyl-(trz- η^4 -C₅H₅Co^ICp) giving back the cationic compound benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp (PF₆).

a) ESI-MS

Interestingly, upon recording the ESI-MS of benzylmethyl-(trz- η^4 -C₅H₅Co^ICp), the molecular peak of the cationic compound was observed. This method used a flow of methanol that reacted with the neutral compound (-trz η^4 -C₅H₅Co^ICp) to give back the starting material (-trz η^5 -C₅H₄Co^{III}Cp). It is believed that the hydride of benzylmethyl-(trz- η^4 -C₅H₅Co^ICp), is protonated by minute water amount in methanol to give molecular hydrogen⁵ and cobalticenium hydroxide.

ESI MS Spectrum:

Figure S5: ESI MS(m/z): Calcd for C19H17N3Co: 346.2916, Found: 346.0748.

The instrument is equipped with an ESI source, and spectra were recorded in the positive mode. The electrospray needle was maintained at 5000V and operated at room temperature. Samples were introduced by injection through a 20μ L sample loop into a 4500 μ L/min flow of methanol from the LC pump.

b) CV after one night under air

Cyclic voltammetry also confirmed the oxidation of benzylmethyl-(trz- η^4 -C₅H₅Co^ICp), back to benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(PF₆). The CV of benzylmethyl-(trz- η^4 -C₅H₅Co^ICp), was recorded in CH₂Cl₂ where two irreversible oxidation waves were found at 0.3 V and 0.65 V vs. [FeCp₂*]^{+/0} (corresponding to the oxidation of triazolylcyclopentadiene-cobalt-Cp due to the preferential hydride reduction of the electron-poorer substituted ring and triazolylcyclopentadienylcobalt-cyclopentadiene respectively). After evaporating the solvent overnight under air, THF was added, and the CV was recorded again in which the two distinct reduction waves of cationic cobalticenium (PF₆) appeared. However, scanning towards the positive potentials the two oxidation waves of benzylmethyl-(trz- η^4 -C₅H₅Co^ICp), were not found indicating again the reoxidation of the neutral product to cationic benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(PF₆) one and the reversibility of the system.

Figure S6: (a) CV in distilled CH_2Cl_2 , (b) CV in THF after one night in air. Reference electrode : Ag ; working and counter electrodes : Pt ; scan rate: 0.2 V/s ; supporting electrolyte: [*n*-Bu₄N][PF₆].

Oxidation of benzylmethyl-(trz-η⁴-C₅H₅Co^ICp) with HCl

After these observations the oxidation experiment was conducted. benzylmethyl-(trz- η^4 -C₅H₅Co^ICp), in THF reacted with a diluted aqueous solution of 1.5 equiv. of HCl (aq.), and the color of the solution changed immediately from wine-red to light yellow (figure 1). The solvents were evaporated and the yellow sticky solid was all dissolved in H₂O showing that benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(Cl) was formed, and that the reaction was quantitative (equation S2). ¹H NMR in D₂O showed all the corresponding proton peaks of benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(Cl), whereas the UV-vis. spectrum showed the disappearance of the absorption bands at 410 nm and 530 nm and the appearance of the absorption bands of cationic triazolyl-cobalticenium.

benzylmethyl-trz- η^4 -C₅H₅Co^ICp + HCl (aq.) \rightarrow benzylmethyl-trz- η^5 -C₅H₄Co^{III}Cp(Cl)+ H₂ (S2)

Figure S7: Photographs of a) benzylmethyl-(trz- η^4 -C₅H₅Co^ICp) and b) benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(Cl) after addition of an aqueous HCl solution.

Experimental procedure for the synthesis of benzylmethyl(triazolyl)-η⁵-C₅H₄Co^{III}Cp(Cl)

Benzylmethyl-(trz-\eta^4-C₅H₅Co^ICp) (15 mg, 0.04 mmol, 1 equiv.) was solubilized in 60 mL of THF. Then a 10 mL aqueous solution of HCl (0.05 mmol, 1.2 equiv.) was added dropwise, and the color gradually changed from deep red to light yellow giving back the cationic product **benzylmethyl(triazolyl)-** η^5 -C₅H₄Co^{III}Cp(Cl) and molecular hydrogen. After stirring for 10 min. the mixture of solvents was evaporated. Solubilization in water, filtration and evaporation of the solvent gave **benzylmethyl(triazolyl)-** η^5 -C₅H₄Co^{III}Cp(Cl) as a yellow waxy product in quantitative yield (14 mg). ¹H NMR (1D 1H), (D₂O, 400 MHz): δ ppm: 8.45 (1H, CH of triazole), 7.47 (5H, CH of Ar), 6.25 (2H, CH of Cp sub.), 5.88 (2H, CH of Cp sub.), 5.70 (2H, Ar-CH2), 5.60 (5H, Cp free). UV-vis.: $\lambda_{max1} = 350$ nm, $\lambda_{max2} = 410$ nm.

