SUPPORTING INFORMATION

Nickel-Catalyzed Ring-Opening of a-Hydroxylcyclobutenones with

Remarkable Ligand Effect

Table of Contents

1. General InformationS 2
2. Preparation of α-HydroxylcyclobutenonesS 2
3. Nickel-Catalyzed Ring-Opening of α -Hydroxylcyclobutenones with PPh ₃ as the
LigandS 7
4. Nickel-Catalyzed Ring-Opening of α -Hydroxylcyclobutenones with xantphos as
the LigandS 10
5. Deuteration Experiment: Nickel-Catalyzed Ring-Opening of
α-Hydroxylcyclobutenones 1s and 1a with PPh ₃ or Xantphos as the LigandS 14
6. Nickel-Catalyzed Ring-Opening of α -Hydroxylcyclobutenones Bearing an Phenyl
or Propenyl group as the R ³ Substituent with PPh ₃ or Xantphos as the LigandS 16
7. ¹ H and ¹³ C NMR Spectra of CompoundsS 17
8. ¹ H NMR Spectrum from Deuterated ExperimentsS 67
9. ¹ H and ¹³ C NMR Spectrum from Nickel-Catalyzed Ring-Opening of
α -Hydroxylcyclobutenones Bearing an Phenyl or Propenyl group as the R^3
Substituent with PPh3 or Xantphos as the Ligand

1. General Information

Column chromatography was carried out on 200-300 Mesh silica gel. And thin layer chromatography (TLC) was performed on silica gel GF254 plates. High resolution Mass spectra (HRMS) were recorded in ESI mode using a TOF analyzer. ¹H NMR spectra were recorded on 400 MHz in CDCl₃ and ¹³C NMR spectra were recorded on 100 MHz in CDCl₃ using TMS as internal standard. All new products were further characterized by HRMS; copies of their ¹H NMR and ¹³C NMR spectra are provided. Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; hept = heptet; m = multiplet), coupling constants, *J*, in (Hz), and integration.

2. Preparation of α-Hydroxylcyclobutenones

α-hydroxycyclobutenones of **1a**, **1b**, **1h**, **1q**, **1t** and **1u** were prepared according to previous report. (Song, P.; Li, Q.; Wang, C.; Wu, W.; Mao, X.; Wang, J.; Hu, X. *Adv. Synth. Catal.* **2016**, *358*, 1208-1212.)

Preparation of other α-Hydroxylcyclobutenones

General procedure:¹

A solution of $R^{3}Li$ (1 mmol, 2.5M in THF) was added to the solution of cyclobutenediones **6** (0.5 M in THF, 1.1mmol) at -110°C under N₂. The system was stirred for 5 minutes, and then quenched with saturated ammonium chloride solution. The aqueous phase was extracted with EtOAc three times. The combined organic layer was washed with saturated ammonium chloride solution, saturated brine and dried over Na₂SO₄. The solvent was removed under reduced pressure. The crude residue was purified by silica gel chromatography using petroleum ether/ethyl acetate as eluent to afford **1**.

Reference:

(1) Tomooka, C. S.; Liu, H.; Moore, H. W. J. Org. Chem. 1996, 61, 6009-6012.

4-Butyl-4-hydroxy-3-isopropoxy-2-phenyl-cyclobut-2-enone (1a)

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, J =7.4 Hz, 2H), 7.29 (t, J =7.4 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 5.31 (s, 1H), 5.13 (hept, J = 6.0 Hz, 2H), 2.19-2.12 (m, 1H), 1.93-1.87 (m, 1H), 1.53 (d, J = 6.0 Hz, 3H), 1.46 (d, J = 6.0 Hz, 3H), 1.34-1.30 (m, 4H), 0.86 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 191.9, 182.1, 128.8, 128.2, 127.5, 126.7, 123.1, 93.0, 78.5, 33.6, 27.4, 23.1, 23.0, 22.7, 13.8. **HRMS** Calcd

(ESI) m/z for $C_{17}H_{22}NaO_3^+$: [M+Na]⁺ 297.1461, Found: 297.1467. **IR** (neat) v_{max} 3238, 2957, 2926, 1735, 1619, 1337, 759, 698.

4-Butyl-4-hydroxy-3-isopropoxy-2-methyl-cyclobut-2-enone (1b)

¹**H NMR** (400 MHz, CDCl₃) δ 4.84 (hept, J = 4.0 Hz, 1H), 3.12 (s, 1H), 1.90-1.83 (m, 1H), 1.80-1.75 (m, 1H), 1.70 (s, 3H), 1.43 (d, J = 4.0 Hz, 6H), 1.35-1.26 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.8, 182.9, 120.8, 91.2, 76.4, 32.2, 27.0, 22.7, 22.6, 22.4, 13.8, 6.6. **HRMS** Calcd (ESI) m/z for C₁₂H₂₀NaO₃⁺: [M+Na]⁺ 235.1305, Found: 235.1303. **IR** (neat) v_{max} 3308, 2954, 2931, 1745, 1605,

1313.

4-Butyl-4-hydroxy-3-methoxy-2-phenyl-cyclobut-2-enone (1c)

¹**H** NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H). 7.26-7.23 (m, 1H), 7.28-7.20 (m, 1H), 4.59 (s, 1H), 4.26 (s, 3H), 2.18-2.11 (m, 1H), 1.94-1.86 (m, 1H), 1.34-1.23 (m, 4H), 0.87 (t, J = 6.4 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 191.5, 182.2, 128.4, 128.4, 127.9, 126.9, 124.1, 92.9, 59.7, 33.4, 27.5, 22.7, 13.8. **HRMS** Calcd (ESI) m/z for C₁₅H₁₈NaO₃⁺: [M+Na]⁺ 269.1148, Found: 269.1145.

IR (neat) v_{max} 3235, 2960, 2923, 1738, 1616, 1337, 761, 698.

4-Butyl-4-hydroxy-3-isopropoxy-2-isopropyl-cyclobut-2-enone (1d)

¹**H NMR** (400 MHz, CDCl₃) δ 5.01 (s, 1H), 4.77 (hept, J = 6.1 Hz, 1H), 2.39-2.29 (m, J = 6.2 Hz, 1H), 1.89-1.81 (m, 1H), 1.69-1.62 (m, 1H), 1.30 (d, J = 6.1 Hz, 3H), 1.27 (d, J = 6.1 Hz, 3H), 1.24-1.17 (m, 2H), 1.15-1.07 (m, 2H), 1.03(d, J = 6.2 Hz, 3H), 1.01 (d, J = 6.2 Hz, 3H), 0.76 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 193.9, 181.7, 131.1, 91.3, 76.5, 32.6, 27.2, 23.7, 22.6, 22.5, 22.5, 20.2, 13.6. **HRMS**

Calcd (ESI) m/z for $C_{14}H_{24}NaO_3^+$: [M+Na]⁺ 263.1618, Found: 263.1616. **IR** (neat) v_{max} 3367, 2963, 2931, 1743, 1607, 1338.

2,4-Dibutyl-4-hydroxy-3-isopropoxy-cyclobut-2-enone (1e)

¹**H NMR** (400 MHz, CDCl₃) δ 4.82 (hept, J = 6.6 Hz, 1H), 4.29 (s, 1H), 2.11-2.02 (m, 2H), 1.96-1.88 (m, 1H), 1.81-1.74 (m, 1H), 1.51-1.46 (m, 2H), 1.43(d, J = 6.6 Hz, 3H), 1.41 (d, J = 6.6 Hz, 3H), 1.35-1.23 (m, 6H), 0.92-0.87 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.5, 182.5, 126.1, 91.4, 76.5, 32.5, 29.5, 27.2, 22.7, 22.6, 22.5, 22.0, 13.8, 13.6. **HRMS** Calcd (ESI) m/z for C₁₅H₂₆NaO₃⁺: [M+Na]⁺ 277.1774, Found: 277.1772.