¹H NMR of benzylmethyl(triazolyl)-η⁵-C₅H₄Co^{III}Cp(Cl)

Figure S8: ¹**H NMR (1D 1H), (D₂O, 400 MHz):** δppm: 8.45 (1H, CH of triazole), 7.47 (5H, CH of Ar), 6.25 (2H, CH of Cp sub.), 5.88 (2H, CH of Cp sub.), 5.70 (2H, Ar-CH2), 5.60 (5H, Cp free).

UV-visible spectrum of benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(Cl)

Figure S9: Observation of an absorption band at $\lambda max_1 = 350$ nm and an absorption shoulder at $\lambda max_2 = 410$ nm corresponding to benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp (Cl) product.

Formation of molecular hydrogen during oxidation of benzylmethyl-(trz-η⁴-C₅H₅Co^ICp).

The oxidation reaction was repeated in a sealed NMR tube in which benzylmethyl-(trz- η^4 -C₅H₅Co^ICp) was solubilized in deuterated THF; 1.1 equiv. of HPF₆(aq.) was added into the tube (equation S3). The color changed from red to orange instantaneously and the ¹H NMR spectrum was recorded. Except of the typical proton peaks of benzylmethyl(triazolyl)- η^5 -C₅H₄Co^{III}Cp(PF₆) formed and the disappearance of the proton peaks of the product benzylmethyl-(trz- η^4 -C₅H₅Co^ICp), a new proton peak at 4.6 ppm was observed and assigned to H₂.

benzylmethyl-trz- η^4 -C₅H₅Co^ICp + HPF₆ (aq.) \rightarrow benzylmethyl-trz- η^5 -C₅H₄Co^{III}Cp(PF₆)+ H₂ (S3)

Figure S10: ¹H NMR (1D 1H), (THF, 300 MHz): In situ oxidation of benzylmethyl(triazolyl)- η^5 - $C_5H_4Co^IC_5H_6$ in a sealed NMR tube by addition of HPF₆. The proton peak at 4.66 ppm corresponds to the hydrogen produced.

In the zoom is shown a) the area 5.0-4.0 ppm before the addition of HPF_6 and b) after the addition of HPF_6 .

Dendrimer filled DHR 4 (G0)

FigureS11: Structure of filled DHR 4. A single isomer is represented for each branch; for the structures of the four isomer structures, see Figure S1. For 9 branches, there are 36 possible isomers.

Experimental procedure for DHR 4

The empty DHR **1** (**PF**₆)² (solid, 20 mg, 0.004 mmol, 1 equiv.) reacted with solid NaBH₄ (2 mg, 0.06 mmol, 13.5 equiv.) in distilled THF (30 mL) for 20 min at 0°C under N₂. The color of the solution changed from light yellow to deep red. Then, the solution was filtered under nitrogen. The solvent was evaporated *in vacuo*. The deep red solid was washed three times with 15 mL of distilled H₂O. The filled DHR **4** was obtained as a deep red powder in quantitative yield (13 mg). ¹H NMR (1D, 1H), (CD₃CN, 400 MHz) of **4**: δ_{ppm} : 7.00, 6.83 and 6.51 (9H, CH of trz and 3H, CH of arom.core), 5.93-5.15 (18H of diene), 4.69-4.48 (45H of free Cp and 36H of substituted Cp when H⁻ is added to free Cp), 4.34 (18H, SiCH₂-trz), 3.18-2.91 (18H of diene), 2.33-2.04 (18H free), 1.61 (18H, CH₂CH₂CH₂SI), 1.23 (18H, CH₂CH₂CH₂SI), 0.54 (18H, 18H, CH₂CH₂CH₂SI), -0.05 (54H, Si(CH₃)₂). ¹³C NMR (1D, 1H), (CD₃COCD₃, 100 MHz) of **4**: δ_{ppm} : 150.62 (*Cq* of arom.core), 148.41 and 147.82 (*Cq* of trz), 127.57 and 121.83 (CH of trz), 124.28 (CH of arom.core), 80.02-72.96 (CH of Cp free, CH of Cp sub., *Cq* of Cp sub. and CH of diene), 48.48-39.81 (CqCH₂CH₂CH₂SI), *Cq*CH₂CH₂CH₂SI), -3.62 (Si(CH₃)₂). UV-vis.: $\lambda_{max1} = 410$ nm, $\lambda_{max2} = 537$ nm. ESI MS of **4** (C₁₇₁H₂₂₃Si₉N₂₇Co₉(OH)₃): calc. 3490.0 Da; found. 3491.0 Da.