IR (neat) v_{max} 3270, 2969, 2932, 1746, 1602, 1317.

2-Benzyl-4-butyl-4-hydroxy-3-isopropoxy-cyclobut-2-enone (1f)

¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.16 (m, 5H), 4.77 (hept, J = 6.0 Hz, 1H), 4.16 (s, 1H), 3.48-3.37 (m, 2H), 1.96-1.90 (m, 1H), 1.83-1.75 (m, 1H), 1.34 (d, J = 6.0 Hz, 6H), 1.30-1.18 (m, 4H), 0.84 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.0, 183.2, 137.9, 128.4, 128.2, 126.2, 123.8, 91.6, 77.2, 32.6, 27.9, 27.2, 22.7, 22.6, 22.5, 13.8. **HRMS** Calcd (ESI) m/z for C₁₈H₂₄NaO₃⁺: [M+Na]⁺ 311.1618, Found: 311.1620.

IR (neat) v_{max} 3229, 2957, 1742, 1613, 1333, 756, 699.

4-Cyclopropyl-4-hydroxy-3-isopropoxy-2-methyl-cyclobut-2-enone (1g)

¹**H NMR** (400 MHz, CDCl₃) δ 4.87 (hept, J = 6.2 Hz, 1H), 3.86 (s, 1H), 1.67 (s, 3H), 1.44 (d, J = 6.2 Hz, 6H), 1.28-1.19 (m, 1H), 0.67-0.61 (m, 1H), 0.59-0.52 (m, 2H), 0.46-0.51 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 192.9, 182.5, 121.1, 90.7, 76.6, 22.5, 13.9, 6.5, 2.6, 2.4. **HRMS** Calcd (ESI) m/z for C₁₁H₁₆NaO₃⁺: [M+Na]⁺ 219.0992, Found: 219.0990. **IR** (neat) v_{max} 3370, 2982, 2931, 1753, 1610, 1315.

2-tert-Butyl-4-hydroxy-3-methoxy-4-methyl-cyclobut-2-enone (1h)

¹**H NMR** (400 MHz, CDCl₃) δ 4.15 (s, 3H), 1.62 (s, 3H), 1.15 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.5, 183.6, 133.4, 87.7, 77.4, 77.1, 76.8, 58.9, 30.7, 28.0, 20.6. **HRMS** Calcd (ESI) m/z for $C_{10}H_{16}NaO_3^+$: [M+Na]⁺ 207.0992, Found: 207.0995. **IR** (neat) v_{max} 3272, 2963, 2934, 1745, 1613, 1349.

4-Hydroxy-3-isopropoxy-4-isopropyl-2-methyl-cyclobut-2-enone (1i)

¹**H NMR** (400 MHz, CDCl₃) δ 4.78 (hept, J = 2.8 Hz, 1H), 2.84 (s, 1H), 2.14-2.03 (m, J = 7.0 Hz, 1H), 1.73 (s, 3H), 1.44 (d, J = 2.8 Hz, 3H), 1.43 (d, J = 2.8 Hz, 3H), 1.04 (d, J = 7.0 Hz, 3H), 1.02 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 193.8, 181.8, 120.9, 93.9, 76.2, 31.4, 22.7, 22.3, 18.0, 17.9, 7.0. **HRMS** Calcd (ESI) m/z for C₁₁H₁₈NaO₃⁺: [M+Na]⁺ 221.1148, Found: 221.1156. **IR** (neat) v_{max} 3278, 2982, 2955,

1747, 1605, 1313.

4-Butyl-2-ethyl-4-hydroxy-3-isopropoxy-cyclobut-2-enone (1j)

¹**H NMR** (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 4.83 (hept, J = 6.0 Hz, 1H), 3.91 (s, 1H), 2.16-2.05 (m, 2H), 1.95-1.87 (m, 1H), 1.81-1.74 (m, 1H), 1.43 (d, J = 6.0 Hz, 2H), 1.42 (d, J = 6.0 Hz, 2H), 1.36-1.19 (m, 4H), 1.10 (t, J = 7.6 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.5, 182.2, 127.0, 91.3, 76.6, 32.4, 27.1, 22.7, 22.6, 22.4, 15.7, 13.8, 12.0. **HRMS** Calcd (ESI) m/z for

 $C_{13}H_{22}NaO_3^+$: [M+Na]⁺ 249.1461, Found: 249.1468. **IR** (neat) v_{max} 3372, 2966, 2932, 1749, 1336.

4-Butyl-4-hydroxy-3-isopropoxy-2-phenylethynyl-cyclobut-2-enone (1k)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45-7.42 (m, 2H), 7.34-7.31 (m, 3H), 5.30 (hept, J = 2.6 Hz, 1H), 3.52 (s, 1H), 1.94-1.81 (m, 2H), 1.54 (d, J = 2.6 Hz, 3H), 1.53 (d, J = 2.6 Hz, 3H), 1.39-1.32 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 184.5, 131.6, 128.8, 128.3, 122.2, 106.3, 92.7, 92.0, 79.0, 76.1, 32.1, 26.6, 22.8, 22.4, 22.1, 13.8. **HRMS** Calcd (ESI) m/z for C₁₉H₂₂NaO₃⁺: [M+Na]⁺ 321.1461, Found:

321.1454. **IR** (neat) v_{max} 3299, 2969, 2928, 1748, 1606, 1332.

4-Butyl-4-hydroxy-3-isopropoxy-2-trimethylsilanylethynyl-cyclobut-2-enone (11)

¹**H NMR** (400 MHz, CDCl₃) δ 5.19 (hept, J = 6.2 Hz, 1H), 2.01 (s, 1H), 1.82-1.72 (m, 2H), 1.46 (d, J = 6.2 Hz, 6H), 1.35-1.26 (m, 4H), 0.86 (t, J = 6.7 Hz, 3H), 0.16 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 190.2, 184.9, 106.5, 99.2, 91.8, 91.1, 78.9, 60.4, 32.0, 26.5, 22.7, 22.4, 22.1, 13.8, -0.4. **HRMS** Calcd (ESI) m/z for C₁₆H₂₆NaO₃Si⁺: [M+Na]⁺ 317.1543, Found: 317.1538. **IR** (neat) v_{max} 3293, 2971, 2931, 1753, 1596,

1315.

4-Butyl-4-hydroxy-3-isopropoxy-2-(4-methoxy-phenyl)-cyclobut-2-enone (1m)

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, J = 8.9 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 5.08 (hept, J = 6.1 Hz, 1H), 4.84 (s, 1H), 3.78 (s, 3H), 2.15-2.08 (m, 1H), 1.91-1.84 (m, 1H), 1.51 (d, J = 6.1 Hz, 3H), 1.46 (d, J = 6.1 Hz, 3H), 1.38-1.26 (m, 4H), 0.86 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 191.6, 180.6, 158.9, 128.2, 123.2, 121.6, 113.6, 93.0, 78.1, 55.1, 33.6, 27.4, 26.8, 23.1, 23.0, 22.7, 13.8. **HRMS** Calcd (ESI)

m/z for $C_{18}H_{24}NaO_4^+$: [M+Na]⁺ 327.1567, Found: 327.1560. **IR** (neat) v_{max} 3233, 2963, 2926, 1735, 1603, 1303, 846.