UV-visible spectrum of DHR 4

Figure S12: An absorption band is observed at $\lambda \max_1 = 410$ nm and an absorption shoulder appears at $\lambda \max_2 = 537$ nm corresponding to the product **4**.

IR (KBr) of DHR 4

Figure S13: IR(KBr) of 4: 3110, 2928, 2869, 2741, 1694, 1251, 1153, 1050 (cm⁻¹).

• The method has a limit of 2000 m/z Da for the molar mass, m being the mass and z the charge. When the mass is large, the product is found within this limit, in a form of 'monocharged' fragments (z = 1) or 'dicharged' entities (z = 2). The actual mass m is calculated as: M = m/z., i.e. the double of the m/z peak. For the molecular peak, the calculated M value is 3490.0 Da that is observed below as major peaks at 1745.0 and 1745.5 as expected corresponding to 3490.0 Da and 3491.0 Da respectively, fully conforming the DHR structure of 4.

Figure S14: ESI MS of 4 (C₁₇₁H₂₂₃Si₉N₂₇Co₉(OH)₃): calc. 3490.0 Da; found. 3491.0 Da

AFM of DHR 4

AFM microscopy of 4 (packages of several dendrimers together) shows the average height on the mica surface of h = 0.45 nm (presenting another bilayer at h' = 1.2 nm due to the small size of dendrimer 4). The following generations (G₁ and G₂) present this phenomenon to a much lesser extent.

Figure S15: AFM topography image of 4 on a mica surface.

Figure S16: Statistical height distribution of 4.

Figure S17: 3D AFM topography image

¹H NMR of DHR 4

Figure S18: ¹H NMR (1D, 1H), (CD₃CN, 400 MHz) of 4: δ_{ppm} : 7.00, 6.83 and 6.51 (9H, CH of trz and 3H, CH of arom.core), 5.93-5.15 (18H of diene), 4.69-4.48 (45H of free Cp and 36H of substituted Cp when H⁻ is added to free Cp), 4.34 (18H, SiCH₂-trz), 3.18-2.91 (18H of diene), 2.33-2.04 (18H free), 1.61 (18H, CH₂CH₂CH₂Si), 1.23 (18H, CH₂CH₂CH₂Si), 0.54 (18H, 18H, CH₂CH₂CH₂Si), -0.05 (54H, Si(CH₃)₂).

¹³C NMR of DHR 4

Figure S19: ¹³C **NMR** (1D, 1H), (CD₃COCD₃, 100 MHz) of 4: δ_{ppm} : 150.62 (*Cq* of arom.core), 148.41 and 147.82 (*Cq* of trz), 127.57 and 121.83 (*C*H of trz), 124.28 (*C*H of arom.core), 80.02-72.96 (*C*H of Cp free, *C*H of Cp sub., *Cq* of Cp sub. and *C*H of diene), 48.48-39.81 (Cq*C*H₂CH₂CH₂Si, *Cq*CH₂CH₂CH₂CH₂CH₂CH₂Si, *Cq*CH₂CH₂CH₂CH₂CH₂Si, *Cq*CH₂CH₂CH₂Si, and CqCH₂CH₂CH₂Si), -3.62 (Si(*C*H₃)₂).

HSQC 2D NMR spectroscopy of DHR 4

Figure S20: HSQC 2D NMR spectrum of 4.

Dendrimer filled DHR 5 (G₁)

Figure S21: Structure of filled DHR 5. A single isomer is represented on each branch. For the 4 possible isomers on each branch, see Figure S1. With 27 branches, there are 108 possible isomers.

Experimental procedure for 5

The empty DHR **2(PF**₆) solid (25 mg, 0.002 mmol, 1 equiv.) reacted with NaBH₄ (3 mg, 0.08 mmol, 40.5 equiv.) in distilled THF (20 mL) for 20 min at 0°C under N₂. The color of the solution changed from colorless to deep red. Then, the solution was filtered under nitrogen. The solvent was evaporated *in vacuo*. The deep red solid was washed three times with 10 mL of distilled H₂O. The filled DHR **5** was obtained as a deep red powder in quantitative yield (21 mg). ¹H NMR (1D, 1H), (CD₃COCD₃, 400 MHz) of **5**: δ_{ppm} : 7.20, 7.05 6.92 and 6.63 (27H, CH of trz and 39H, CH of arom.core), 5.84-5.31 (54H of diene), 4.94-4.72 (135H of free Cp and 108H of substituted Cp when H⁻ is added to free Cp), 4.53 (54H, SiCH₂-trz), 3.38 (18H, SiCH₂O) 3.25-2.84 (54H of diene), 2.50-2.02 (54H free), 1.69 (72H, CH₂CH₂CH₂CH₂Si), 1.22 (72H, CH₂CH₂CH₂Si), 0.65 (72H, 18H, CH₂CH₂CH₂Si), 0.06 (216H, Si(CH₃)₂). ¹³C NMR (1D, 1H), (CD₃COCD₃, 75 MHz) of **5**: δ_{ppm} : 160.05 (arom. OCq), 139.95 and 134.83 (Cq of trz and Cq of aromatic core), 129.48-125.32 (CH of trz and CH aromatic), 81.96-78.30 (CH of Cp free, CH of Cp sub., Cq of Cp sub. and CH of diene), 68.10 (CH₂OAr), 49.87-41.73 (CqCH₂CH₂CH₂Si, CqCH₂CH₂Si), -5.88 (Si(CH₃)₂). UV-vis.: $\lambda_{max1} = 415$ nm, $\lambda_{max2} = 527$ nm.