4-Butyl-2-(3-chloro-4-methyl-phenyl)-4-hydroxy-3-isopropoxy-cyclobut-2-enone (1n)

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.10(d, J = 8.0 Hz, 1H), 5.12 (hept, J = 8.0 Hz, 1H), 4.58 (s, 1H), 2.33 (s, 3H), 2.14-2.04 (m, 1H), 1.91-1.84 (m, 1H), 1.56 (d, J = 8.0 Hz, 3H), 1.50 (d, J = 8.0 Hz, 3H), 1.34-1.23 (m, 4H), 0.87 (t, J = 8.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 191.5, 182.3, 135.4, 134.2, 130.7, 127.8, 126.9, 124.9, 121.9, 93.2, 78.9, 33.7, 27.4, 23.2, 23.0, 22.8, 20.0,

13.8. **HRMS** Calcd (ESI) m/z for $C_{18}H_{23}CINaO_3^+$: [M+Na]⁺ 345.1228, Found: 345.1221. **IR** (neat) v_{max} 3248, 2957, 2927, 1736, 1594, 1338 900, 824.

2-Butyl-4-hydroxy-3-isopropoxy-cyclobut-2-enone (10)

¹**H NMR** (400 MHz, CDCl₃) δ 5.21 (s, 1H), 4.93 (hept, J = 6.0 Hz, 1H), 2.05-2.01 (t, J = 7.5 Hz, 2H), 1.52-1.46 (m, 2H), 1.44 (d, J = 6.0 Hz, 3H), 1.40 (d, J = 6.0 Hz, 3H), 1.35-1.26 (m, 2H), 0.96-0.84 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 192.2, 182.0, 127.1, 81.2, 77.3, 28.8, 23.1, 22.4, 21.4, 13.6. **HRMS** Calcd (ESI) m/z for C₁₁H₁₈NaO₃⁺: [M+Na]⁺ 221.1148, Found: 221.1145. **IR** (neat) v_{max} 3343, 2959,

2931, 1749, 1613, 1341.

4-Butyl-4-hydroxy-2-isopropenyl-3-isopropoxy-cyclobut-2-enone (1p)

¹**H NMR** (400 MHz, CDCl₃) δ 5.42 (s, 1H), 5.01-4.95 (m, 3H), 2.05-1.98 (m, 1H), 1.86 (s, 3H), 1.82-1.75 (m, 1H), 1.41 (d, J = 6.2 Hz, 3H), 1.37 (d, J = 6.2 Hz, 3H), 1.33-1.19 (m, 4H), 0.85 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 192.1, 181.8, 132.6, 124.9, 116.1, 92.4, 77.9, 33.5, 27.3, 22.9, 22.8, 22.7, 20.3, 13.8. **HRMS** Calcd (ESI) m/z for C₁₄H₂₂NaO₃⁺: [M+Na]⁺ 261.1461, Found: 261.1464. **IR** (neat)

v_{max} 3289, 2961, 2931, 1736, 1634, 1336.

4-Butyl-4-hydroxy-2,3-dimethyl-cyclobut-2-enone (1q)

¹**H NMR** (400 MHz, CDCl₃) δ 4.00 (s, 1H), 2.37-2.34 (m, 1H), 2.11 (s, 3H), 1.85-1.76 (m, 1H), 1.69 (s, 3H), 1.32-1.27 (m, 2H), 1.25-1.21 (m, 2H), 0.88 (t, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.5, 179.6, 147.3, 93.5, 32.3, 26.9, 22.8, 13.7, 10.5, 7.0. **HRMS** Calcd (ESI) m/z for $C_{10}H_{16}NaO_2^+$: [M+Na]⁺ 191.1043, Found: 191.1045. **IR** (neat) v_{max} 3396, 2959, 2929, 1752, 1637, 1309.

4-Butyl-4-hydroxy-2,3-diphenyl-cyclobut-2-enone (1r)

¹**H NMR** (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.71-7.69 (m, 2H), 7.45-7.35 (m, 4H), 7.31-7,21 (m, 3H), 2.49-2.41 (m, 1H), 2.23-2.16 (m, 1H), 1.35-1.21 (m, 4H), 0.84 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 192.2, 146.9, 146.6, 140.8, 131.3, 130.1, 129.0, 128.9, 128.4, 127.1, 126.6, 65.5, 31.7, 28.2, 23.1, 13.9. **HRMS** Calcd (ESI) m/z for C₂₀H₂₀NaO₂⁺: [M+Na]⁺ 315.1356, Found: 315.1346. **IR** (neat) v_{max} 3189,

2955, 2924, 1729, 1641, 1345, 740, 695.

3. Nickel-Catalyzed Ring-Opening of α -Hydroxylcyclobutenones with PPh₃ as the Ligand

General procedure:

A solution of Ni(cod)₂ (0.025 mmol), α -hydroxylcyclotenone (1, 0.5 mmol), and PPh₃ (0.025 mmol) in *p*-xylene (2.5 mL) was stirred at 140 °C under N₂. After the complete consumption of 1, solvent was removed under reduced pressure. Then the crude product was further purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent. The compound 2-furanone **2** was afforded.

5-Butyl-5-isopropoxy-3-phenyl-5H-furan-2-one (2a)

Yield: 85%; yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.91-7,89 (m, 2H), 7.46-7.44 (m, 3H), 3.79 (hept, *J* = 6.2 Hz, 1H), 1.99-1.95 (m, 2H), 1.44-1.31 (m, 4H), 1.22 (d, *J* = 6.2 Hz, 3H), 1.15 (d, *J* = 6.2 Hz, 3H), 0.91 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.3, 145.0, 134.3, 129.8, 128.9, 128.7, 127.4, 108.4, 66.8, 38.0, 25.5, 24.0, 23.8, 22.6, 13.9. **HRMS** Calcd (ESI) m/z for C₁₇H₂₂NaO₃⁺: [M+Na]⁺ 297.1461, Found:

297.1463. **IR** (neat) v_{max} 3081, 2960, 2865, 1760, 1678, 1453, 1378, 1324, 1171, 1108, 750, 691.

5-Butyl-5-isopropoxy-3-methyl-5H-furan-2-one (2b)

Yield: 70%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 6.73 (s, 1H), 3.66 (hept, J = 6.2 Hz, 1H), 1.95 (s, 3H), 1.85-1.81 (m, 2H), 1.39-1.28 (m, 4H), 1.15 (m, J = 8.0 Hz, 3H), 1.09 (m, J = 6.2 Hz, 3H), 0.98-0.80 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 172.2, 96.2, 77.9, 73.3, 31.7, 26.4, 22.6, 22.3, 13.8, 8.6. HRMS Calcd (ESI) m/z for C₁₂H₂₀NaO₃⁺: [M+Na]⁺ 235.1305, Found: 235.1299. IR (neat)

v_{max} 3081, 2961, 2870, 1768, 1662, 1461, 1375, 1318, 1174, 1138.

5-Butyl-5-methoxy-3-phenyl-5H-furan-2-one (2c)

Yield: 91%; yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.80 (m, 2H), 7.36-7.34 (m, 3H), 7.16 (s, 1H), 3.19 (s, 3H), 1.91-1.88 (m, 2H), 1.36-1.24 (m, 4H), 0.82 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 144.6, 134.8, 129.8, 128.7, 128.7, 127.4, 108.3, 51.1, 37.1, 25.4, 22.6, 13.8. HRMS Calcd (ESI) m/z for C₁₅H₁₈NaO₃⁺: [M+Na]⁺ 269.1148, Found: 269.1160. **IR** (neat) v_{max} 3074, 2961, 2861,

1751, 1631, 1455, 1378, 1304, 1171, 1114, 751, 697.

5-Butyl-5-isopropoxy-3-isopropyl-5H-furan-2-one (2d)

Yield: 82%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 6.65 (s, 1H), 3.63 (hept, J = 4.9 Hz, 1H), 2.70 (q, J = 6.2 Hz, 1H), 1.90-1.80 (m, 2H), 1.34-1.25 (m, 4H), 1.19 (d, J = 4.9 Hz, 3H), 1.18 (d, J = 4.9 Hz, 3H), 1.15 (d, J = 6.2 Hz, 3H), 1.09 (d, J = 6.2 Hz, 3H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 143.9, 143.5, 109.0, 66.3, 37.8, 25.5, 25.4, 23.9, 23.7, 22.6, 21.1, 21.1, 13.9. **HRMS** Calcd (ESI)

m/z for $C_{14}H_{24}NaO_3^+$: [M+Na]⁺ 263.1618, Found: 263.1617. **IR** (neat) ν_{max} 3082, 2961, 2870, 1761, 1655, 1461, 1375, 1318, 1174, 1141.

3,5-Dibutyl-5-isopropoxy-5H-furan-2-one (2e)

Yield: 80%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 6.69 (s, 1H), 3.64 (hept, J = 6.1 Hz, 1H), 2.31 (t, J = 7.6 Hz, 2H), 1.89-1.82 (m, J = 6.2 Hz, 2H), 1.58-1.51 (m, 2H), 1.42-1.34 (m, 2H), 1.31-1.25 (m, 4H), 1.15 (d, J = 6.1 Hz, 3H), 1.09 (d, J = 6.1 Hz, 3H), 0.93 (t, J = 7.6 Hz, 3H), 0.88 (t, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 145.4, 137.9, 109.4, 66.4, 37.9, 29.5, 25.5, 24.8, 24.0, 23.7, 22.6, 22.3, 13.9,

13.7. **HRMS** Calcd (ESI) m/z for $C_{15}H_{26}NaO_3^+$: [M+Na]⁺ 277.1774, Found: 277.1772. **IR** (neat) v_{max} 3080, 2961, 2868 1764, 1657, 1461, 1378, 1318, 1171, 1138.

3-Benzyl-5-butyl-5-isopropoxy-5H-furan-2-one (2f)

Yield: 80%; yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.21 (m, 5H), 6.53 (s, 1H), 3.70-3.57 (m, 3H), 1.85-1.79 (m, 2H), 1.30-1.26 (m, 4H), 1.14 (d, *J* = 6.2 Hz, 3H), 1.03 (d, *J* = 6.2 Hz, 3H), 0.86 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 146.8, 137.4, 137.0, 128.8, 128.7, 126.8, 109.5, 66.4, 37.7, 31.5, 25.4, 23.9, 23.55, 22.5, 13.8. **HRMS** Calcd (ESI) m/z for C₁₈H₂₄NaO₃⁺: [M+Na]⁺ 311.1618,

Found: 311.1614. **IR** (neat) v_{max} 3068, 2961, 2868, 1764, 1663, 1458, 1375, 1317, 1171, 1134, 741, 697.

5-Cyclopropyl-5-isopropoxy-3-methyl-5H-furan-2-one (2g)

Yield: 52%; colorless liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 6.76 (s, 1H), 3.83 (hept, *J* = 6.1 Hz, 1H), 1.94 (s, 3H), 1.17 (d, *J* = 6.1 Hz, 3H), 1.11 (d, *J* = 6.1 Hz, 3H), 0.68-0.63 (m, 1H), 0.62-0.55 (m, 1H), 0.52-0.45 (m, 1H), 0.40-0.34 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 146.5, 132.3, 108.0, 66.8, 23.9, 23.6, 16.8, 10.4, 2.4, 1.1. **HRMS** Calcd (ESI) m/z for C₁₁H₁₆NaO₃⁺: [M+Na]⁺ 219.0992, Found: 219.0996.

IR (neat) v_{max} 3088, 2973, 2874, 1766, 1631, 1451, 1378, 1308, 1185, 1131.

3-tert-Butyl-5-methoxy-5-methyl-5H-furan-2-one (2h)

Yield: 78%; colorless liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 6.63 (s, 1H), 3.18 (s, 3H), 1.59 (s, 3H), 1.25 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 169.2, 145.9, 143.9, 105.6, 50.7, 31.7, 28.1, 23.7. **HRMS** Calcd (ESI) m/z for C₁₀H₁₆NaO₃⁺: [M+Na]⁺ 207.0992, Found: 207.0997. **IR** (neat) v_{max} 3080, 2957, 2870, 1760, 1644, 1454, 1367, 1294, 1174, 1125.

5-Isopropoxy-5-isopropyl-3-methyl-5H-furan-2-one (2i)

Yield: 61%; colorless liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 6.75 (s, 1H), 3.62 (hept, *J* = 6.1 Hz, 1H), 2.06 (hept, *J* = 6.9Hz, 1H), 1.97 (s, 3H), 1.15 (d, *J* = 6.1 Hz, 3H), 1.08 (d, *J* = 6.1 Hz, 3H), 0.98 (d, *J* = 6.9Hz, 3H), 0.93 (d, *J* = 6.9Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 145.1, 133.9, 111.6, 66.3, 35.9, 23.9, 23.5, 17.1, 16.6, 10.5. **HRMS** Calcd (ESI) m/z for C₁₁H₁₈NaO₃⁺: [M+Na]⁺ 221.1148, Found: 221.1154. **IR**

(neat) v_{max} 3081, 2974, 2881, 1764, 1664, 1464, 1378, 1338, 1174, 1121.

5-Butyl-3-ethyl-5-isopropoxy-5H-furan-2-one (2j)

Yield: 63%; yellow liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 6.71 (s, 1H), 4.12 (q, *J* = 7.1 Hz, 1H), 3.67 (hept, *J* = 7.5 Hz, 1H), 2.34 (q, *J* = 7.4 Hz, 2H), 1.87-1.83 (m, 2H), 1.33-1.31 (m, 4H), 1.20-1.15 (m, 6H), 1.10 (d, *J* = 7.5 Hz, 2H), 0.89 (t, *J* = 5.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.2, 144.7, 139.3, 109.4, 66.4, 60.3, 37.8, 25.5, 23.9, 23.7, 22.6, 21.0, 18.5, 14.1, 13.8, 11.7. **HRMS** Calcd (ESI) m/z for C₁₃H₂₂NaO₃⁺:

 $[M+Na]^+$ 249.1461, Found: 249.1462. **IR** (neat) v_{max} 3081, 2964, 2871, 1764, 1680, 1465, 1378, 1321, 1172, 1138.

5-Butyl-5-methoxy-3-phenylethynyl-5H-furan-2-one (2k)

Yield: 59%; red liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.53 (m, 2H), 7.44-7.30 (m, 3H), 7.19 (s, 1H), 3.73 (hept, J = 6.1 Hz, 1H), 1.92-1.88 (m, 2H), 1.43-1.32 (m, 4H), 1.18 (d, J = 6.1 Hz, 3H), 1.13 (d, J = 6.1 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 152.0, 132.0, 129.5, 128.4, 121.3, 120.8, 110.1, 97.6, 78.0, 67.3, 37.9, 25.4, 23.9, 23.7, 22.5, 13.8. HRMS Calcd (ESI) m/z for

 $C_{19}H_{22}NaO_3^+$: [M+Na]⁺ 321.1461, Found: 321.1456. **IR** (neat) v_{max} 3084, 2961, 2867, 2220, 1774, 1631, 1460, 1380, 1324, 1174, 1140, 758, 691.