Figure S22: An absorption shoulder is observed at $\lambda \max_1 = 415$ nm and an absorption shoulder appears at $\lambda \max_2 = 527$ nm corresponding to the product **5**.

IR (KBr) of DHR 5

Figure S23: IR (KBr) of 5: 3100, 2956, 2924, 2872, 1651, 1249, 1152, 1050 (cm⁻¹).

AFM studies of DHR 5

Figure S24: AFM topography image of 5 on a mica surface.

Figure S25: Statistical height distribution of 5.

¹H NMR of DHR 5

Figure S26: ¹**H NMR** (1D, 1H), (CD₃COCD₃, 400 MHz) of **5**: δ_{ppm} : 7.20, 7.05 6.92 and 6.63 (27H, CH of trz and 39H, CH of arom.core), 5.84-5.31 (54H of diene), 4.94-4.72 (135H of free Cp and 108H of substituted Cp when H⁻ is added to free Cp), 4.53 (54H, SiCH₂-trz), 3.38 (18H, SiCH₂O) 3.25-2.84 (54H of diene), 2.50-2.02 (54H free), 1.69 (72H, CH₂CH₂CH₂Si), 1.22 (72H, CH₂CH₂CH₂Si), 0.65 (72H, 18H, CH₂CH₂CH₂Si), 0.06 (216H, Si(CH₃)₂).

¹³C NMR of DHR 5

HSQC 2D NMR spectroscopy of DHR 5

Figure S28: HSQC 2D NMR spectrum of 5.

Dendrimer filled DHR 6

Experimental procedure for 6

The empty DHR **3(PF₆)** solid (20 mg, 0.4 x 10⁻³ mmol, 1 equiv.) reacted with NaBH₄ (1.9 mg, 0.05 mmol, 121.5 equiv.) in distilled THF (20 mL) for 20 min at 0°C under N₂. The color of the solution changed from colorless to deep red. Then, the solution was filtered under nitrogen. The solvent was evaporated *in vacuo*. The deep red solid was washed three times with 10 mL of distilled H₂O. The filled DHR **6** was obtained as a deep red powder in quantitative yield (14 mg). UV-vis.: $\lambda_{max1} = 408$ nm, $\lambda_{max2} = 524$ nm.

AFM studies of DHR 6

Figure S29: AFM topography image of 6 on a mica surface.

Figure S30: Statistical height distribution of 6.

UV-visible spectrum of DHR 6

Figure S31: An absorption shoulder is observed at $\lambda \max_1 = 408$ nm, and another absorption shoulder appears at $\lambda \max_2 = 524$ nm, both corresponding to the product **6**.

IR (KBr) of DHR 6

Figure S32: IR (KBr) of 6: 3150, 2960, 2919, 2855, 2264, 1641, 1460, 1106, 1050 (cm⁻¹).

Dendrimer empty DHR 1 (Cl⁻)

Figure S33: Structure of empty DHR 1(Cl⁻)

Experimental procedure for DHR 1(Cl)

The filled DHR **4** (10 mg, 0.003 mmol, 1 equiv.) was solubilized in 10 mL of THF. Then a 10 mL aqueous solution of HC1 (0.03 mmol, 11 equiv.) was added dropwise, and the color gradually changed from deep red to light yellow giving back the empty DHR **1(Cl)** and molecular hydrogen. After stirring for 10 min. the mixture of solvents was evaporated. Solubilization in water, filtration and evaporation of the solvent gave DHR **1(Cl)** as a yellow waxy product in quantitative yield (11 mg). The empty DHR **1(Cl)** is now water-soluble. ¹H NMR (1D 1H), (D₂O, 400 MHz) : δ_{ppm} : 8.39 (9H, *CH* of trz), 6.28 (18H, *CH* of Cp sub.), 5.91 (18H, *CH* of Cp sub.), 5.61 (45H, *CH* of Cp), 4.10 (18H, SiCH₂-trz), 1.34 (18H, CH₂CH₂CH₂Si), 0.88 (18H, CH₂CH₂CH₂Si), 0.47 (18H, 18H, CH₂CH₂CH₂Si), -0.04 (54H, Si(CH₃)₂). UV-vis.: $\lambda_{max1} = 356$ nm, $\lambda_{max2} = 412$ nm (shoulder).

Figure S34: ¹H NMR spectrum of **1(Cl)** (1D 1H), (D₂O, 400 MHz) : δ_{ppm} : 8.39 (9H, *CH* of trz), 6.28 (18H, *CH* of Cp sub.), 5.91 (18H, *CH* of Cp sub.), 5.61 (45H, *CH* of Cp), 4.10 (18H, SiCH₂-trz), 1.34 (18H, CH₂CH₂CH₂Si), 0.88 (18H, CH₂CH₂CH₂Si), 0.47 (18H, 18H, CH₂CH₂CH₂Si), - 0.04 (54H, Si(CH₃)₂).

UV-visible spectrum of DHR 1(Cl)

Figure S35: An absorption band is observed at $\lambda \max_1 = 356$ nm and an absorption shoulder appears at $\lambda \max_2 = 412$ nm corresponding to the product **1(Cl)**.

IR (KBr) of DHR 1(Cl)

Figure S36: IR (KBr) of 1(Cl): 3102, 2923, 2855, 2337, 1649, 1447, 1260 (cm⁻¹).

Dendrimer emprty 2(Cl)

Figure S37: Structure of 2(Cl).

The filled DHR **5** (20 mg, 0.002 mmol, 1 equiv.) was solubilized in 10 mL of THF. Then a 10 mL aqueous solution of HCl (0.06 mmol, 33 equiv.) was added dropwise, and the color gradually changed from deep red to light yellow giving back the empty DHR **2(Cl)** and molecular hydrogen. After stirring for 10 min. the mixture of solvents was evaporated. Solubilization in water, filtration and evaporation of the solvent gave DHR **2(Cl)** as a yellow waxy product in quantitative yield (25 mg). The empty DHR **2(Cl)** is now water-soluble. ¹H NMR (1D 1H), (D₂O, 400 MHz): δ_{ppm} : 8.28 (27H, CH of trz), 7.00, 6.66 (39H, CH of arom.core), 6.09 (54H, CH of Cp sub.), 5.72 (54H, CH of Cp sub.), 5.39 (135H, CH of Cp), 3.90 (54H, SiCH₂-trz), 3.43 (18H, SiCH₂O), 1.44 (72H, CH₂CH₂CH₂Si), 0.94 (72H, CH₂CH₂CH₂Si), 0.39 (72H, 18H, CH₂CH₂CH₂Si), -0.14 (216H, Si(CH₃)₂). UV-vis.: $\lambda_{max1} = 357$ nm, $\lambda_{max2} = 410$ nm (shoulder).

UV-visible spectrum of DHR 2(Cl)

Figure S38: An absorption band is observed at $\lambda \max_1 = 357$ nm, and an absorption shoulder appears at $\lambda \max_2 = 410$ nm corresponding to the product **2(Cl)**.

¹H NMR of DHR 2(Cl)

Figure S39: ¹H NMR spectrum of **2(Cl)** (1D 1H), (D₂O, 400 MHz): 8.28 (27H, C*H* of trz), 7.00, 6.66 (39H, C*H* of arom.core), 6.09 (54H, C*H* of Cp sub.), 5.72 (54H, C*H* of Cp sub.), 5.39 (135H, C*H* of Cp), 3.90 (54H, SiC*H*₂-trz), 3.43 (18H, SiC*H*₂O), 1.44 (72H, C*H*₂CH₂CH₂Si), 0.94 (72H, CH₂CH₂CH₂Si), 0.39 (72H, 18H, CH₂CH₂CH₂Si), -0.14 (216H, Si(C*H*₃)₂).

Dendrimer empty DHR 3(Cl)

Experimental procedure for DHR 3 (Cl⁻)

The filled DHR **6** (15 mg, 0.4 x 10⁻³ mmol, 1 equiv.) was solubilized in 5 mL of THF. Then a 10 mL aqueous solution of HCl (0.04 mmol, 97 equiv.) was added dropwise, and the color gradually changed from deep red to light yellow giving back the empty DHR **3(Cl)** and molecular hydrogen. After stirring for 10 min. the mixture of solvents was evaporated. Solubilization in water, filtration and evaporation of the solvent gave DHR **3(Cl)** as a yellow waxy product in quantitative yield (15 mg). The empty DHR **3(Cl)** is now water-soluble. ¹H NMR (1D 1H), (D₂O, 400 MHz): δ_{ppm} : 8.35 (81H, *CH* of trz), 7.09, 6.76 (147H, *CH* arom.), 6.18 (162H, *CH* of Cp sub.), 5.80 (162H, *CH* of Cp sub.), 5.49 (405H, *CH* of Cp), 4.02 (162H, SiCH₂-trz), 3.51 (72H, SiCH₂O), 1.51 (234H, CH₂CH₂CH₂Si), 1.00 (234H, CH₂CH₂CH₂Si), 0.51 (234H, 18H, CH₂CH₂CH₂Si), -0.13 (702H, Si(*CH*₃)₂). UV-vis.: $\lambda_{max1} = 355$ nm, $\lambda_{max2} = 412$ nm (shoulder).