5-Butyl-5-isopropoxy-3-trimethylsilanylethynyl-5H-furan-2-one (2l)

Yield: 45%; yellow liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (s, 1H), 3.72 (hept, *J* = 6.2 Hz, 1H), 1.92-1.88 (m, 2H), 1.36-1.19 (m, 4H), 1.20 (d, *J* = 6.2 Hz, 3H), 1.16 (d, *J* = 6.2 Hz, 3H), 0.90 (t, *J* = 7.0Hz, 3H), 0.26 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.2, 153.3, 120.8, 109.9, 104.9, 92.6, 67.3, 37.8, 25.3, 23.9, 23.7, 22.5, 13.8, -0.5. **HRMS** Calcd (ESI) m/z for C₁₆H₂₆NaO₃Si⁺: [M+Na]⁺ 317.1543, Found: 317.1536. **IR**

 $(neat) v_{max} \ 3087, \ 2964, \ 2870, \ 2164, \ 1782, \ 1621, \ 1461, \ 1381, \ 1321, \ 1168, \ 1138.$

5-Butyl-5-isopropoxy-3-(4-methoxy-phenyl)-5H-furan-2-one (2m)

Yield: 84%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H), 3.76 (hept, J = 6.2 Hz, 1H), 1.94 (m, 2H), 1.42-1.33 (m, 4H), 1.19 (d, J = 6.2 Hz, 3H), 1.13 (d, J = 6.2 Hz, 3H), 0.90 (t, J = 7.1

Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 160.7, 142.5, 133.6, 128.8, 121.4, 114.0, 108.4, 66.6, 55.3, 38.0, 25.5, 24.0, 23.8, 22.6, 13.8. HRMS Calcd (ESI) m/z for C₁₈H₂₄NaO₄⁺: [M+Na]⁺ 327.1567, Found: 327.1557. IR (neat) v_{max} 3080, 2961, 2867, 1758, 1604, 1461, 1375, 1324, 1174, 1141, 838.

5-Butyl-3-(3-chloro-4-methyl-phenyl)-5-isopropoxy-5H-furan-2-one (2n)

Yield: 88%; yellow liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.71 (s, 1H), 7.28 (s, 1H), 3.75 (hept, *J* = 6.1 Hz, 1H), 2.40 (s, 3H), 1.97 (s, 3H), 1.36-1.29 (m, 4H), 1.20 (d, *J* = 6.1 Hz, 3H), 1.13 (d, *J* = 6.1 Hz, 3H), 0.90 (t, *J* = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.0, 145.1, 137.9, 134.8, 133.0, 131.1, 128.0, 127.7, 125.5, 108.5, 66.9, 37.9, 25.5, 24.0, 23.8, 22.6, 20.0, 13.9. **HRMS** Calcd (ESI) m/z for

 $C_{18}H_{23}CINaO_3^+$: [M+Na]⁺ 345.1228, Found: 345.1220. **IR** (neat) v_{max} 3081, 2961, 2871, 1758, 1604, 1461, 1378, 1321, 1198, 1138, 955, 822.

5-Butyl-3-isopropenyl-5-isopropoxy-5H-furan-2-one (2p)

Yield: 73%; colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 1H), 6.47-6.23 (m, 1H), 5.55-5.28 (m, 1H), 3.67 (hept, J = 6.2 Hz, 1H), 2.02-1.94 (m, 3H), 1.91-1.83 (m, 2H), 1.39-1.27 (m, 4H), 1.16 (d, J = 6.2 Hz, 3H), 1.10 (d, J = 6.2 Hz, 3H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.7, 134.3, 132.4, 120.4, 107.7, 66.6, 37.9, 25.5, 24.0, 23.8, 22.6, 21.5, 13.9. HRMS Calcd (ESI) m/z for

 $C_{14}H_{22}NaO_3^+$: [M+Na]⁺ 261.1461, Found: 261.1463. **IR** (neat) v_{max} 3080, 2961, 2870, 1764, 1604, 1457, 1378, 1317, 1171, 1140.

5-Butyl-3,4-dimethyl-5H-furan-2-one (3q)

Yield: 75%; colorless liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 4.74-4.73 (m, 1H), 1.95 (s, 3H), 1.91-1.87 (m, 1H), 1.81 (s, 3H), 1.50-1.35 (m, 5H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 159.3, 123.2, 83.2, 31.7, 26.4, 22.3, 13.8, 11.9, 8.3. **HRMS** Calcd (ESI) m/z for C₁₀H₁₆NaO₂⁺: [M+Na]⁺ 191.1043, Found: 191.1044. **IR** (neat) v_{max} 2954, 2868, 1754, 1680, 1441, 1384, 1328, 1117, 1091.

5-Butyl-3,4-diphenyl-5H-furan-2-one (3r)

Yield: 68%; yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.22 (m, 10H), 5.47-5.44 (dd, *J* = 7.0, 2.8 Hz, 1H), 1.89-1.82 (m, 1H), 1.55-1.21 (m, 5H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 160.5, 131.2, 129.9, 129.9, 129.2, 128.9, 128.5, 128.4, 128.0, 126.5, 81.6, 32.5, 26.5, 22.2, 13.8. HRMS Calcd (ESI) m/z for C₂₀H₂₀NaO₂⁺: [M+Na]⁺ 315.1356, Found: 315.1345. **IR** (neat): 3058, 2958, 2865,

1751, 1644, 1447, 1378, 1334, 1110, 1080, 774, 694.

4. Nickel-Catalyzed Ring-Opening of α -Hydroxylcyclobutenones with Xantphos as the Ligand

General procedure:

A solution of Ni(cod)₂ (0.05 mmol), α -hydroxylcyclotenone (1, 0.5 mmol), and Xantphos (0.1 mmol) in *p*-xylene (2.5 mL) was stirred at 140 °C under N₂. After the complete consumption of 1, solvent was removed under reduced pressure. Then the crude product was further purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent. The compound 2-furanones **3** was afforded.

5-Butyl-4-isopropoxy-3-phenyl-5H-furan-2-one (3a)

Yield: 80%; yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 4.80-4.78 (dd, J = 7.6, 2.9 Hz, 1H), 4.60 (hept, J = 6.0 Hz, 1H), 2.03-1.95 (m, 1H), 1.70-1.61 (m, 1H), 1.54-1.44 (m, 2H), 1.43-1.34 (m, 2H), 1.22 (d, J = 6.0 Hz, 3H), 1.18(d, J = 6.0 Hz, 3H), 0.99-0.84 (m, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 173.1, 130.2, 129.4, 128.2, 127.9,

104.1, 77.5, 74.5, 32.2, 26.5, 22.4, 22.3, 22.1, 13.9. **HRMS** Calcd (ESI) m/z for $C_{17}H_{22}NaO_3^+$: [M+Na]⁺ 297.1461, Found: 297.1467. **IR** (neat) v_{max} 2958, 2868, 1751, 1651, 1458, 1384, 1318, 1174, 1098, 755, 698.

5-Butyl-4-isopropoxy-3-methyl-5H-furan-2-one (3b)

Yield: 60%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 4.85(hept, J = 6.1 Hz, 1H), 4.71 (dd, J = 12.1, 6.0 Hz, 1H), 4.58 (dd, J = 7.6, 3.4 Hz, 1H), 1.91 (s, 3H), 1.53-1.45 (m, 2H), 1.41-1.30 (m, 10H), 0.90 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 171.6, 103.5, 77.6, 73.5, 31.8, 26.3, 22.5, 22.3, 16.7, 14.0, 13.8. **HRMS** Calcd (ESI) m/z for C₁₂H₂₀NaO₃⁺: [M+Na]⁺ 235.1305, Found: 235.1312. **IR** (neat) v_{max} 2957,

2870, 1754, 1661, 1460, 1387, 1304, 1214, 1084.