¹H NMR of DHR 3(Cl)

Figure S41: ¹H NMR spectrum of **3 (CI-)** (1D 1H), (D₂O, 400 MHz): δ_{ppm} : 8.35 (81H, CH of trz), 7.09, 6.76 (147H, CH arom.), 6.18 (162H, CH of Cp sub.), 5.80 (162H, CH of Cp sub.), 5.49 (405H, CH of Cp), 4.02 (162H, SiCH₂-trz), 3.51 (72H, SiCH₂O), 1.51 (234H, CH₂CH₂CH₂Si), 1.00 (234H, CH₂CH₂CH₂Si), 0.51 (234H, 18H, CH₂CH₂CH₂Si), -0.13 (702H, Si(CH₃)₂).

UV-visible spectrum of DHR 3(Cl)

Figure S42: An absorption band observed at $\lambda \max_1 = 355$ nm and an absorption shoulder at $\lambda \max_2 = 412$ nm corresponding to product **3** (Cl⁻).

AuNPs-7 and AuNPs-8

General information:

1) The AuNPs-7 and AuNPs-8 were synthesized according to the following equation:

Den- $(Trz-Co^{IH})_n + 2n/3 \text{ HAuCl}_4 \rightarrow \text{Den-}(Trz-Co^{III}\text{Cl})_n, 2n/3\text{Au}^0 + 5n/3 \text{ HCl} (aq)$

2) After the reaction the pH was found to be acidic: pH = 5-6

Figure S43: Schematic representation of capsules containing AuNPs-7 or AuNPs-8.

3) Upon synthesis, the color immediately became **pink-red**:

Figure S45: Photograph of AuNPs-8.

4) A test has been performed using a flux of hydrogen gas into a solution of $HAuCl_4$, and reduction of Au(III) to Au(0) started to occur after 15 minutes, proving that the hydride transfer from filled DHRs 4 and 5 to Au(III) is responsible for the Au(III) reduction to AuNPs. The consumption of both starting materials stoichiometrically as well as the remaining acidic pH confirm the above statement.

Experimental procedure of AuNPs-7

The filled DHR 4 (8 mg, 0.002 mmol, 1 equiv.) was dissolved in 1.5 mL THF and was added dropwise at 0°C into a solution of HAuCl₄ (4.7 mg, 0.012 mmol, 18 equiv.) in 35 mL of H₂O/ THF 3:1, under vigorous stirring. The color instantaneously changed from yellow to pink red, and stirring was continued for another 10 min. The mixture was concentrated *in vacuo* to 25 mL. UV-vis.: $\lambda_{max} = 351$ nm, SPR: $\lambda_{max} = 534$ nm. TEM: $d_{AuNPs} = 4.5 \pm 0.5$ nm, $d_{Capsules} = 45 \pm 7$ nm.

Experimental procedure of AuNPs-8

The filled DHR **5** (10 mg, 0.8 x 10⁻³ mmol, 1 equiv.) was dissolved in 1 mL THF and was added dropwise at 0°C in a solution of HAuCl₄ (5.7 mg, 0.014 mmol, 18 equiv.) in 40 mL of H₂O/ THF 3:1, under vigorous stirring. The color instantaneously changed from yellow to pink red, and stirring was continued for another 10 min. The mixture was concentrated *in vacuo* to 30 mL. UV-vis.: $\lambda_{max} = 348$ nm, SPR: $\lambda_{max} = 527$ nm. TEM: $d_{AuNPs} = 3 \pm 0.5$ nm, $d_{Capsules} = 85 \pm 20$ nm.

UV-vis. of AuNPs-7

Figure S46: UV-vis. spectrum of AuNPs-7.

 $\lambda_{max} = 347 \text{ nm}, \text{ SPR: } \lambda_{max} = 534 \text{ nm}$

TEM of AuNPs-7

Figure S47: TEM image of **AuNPs-7**. The diameter of the AuNPs is: $d_{AuNPs} = 4.5 \pm 0.5$ nm, and that of the capsules is: $d_{Capsules} = 45 \pm 7$ nm.

Size distribution of AuNPs-7

Figure S48.