5-Butyl-4-methoxy-3-phenyl-5H-furan-2-one (3c)

Yield: 84%; yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.0 Hz, 2H), 7.38 (t, *J* = 7.0 Hz, 2H), 7.35-7.30 (t, *J* = 7.0 Hz, 1H). 4.84 (dd, *J* = 7.6, 3.3 Hz, 1H), 3.79 (s, 3H), 2.05-1.98 (m, 1H), 1.72-1.63 (m, 1H), 1.53-1.45 (m, 2H), 1.42-1.34 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 172.8, 129.9, 128.1, 128.0, 104.1, 77.3, 60.1, 31.8, 26.3, 22.4, 13.8. HRMS Calcd (ESI) m/z for

 $C_{15}H_{18}NaO_3^+$: [M+Na]⁺ 269.1148, Found: 269.1145. **IR** (neat) v_{max} 2958, 2864, 1741, 1654, 1458, 1368, 1328, 1174, 1041, 751, 698.

5-Butyl-4-isopropoxy-3-isopropyl-5H-furan-2-one (3d)

Yield: 81%; yellow liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 4.67 (dd, J = 7.5, 3.1 Hz, 1H), 4.49 (hept, J = 6.1 Hz, 1H), 2.77 (hept, J = 5.1 Hz, 1H), 1.90-1.83 (m, 1H), 1.54-1.39 (m, 2H), 1.37 (d, J = 6.1 Hz, 2H), 1.33-1.31 (m, 2H), 1.29 (d, J = 6.1 Hz, 3H), 1.21 (d, J = 5.1 Hz, 3H), 1.19 (d, J = 5.1 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 171.9, 111.1, 76.4, 74.0, 32.3, 26.3, 23.8, 22.6, 22.6,

22.34 20.4, 20.3, 13.8. HRMS Calcd (ESI) m/z for $C_{14}H_{24}NaO_3^+$: [M+Na]⁺ 263.1618, Found: 263.1617. **IR** (neat) v_{max} 2963, 2874, 1747, 1661, 1461, 1381, 1301,1101, 1024.

3,5-Dibutyl-4-isopropoxy-5H-furan-2-one (3e)

Yield: 80%; yellow liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 4.68 (hept, *J* = 6.1 Hz, 1H),

4.57 (dd, J = 7.5, 3.2 Hz, 1H), 2.26-2.22 (m, 2H), 1.90-1.81 (m, 1H), 1.53-1.37 (m, 5H), 1.37-1.28 (m, 10H), 0.89 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 172.0, 102.6, 77.6, 73.4, 31.9, 31.5, 26.3, 23.0, 22.5, 22.3, 13.8, 13.8. HRMS Calcd (ESI) m/z for C₁₅H₂₆NaO₃⁺: [M+Na]⁺ 277.1774, Found: 277.1772. IR (neat) v_{max} 2958, 2867, 1755, 1655, 1460, 1378, 1295, 1098, 1045.

3-Benzyl-5-butyl-4-isopropoxy-5H-furan-2-one (3f)

Yield: 70%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 7.29-7.26 (m, 2H), 7.19-7.17 (m, 3H), 4.70-4.64 (m, 2H), 3.67 (s, 2H), 1.93-1.88 (m, 1H), 1.61-1.52 (m, 1H), 1.45-1.31 (m, 4H), 1.27 (d, *J* = 8.0 Hz, 3H), 1.21 (d, *J* = 8.0 Hz, 3H), 0.90 (t, *J* = 8.0 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 175.0, 173.5, 139.1, 128.5, 127.8, 126.3, 100.8, 77.9, 74.1, 32.0, 28.8, 26.4, 22.6, 22.5, 22.4, 13.9. HRMS Calcd (ESI) m/z for

 $C_{18}H_{24}NaO_3^+$: [M+Na]⁺ 311.1618, Found: 311.1617. **IR** (neat) v_{max} 3031, 2958, 2867, 1751, 1651, 1457, 1378, 1315, 1108, 1041, 749, 703.

5-Cyclopropyl-4-isopropoxy-3-methyl-5H-furan-2-one (3g)

Yield: 42%; colorless liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 4.88 (hept, J = 6.1 Hz, 1H), 4.22 (d, J = 6.4 Hz, 1H), 1.91 (s, 3H), 1.38 (d, J = 6.1 Hz, 3H), 1.36 (d, J = 6.1 Hz, 3H), 1.04-0.99 (m, 1H), 0.64-0.61 (m, 1H), 0.56-0.48 (m, 2H), 0.41-0.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 172.4, 96.4, 79.6, 73.4, 22.7, 22.6, 12.6, 8.6, 1.9, 0.8. **HRMS** Calcd (ESI) m/z for C₁₁H₁₆NaO₃⁺: [M+Na]⁺ 219.0992, Found:

219.0995. IR (neat) v_{max} 2974, 2860, 1754, 1661, 1457, 1388, 1307, 1097, 1034.

3-tert-Butyl-4-methoxy-5-methyl-5H-furan-2-one (3h)

Yield: 75%; colorless liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 4.89 (q, *J* = 6.5 Hz, 1H), 3.83 (s, 3H), 1.50 (d, *J* = 6.5 Hz, 3H), 1.25 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 174.9, 172.3, 112.4, 71.0, 57.6, 31.4, 28.8, 19.1. **HRMS** Calcd (ESI) m/z for C₁₀H₁₆NaO₃⁺: [M+Na]⁺ 207.0992, Found: 207.1000. **IR** (neat) v_{max} 2958, 2867, 1744, 1647, 1458, 1355, 1305, 1088, 1038.

4-Isopropoxy-5-isopropyl-3-methyl-5H-furan-2-one (3i)

Yield: 53%; colorless liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 4.85 (hept, J = 6.1 Hz, 1H), 4.45 (d, J = 1.0 Hz, 1H), 2.13-2.05 (m, 1H), 1.90 (s, 3H), 1.34 (d, J = 6.1 Hz, 3H), 1.32 (d, J = 6.1 Hz, 3H), 1.06 (d, J = 7.0 Hz, 3H), 0.75 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.8, 171.2, 96.6, 81.8, 73.3, 29.6, 22.7, 22.6, 18.9, 14.2, 8.7. **HRMS** Calcd (ESI) m/z for C₁₁H₁₈NaO₃⁺: [M+Na]⁺ 221.1148, Found: 221.1153.

IR (neat) v_{max} 2971, 2877, 1754, 1662, 1461, 1388, 1308, 1138, 1111.

5-Butyl-3-ethyl-4-isopropoxy-5H-furan-2-one (3j)

Yield: 55%; yellow liquid; ¹**H NMR** (400 MHz, CDCl₃) δ 4.71 (hept, *J* = 6.1 Hz, 1H), 4.58 (dd, *J* = 7.6, 3.4 Hz, 1H), 2.31 (q, *J* = 7.5 Hz, 2H), 1.92-1.83 (m, 1H), 1.56-1.47 (m, 2H), 1.43-1.31 (m, 10H), 1.11 (t, *J* = 7.5 Hz, 3H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.9, 171.6, 103.5, 77.6, 73.5, 31.8, 26.3, 22.5, 22.3, 16.7, 14.0, 13.8. **HRMS** Calcd (ESI) m/z for C₁₃H₂₂NaO₃⁺: [M+Na]⁺ 249.1461,

Found: 249.1464. **IR** (neat) v_{max} 2963, 2870, 1751, 1654, 1461, 1381, 1298, 1094, 1051.