UV-vis. of AuNPs-8

S49: UV-vis. spectrum of AuNPs-8.

 λ_{max} = 348 nm, SPR: λ_{max} = 527 nm

Size distribution of AuNPs-8

Figure S50.

AFM studies of AuNPs-8

Figure S51: AFM image (height sensor) of AuNPs-8 at a larger scale (10 μ m) where packages of capsules are also observed.

Figure S52: Calculation of distinct capsules' diameter and height containing **AuNPs-8** by AFM topography image ($d_{Capsules} = 103 \pm 14$ nm, $h_{Capsules} = 33 \pm 3$ nm) which is in agreement with TEM measurements ($d_{Capsules} = 85 \pm 20$ nm). **AuNPs-9**

General information:

1) The AuNPs-9 were synthesized according to the following equation:

Den-(Trz-Co^IH)_n + 2n/3 AuCl₃ → Den-(Trz-Co^{III}Cl)_n, 2n/3Au⁰ + n HCl (THF)

Figure S53: Schematic representation of capsules containing AuNPs-9.

2) The color changed immediately from yellow to **purple**:

Figure S54: Photo of AuNPs-9.

3) The fact that the reaction happens instantaneously confirms that the hydride transfer reduces Au(III) (in this case there is no acidic protons).

Experimental procedure for AuNPs-9

The filled DHR **5** (10 mg, 0.8 x 10⁻³ mmol, 1 equiv.) was dissolved in 1 mL THF and added dropwise at 0°C into a solution of AuCl₃ (4.4 mg, 0.014 mmol, 18 equiv.) in 35 mL of THF, under vigorous stirring. The color instantaneously changed from yellow to violet, and stirring was continued for another 10 min. The mixture was kept in a closed flask. UV-vis.: $\lambda_{max} = 350$ nm, SPR: $\lambda_{max} = 571$ nm. TEM: $d_{AuNPs} = 33 \pm 3$ nm, $d_{Capsules} = 220 \pm 40$ nm.

Size distribution of AuNPs-9

Figure S55

AuNPs-10

General information

For comparison a common reductant NaBH₄ was used to reduce $HAuCl_4$ to give AuNPs-10 that were stabilized by the empty DHR 2 (CF).

The reaction happened instataneously and the color changed immediately from yellow to greypurple.

Figure S56: Photo of AuNPs-10

From TEM analysis capsules were not observed, whereas comparative stability tests were performed.

The same concentration was used as in case of AuNPs-8, but under these conditions AuNPs-10 flocculated. They could be reversibly re-dissolved, however.

The pH after the reaction becomes pH = 7.

Experimental procedure for AuNPs-10

The empty DHR **2(Cl)** (10 mg, 0.8 x 10⁻³ mmol, 1 equiv.) was dissolved in 4 mL H₂O and was added in a solution of HAuCl₄ (5.7 mg, 0.014 mmol, 18 equiv.) in 25 mL of H₂O, under vigorous stirring. Then a solution of NaBH₄ (1.7 mg, 0.04 mmol, 54 equiv.) in 1 mL H₂O was added dropwise under vigorous stirring. The color instantaneously changed from yellow to grey-purple and stirring was continued for another 10 min. UV-vis.: $\lambda_{max} = 348$ nm, SPR: $\lambda_{max} = 535$ nm. TEM: $d_{AuNPs} = 5 \pm 1$ nm.

TEM of AuNPs-10

Figure S57: TEM image of **AuNPs-10**. The calculated diameter was found: $d = 5 \pm 1$ nm.

Size distribution of AuNPs-10

Figure S58

UV-vis. of AuNPs-10

Figure S59: UV-vis. spectrum of AuNPs-10.

 $\lambda_{\text{max}} = 348 \text{ nm}, \text{ SPR: } \lambda_{\text{max}} = 535 \text{ nm}.$

Stability comparison of AuNPs-8 and AuNPs-10

1) Time

The AuNPs-8 were stable for several months. Precipitation did not occur, and the UV-vis. spectrum after several months showed the same plasmon band as when they were freshly prepared.

UV-vis of AuNPs-8 after 6 months

Figure S60: UV-vis. spectrum of AuNPs-8. $\lambda_{max} = 350 \text{ nm}, \text{ SPR: } \lambda_{max} = 529 \text{ nm}.$

On the other hand, AuNPs-10 could not be re-dissolved after one month time, showing that their stability is weaker comparing to capsules containing AuNPs-8.

2) Temperature

Both AuNPs-8 and AuNPs-10 were heated at 100° C during one hour. After 30 min, AuNPs-10 were irreversibly precipitated, whereas in the case of AuNPs-8 nothing changed (color or solubility). The UV-vis. spectrum was recorded after heating AuNPs-8 giving the same plasmon band as before heating.

Figure S61: Photograph of AuNPs-8 and AuNPs-10 after heating at 100°C for 1h.

UV-vis. spectrum of AuNPs-8 after heating at 100°C during 1h

Figure S62: UV-vis. spectrum of AuNPs-8.

 λ_{max} = 348 nm, SPR: λ_{max} = 526 nm.

AuNPs-11

A mixture of empty DHR 2 (PF_6 -) and AuCl₃ was reduced by NaBH₄ resulting in the silmutaneous reduction of dendrimer 2 (PF_6 -) to the filled DHR 5 and Au(III) to Au(0). The color changed from yellow to purple (instataneous reduction of Au(III)) and subsequently to red when the empty DHR was reduced to filled DHR (AuNPs-11). After 5 min. the AuNPs-11 flocculated which is taken into account by the absence of electrostatic stabilization and could be reversibly dissolved by stirring the reaction medium. These nanoparticles were kept under nitrogen.

Figure S63: Synthesis of AuNPs-11.

Figure S64: Photo of AuNPs-11.

Experimental procedure for AuNPs-11

The empty DHR **2(PF₆)** (8 mg, 0.5 x 10⁻³ mmol, 1 equiv.) and AuCl₃ (2.8 mg, 0.009 mmol, 18 equiv.) were put in a flask, and 10 mL of distilled THF was added under nitrogen. Then NaBH₄ (2 mg, 0.05 mmol, 100 equiv.) was added, and the solution was left stirring vigorously for 10 min. The color instantaneously changed from yellow to purple and then gradually became red suggesting first the reduction of Au^{III} and then gradually the reduction of cobalticenium. The solution was quickly filtered. The flocculation of AuNPs-11 was observed after 5 min. UV-vis.: $\lambda_{max} = 408$ nm (shoulder), SPR: $\lambda_{max} = 519$ nm. TEM: $d_{AuNPs} = 4 \pm 0.5$ nm.

UV-vis. of AuNPs-11

Figure S65: UV-vis. spectrum of **AuNPs-11**. Absorption shoulder: $\lambda max = 408$ nm. SPB: $\lambda max = 519$ nm.

TEM of AuNPs-11

Figure S66: TEM image of flocculated AuNPs-11.

Size distribution of AuNPs-11

Figure S67
Oxidation of AuNPs-11 by HCl (AuNPs-12)

Experimental procedure for AuNPs-12

To the solution of **AuNPs-11** (S66) another 20mL of THF was added. Then a solution of of HCl (0.02 mmol,33 equiv.) in 10 mL of H₂O was added dropwise at 0°C under vigorous stirring and stirring continued for 10 min. AuNPs-12 were obtained in light orange/purple color. UV-vis.: $\lambda_{max} = 356$ nm (shoulder), SPR: $\lambda_{max} = 513$ nm. TEM: $d_{AuNPs} = 4 \pm 0.5$ nm.

TEM of AuNPs-12

Figure S68: TEM image of AuNPs-12 stabilized by the cationic empty DHR 2 (Cl⁻). It is clearly seen that the re-arrangement of the AuNPs into capsules occurred when the filled DHR 5 changed back to empty DHR 2 (Cl⁻).

Size distribution of AuNPs-12

Figure S69

UV-vis. of AuNPs-12

Figure S70: UV-vis. spectrum of **AuNPs-12**. Absorption: $\lambda max = 357$ nm. SPB: $\lambda max = 513$ nm.

References

(1) A. Rapakousiou, C. Mouche, M. Duttine, J. Ruiz, D. Astruc, *Eur. J. Inorg. Chem.* **2012**, *31*, 5071-5077.

(2) A. Rapakousiou, Y. Wang, C. Belin, N. Pinaud, J. Ruiz, D. Astruc, *Inorg. Chem.* 2013, 52, 6685-6693.

(3) (a) C. Ornelas, J. Ruiz, C. Belin, D. Astruc, J. Am. Chem. Soc. 2009, 131, 590-601. (b) E. Boisselier, A. K. Diallo, L. Salmon, C. Ornelas, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 2010, 132, 2729-2742. (c) R. Djeda, A. Rapakousiou, L. Liang, N. Guidolin, J. Ruiz, D. Astruc, Angew. Chem., Int. Ed. 2010, 49, 8152-8156.

(4) O. A. Tarasova, I. V. Tatarinova, T. I. Vakul'skaya, S. S. Khutsishvili, V. I. Smirnov, L. V. Klyba, G. F. Prozorova, A. I. Mikhaleva, B. A. Trofimov, *J. Organomet. Chem.* **2013**, 1-7, 745-746.

(5) R. Ciganda, A. Garralda, L Ibarlucea, E. Pinilla, R. Torres, *Dalton Trans.* **2010**, *39*, 7226-7229.