5-Butyl-4-methoxy-3-phenylethynyl-5H-furan-2-one (3k)

Yield: 51%; red liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 2H), 7.33-7.31 (m, 3H), 5.62 (hept, *J* = 2.5 Hz, 1H), 4.70 (dd, *J* = 7.6, 3.7 Hz, 1H), 1.95-1.87 (m, 1H), 1.66-1.54 (m, 2H), 1.47 (d, *J* = 2.5 Hz, 3H), 1.46 (d, *J* = 2.5 Hz, 3H), 1.43-1.34 (m, 3H), 0.91 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 177.3, 171.3, 131.4, 128.6, 128.3, 122.6, 93.8, 86.6, 78.7, 76.1, 31.6, 29.7, 26.1, 22.6, 22.3, 13.8. **HRMS**

Calcd (ESI) m/z for $C_{19}H_{22}NaO_3^+$: [M+Na]⁺ 321.1461, Found: 321.1455. **IR** (neat) v_{max} 2957, 2864, 2218, 1760, 1637, 1457, 1397, 1328, 1104, 1031, 756, 687.

5-Butyl-4-isopropoxy-3-trimethylsilanylethynyl-5H-furan-2-one (31)

Yield: 43%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 5.57 (hept, J = 3.7 Hz, 1H), 4.64 (dd, J = 7.6, 3.6 Hz, 1H), 1.91-1.82 (m, 1H), 1.63-1.53 (m, 2H), 1.41 (d, J = 3.7 Hz, 3H), 1.40 (d, J = 3.7 Hz, 3H), 1.37-1.29 (m, 3H), 0.89 (t, J = 7.1 Hz, 3H), 0.20 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 178.2, 171.2, 100.2, 93.6, 86.8, 78.5, 76.0, 53.4, 31.5, 26.1, 22.6, 22.6, 22.3, 13.8, -0.26. **HRMS** Calcd (ESI) m/z for C₁₆H₂₆NaO₃Si⁺:

 $[M+Na]^+$ 317.1543, Found: 317.1534. **IR** (neat) v_{max} 2958, 2861, 2158, 1768, 1628, 1461, 1381, 1318, 1101, 1031.

5-Butyl-4-isopropoxy-3-(4-methoxy-phenyl)-5H-furan-2-one (3m)

Yield: 69%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 4.77 (dd, *J* = 7.8, 3.3 Hz, 1H), 4.61 (hept, *J* = 6.1 Hz, 1H), 3.82 (s, 3H), 2.03-1.92 (m, 1H), 1.71-1.56 (m, 2H), 1.52-1.44 (m, 2H), 1.42-1.34 (m, 2H), 1.23 (d, *J* = 6.1 Hz, 3H), 1.19 (d, *J* = 6.1 Hz, 3H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 172.6, 159.1, 130.5, 122.3, 113.7, 103.9, 77.5, 74.2,

55.2, 32.2, 26.5, 22.4, 22.3, 22.2, 13.9. **HRMS** Calcd (ESI) m/z for $C_{18}H_{24}NaO_4^+$: [M+Na]⁺ 327.1567, Found: 327.1560. **IR** (neat) v_{max} 2957, 2867, 1747, 1650, 1460, 1380, 1320, 1171, 1097, 1034, 834.

5-Butyl-3-(3-chloro-4-methyl-phenyl)-4-isopropoxy-5H-furan-2-one (3n)

Yield:76%; yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.39 (d, J = 7.9 Hz, 1H), 7.24 (d, J = 7.9 Hz, 1H), 4.80 (dd, J = 7.8, 3.3 Hz, 1H), 4.60 (hept, J = 6.1 Hz, 1H), 2.38 (s, 3H), 2.03-1.94 (m, 1H), 1.69-1.60 (m, 1H), 1.53-1.44 (m, 2H), 1.42-1.35 (m, 2H), 1.28 (d, J = 6.1 Hz, 3H), 1.22 (d, J = 6.1 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

173.6, 172.6, 135.8, 134.2, 130.7, 129.5, 129.2, 127.3, 103.1, 77.4, 74.9, 32.2, 26.4, 22.4, 22.3, 22.2, 19.9, 13.8. **HRMS** Calcd (ESI) m/z for $C_{18}H_{23}CINaO_3^+$: [M+Na]⁺ 345.1228, Found: 345.1223. **IR** (neat) v_{max} 2958, 2868, 1751, 1648, 1378, 1325, 1174, 1094, 1049, 906, 827.

3-Butyl-4-isopropoxy-5H-furan-2-one (3o)

Yield: 64%; yellow liquid; ¹**H** NMR (400 MHz, CDCl₃) δ 4.66 (s, 2H), 4.45 (hept, *J* = 6.1 Hz, 1H), 2.20 (t, *J* = 7.6 Hz, 2H), 1.47 (m, 2H), 1.37 (d, *J* = 6.1 Hz, 3H), 1.34-1.23 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 175.1, 171.1, 103.9, 73.8, 65.6, 30.1, 22.7, 22.3, 21.7, 13.7. **HRMS** Calcd (ESI) m/z for C₁₁H₁₈NaO₃⁺: [M+Na]⁺ 221.1148, Found: 221.1142. **IR** (neat) v_{max} 2961, 2867, 1751, 1665, 1388,

1334, 1105, 1049, 1005.

5. Deuterated Experiments: Nickel-Catalyzed Ring-Opening of

α-Hydroxylcyclobutenone 1s with PPh₃ or Xantphos as the Ligand

5.1 Preparation of deuterated α-Hydroxylcyclobutenone 1s:

A solution of *n*-BuLi (1 mmol, 2.5M in THF) was added to the solution of cyclobutenedione **6a** (0.5 M in THF, 1.1mmol) at -110[°]C under N₂. The system was stirred for 5 minutes, and then quenched with CD₃OD. The combined organic layer was removed under reduced pressure. The crude residue of **1s** (85% deuteration) was afforded.

1s (85% deuteration)

¹**H NMR** (400 MHz, CD₃COCD₃) δ 7.74-7.72 (m, 2H), 7.39-7.35 (m, 2H), 7.29-7.25 (m, 1H), 5.35 (s, 1H, 15% integration), 5.17 (hept, J = 6.1 Hz, 1H), 2.06-2.04 (m, 1H), 1.96-1.89 (m, 1H), 1.51 (d, J = 6.1 Hz, 6H), 1.40-1.35 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H). **HRMS** Calcd (ESI) m/z for C₁₇H₂₁DNaO₃⁺: [M+Na]⁺ 298.1528, Found: 298.1534.

5.2 Nickel-Catalyzed Ring-Opening of 1s with PPh₃ or Xantphos as the Ligand:

2s (44% deuteration, obtained from the reaction of **1s** (85% deuteration) in *p*-xylene using PPh₃ as the ligand)

Yield: 73%; ¹**H** NMR (400 MHz, CD₃OD) δ 7.82-7.80 (m, 2H), 7.57 (s, 1H, 56% integration), 7.42-7.27 (m, 3H), 3.64 (hept, J = 6.2 Hz, 1H), 1.84-1.80 (m, 2H), 1.30-1.24 (m, 4H), 1.05 (d, J = 6.2 Hz, 3H), 1.03 (d, J = 6.2 Hz, 3H), 0.80 (t, J = 7.1 Hz, 3H). **HRMS** Calcd (ESI) m/z for C₁₇H₂₁DNaO₃⁺: [M+Na]⁺ 298.1528, Found: 298.1531.

3s (42% deuteration, obtained from the reaction of **1s** (85% deuteration) in *p*-xylene using Xantphos as the ligand)

Yield: 64%; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 4.80-4.78 (dd, *J* = 7.6, 2.9 Hz, 1H, 58% integration), 4.60 (hept, *J* = 6.0 Hz, 1H), 2.03-1.95 (m, 1H), 1.70-1.61 (m, 1H), 1.54-1.44 (m, 2H), 1.43-1.34 (m, 2H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.18(d, *J* = 6.0 Hz, 3H), 0.99-0.84 (m, *J* = 7.1 Hz, 3H).

HRMS Calcd (ESI) m/z for C₁₇H₂₁DNaO₃⁺: [M+Na]⁺ 298.1528, Found: 298.1533.

2s (88% deuteration, obtained from the reaction of **1s** (85% deuteration) in $CD_3OD:p$ -xylene=1:10 using PPh₃ as the ligand)

Yield: 75%; ¹**H** NMR (400 MHz, CD₃OD) δ 7.82-7.80 (m, 2H), 7.55 (s, 1H, 12% integration), 7.42-7.27 (m, 3H), 3.64 (hept, J = 6.2 Hz, 1H), 1.84-1.80 (m, 2H), 1.30-1.24 (m, 4H), 1.05 (d, J = 6.2 Hz, 3H), 1.03 (d, J = 6.2 Hz, 3H), 0.80 (t, J = 7.1 Hz, 3H). **HRMS** Calcd (ESI) m/z for C₁₇H₂₁DNaO₃⁺: [M+Na]⁺ 298.1528, Found: 298.1532.

3s (89% deuteration, obtained from the reaction of **1s** (85% deuteration) in $CD_3OD:p$ -xylene=1:10 using Xantphos as the ligand)

Yield: 66%; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 4.80-4.78 (dd, *J* = 7.6, 2.9 Hz, 1H, 11% integration), 4.60 (hept, *J* = 6.0 Hz, 1H), 2.03-1.95 (m, 1H), 1.70-1.61 (m, 1H), 1.54-1.44 (m, 2H), 1.43-1.34 (m, 2H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.18(d, *J* = 6.0 Hz, 3H), 0.99-0.84 (m, *J* = 7.1 Hz, 3H).

HRMS Calcd (ESI) m/z for $C_{17}H_{21}DNaO_3^+$: [M+Na]⁺ 298.1528, Found: 298.1531.

5.3 Related Control Experiments:

2s (36% deuteration, obtained from the reaction of **1a** in CD₃OD:*p*-xylene=1:10 using PPh₃ as the ligand)

Yield: 75%; ¹H NMR (400 MHz, CD₃OD) δ 7.82-7.80 (m, 2H), 7.57 (s, 1H, 64% integration), 7.31-7.30 (m, 3H), 3.64 (hept, J = 6.2 Hz, 1H), 1.84-1.80 (m, 2H), 1.30-1.24 (m, 4H), 1.05 (d, J = 6.2 Hz, 3H), 1.03 (d, J = 6.2 Hz, 3H), 0.80 (t, J = 7.1 Hz, 3H). HRMS Calcd (ESI) m/z for C₁₇H₂₁DNaO₃⁺: [M+Na]⁺ 298.1528, Found: 298.1533.

3s (38% deuteration, obtained from the reaction of **1a** in $CD_3OD:p$ -xylene=1:10 using Xantphos as the ligand)

Yield: 67%; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 4.80-4.78 (dd, *J* = 7.6, 2.9 Hz, 1H, 62% integration), 4.60 (hept, *J* = 6.0 Hz, 1H), 2.03-1.95 (m, 1H), 1.70-1.61 (m, 1H), 1.54-1.44 (m, 2H), 1.43-1.34 (m, 2H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.18(d, *J* = 6.0 Hz, 3H), 0.99-0.84 (m, *J* = 7.1 Hz, 3H).

HRMS Calcd (ESI) m/z for $C_{17}H_{21}DNaO_3^+$: [M+Na]⁺ 298.1528, Found: 298.1532.

2a (obtained from the reaction of **1a** in *p*-xylene- d_{10} using PPh₃ as the ligand)

Yield: 83%; ¹**H NMR** (400 MHz, CD₃OD) δ 7.82-7.80 (m, 2H), 7.57 (s, 1H), 7.31-7.30 (m, 3H), 3.64 (hept, *J* = 6.2 Hz, 1H), 1.84-1.80 (m, 2H), 1.30-1.24 (m, 4H), 1.05 (d, *J* = 6.2 Hz, 3H), 1.03 (d, *J* = 6.2 Hz, 3H), 0.80 (t, *J* = 7.1 Hz, 3H). **HRMS** Calcd (ESI) m/z for C₁₇H₂₂NaO₃⁺: [M+Na]⁺ 297.1461, Found: 297.1467.

3a (obtained from the reaction of **1a** in *p*-xylene- d_{10} using Xantphos as the ligand)

Yield: 77%; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 4.80-4.78 (dd, J = 7.6, 2.9 Hz, 1H), 4.60 (hept, J = 6.0 Hz, 1H), 2.03-1.95 (m, 1H), 1.70-1.61 (m, 1H), 1.54-1.44 (m, 2H), 1.43-1.34 (m, 2H), 1.22 (d, J = 6.0 Hz, 3H), 1.18(d, J = 6.0 Hz, 3H), 0.99-0.84 (m, J = 7.1 Hz, 3H). **HRMS** Calcd

(ESI) m/z for $C_{17}H_{22}NaO_3^+$: [M+Na]⁺ 297.1461, Found: 297.1467.

6. Nickel-Catalyzed Ring-Opening of α-Hydroxylcyclobutenones Bearing an Phenyl or

Propenyl group as the R³ Substituent with PPh₃ or Xantphos as the Ligand

2-Isopropoxy-3-methyl-[1,4]naphthoquinone (4)

Yellow solid; ¹**H** NMR (400 MHz, CDCl₃) δ 8.10-8.05 (m, 2H), 7.72-7.70 (m, 2H), 5.02 (hept, J = 6.1 Hz, 1H), 2.13 (s, 2H), 1.39 (d, J = 6.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.8, 181.4, 156.7, 133.6, 133.5, 133.1, 132.3, 131.5, 126.1, 76.2, 23.0, 9.7. **HRMS** Calcd (ESI) m/z for C₁₄H₁₄NaO₃⁺: [M+Na]⁺ 253.0841, Found: 253.0839.

3-Isopropoxy-2,5-dimethyl-benzene-1,4-diol (5)

Yellow solid; ¹**H** NMR (400 MHz, CDCl₃) δ 6.35 (s, 1H), 5.38 (s, 1H), 4.72 (s, 1H), 4.16 (hept, *J* = 5.9 Hz, 1H), 2.17 (s, 3H), 2.13 (s, 3H), 1.32 (d, *J* = 5.9 Hz, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 146.8, 143.0, 141.6, 121.2, 114.9, 112.2, 76.1, 22.4, 15.5, 9.9. **HRMS** Calcd (ESI) m/z for C₁₁H₁₆NaO₃⁺: [M+Na]⁺ 219.0997, Found: 219.0995.

7. NMR Spectra of Compounds

S19

S21

S22

S25

S31

S51

8. ¹H NMR Spectrum from Deuterated Experiments.

5.1 Preparation of α-Hydroxylcyclobutenone 1s:

¹H NMR Spectrum of **1s** (85% deuteration, 400 MHz, CD₃COCD₃)

5.2 Nickel-Catalyzed Ring-Opening of 1s with PPh₃ or Xantphos as the Ligand:

¹H NMR Spectrum of 2s (44% deuteration, 400 MHz, CD₃OD)

¹H NMR Spectrum of **2s** (88% deuteration, 400 MHz, CD₃OD)

5.3 Related Control Experiments:

9. NMR Spectrum from Nickel-Catalyzed Ring-Opening of α -Hydroxylcyclotenones Bearing Phenyl or Propenyl group as the R³ Substituent with PPh₃ or Xantphos as the Ligand

¹³C NMR Spectrum of **5** (100 MHz, CDCl₃)

