Electronic Supporting Information for:

Tailored synthesis of nanosized SAPO-34 via time-controlled

silicon release enabled by organosilane precursor

Jingwei Zheng^a, Jiajia Ding^b, Dongliang Jin^a,Guanghua Ye^a, Kake Zhu^a, Xinggui Zhou^{a*}, Weimin Yang^{b*} and Weikang Yuan^a

^aState Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

^bShanghai Research Institute of Petrochemical Technology, Sinopec, Shanghai 201208, P. R. China.

Table of contents

- A. Synthesis details
- **B.** Characterization techniques
- C. Catalytic assessment
- **D.** Supplementary Figures and Tables

A. Synthesis and method

Materials: The reagent used were pseudoboehmite (70 wt% Al₂O₃, Aluminum Corporation of China), phosphoric acid (85wt%, Shanghai Lingfeng Chemical Reagent Co. Ltd.), tetraethylammonium hydroxide (TEAOH) (35wt%, Shanghai Cainorise Chemicals Co., Ltd), tetraethyl orthosilicate (TEOS, 28 wt % SiO₂, Shanghai Lingfeng Chemical Reagent Co. Ltd), Phenyltrimethoxysilane (PTMS, 97%, Gelest, Co,. Ltd), Tris(hydroxymethyl)aminomethane (TCI, >99.0%). These chemicals were used as provided without further purifications.

Synthesis: Hierarchical SAPO-34 named SAPO-34-PTMS was prepared using PTMS as solely silicon source. The molar composition of synthesis gel was $1.0 \text{ Al}_2\text{O}_3$: $1.0 \text{ P}_2\text{O}_5$: 0.6 PTMS: 2.0 TEAOH: $50\text{H}_2\text{O}$. In a typical synthesis, 2.19 g pseudoboehmite was mixed with 3.46 g H₃PO₄ and 4.60 g deionized water. 1.84 g PTMS was added after digesting for 7 h. 12.64 g TEAOH was added dropwise after

stirring another 2 h. The mixture was further stirred for 4 h to give a homogeneous gel. The synthesis gel was transferred to a 100 mL Teflon lined stainless steel autoclave for crystallization. Crystallization was conduct at 200 °C under tumbling of 50 rpm for 72 h. The product was centrifuged, washed thoroughly with water before drying at 80 °C for 6 h and calcination was done at 550 °C for 6 h. To investigate the crystallization, part of the gel was sampled at various crystallization intervals and denoted by using synthesis time as suffix. For example, SAPO-34-PTMS-3h represent the sample was hydrothermal treated for 3h.

SAPO-34-In was synthesized by adding crystal growth modifier after precrystallization for 6 h. The preparation of synthesis and crystallization condition were identical to SAPO-34-PTMS. After precrystallization, the gel was quenched and 0.003 mole (0.363 g) tris(hydroxymethyl)aminomethane was added then stirred for 6 h to allow homogeneity. The final molar composition was 1.0 Al₂O₃: 1.0 P₂O₅: 0.6 Si: 2.0 TEAOH: 50H₂O: 0.2 tris(hydroxymethyl)aminomethane. A resumed crystallization was conduct for another 66 h to afford fully crystallization.

A series samples were synthesized with various PTMS amount. The PTMS amount used were 0.2, 0.3 and 0.4 in molar recipe. Other procedure was same as the SAPO-34-PTMS.

Conventional counterpart SAPO-34-C was synthesized using TEOS as silicon source, the other condition and handing were identical to SAPO-34-PTMS.

B. Characterization techniques

X-ray diffraction (XRD) patterns were gathered using a Rigaku 2550VB/PC diffractometer operating at 40 kV and 100 mA with Cu Ka X-ray source ($\lambda = 1.5418$ Å). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were captured on NOVA Nano SEM450 and JEL-2011 (JEOL) instruments, respectively. N₂ physisorption measurements were conducted on an ASAP 2020 HD (Micromeritics, USA) analyzer at -196 °C, all samples were degas at 350 °C for 4 h under vacuum before measurements. The surface areas were determined by the Brunauer-Emmett-Teller (BET) method. Micropore volumes and surfaces were derived from a *t*-plot approach, pore size distribution was derived from adsorption branch using Barret-Joyner-Halenda (BJH) method and the total pore volume values were estimated by the adsorption at a relative pressure $p/p_0 = 0.99$. Ammonium temperature programed desorption (NH₃-TPD) measurements were performed on a Chemisorb 2720 analyzer. The samples were pretreated at 600 °C for 1 h under He flow before saturated with ammonium at 100 °C. The profiles collected between 100 °C and 600 °C at a ramp of 10 °C·min⁻¹. Elementary composition was measured by inductively coupled plasma optical emission spectrometry (ICP) on an IRIS 1000 instrument. ²⁹Si, ¹³C ²⁷Al and ³¹P solid state magic angle spinning nuclear magnetic resonance (MAS NMR) measurements were carried out on a Bruker 600 MHz instrument. ¹³C and ²⁹Si liquid NMR spectra were collected on Bruker avance III 400 instrument. The chemical shifts of ³¹P, ²⁷Al, and ²⁹Si were referenced to 85 wt% H₃PO₄, 1M Al(NO₃)₃ aqueous solution, and tetramethylsilane, respectively.

C. Catalytic assessment

Methanol to olefin conversion (MTO) was carried out on a fix bed reactor at atmospheric pressure. 2.00 g catalyst (20-40 mesh) was preheated at 550 °C for 3h under N_2 flow before reaction. The pure methanol was pumped into preheater to transform the liquid into vapor and then flow though the catalysts. Reaction temperature was 460 °C and the methanol weight hourly space velocity (WHSV) was 6 h⁻¹. The products were analyzed by an on-line gas chromatograph equipped with a flame ionization detector.

D. Supplementary Figures and Tables

20.5, 25.8 and 30.50 °, the relative crystallinity of fully crystallized SAPO-34-C and SAPO-34-PTMS were set as 100%, respectively.

Fig S2 Si content evolution with crystallization time for SAPO-34-C and SAPO-34-PTMS (a), aqueous mother liquid (b), ²⁹Si CP MAS NMR spectrum for enriched mother liquor collected after crystallization for 6 h (c)

Fig S3 Time-dependent ¹³C NMR spectra of aqueous mother liquor

Fig S4 XRD patterns of samples synthesized with various PTMS content

Fig S5 SEM images of SAPO-34-PTMS-3h (a), SAPO-34-PTMS-6h (b), SAPO-34-PTMS-9h (c), SAPO-34-PTMS-12h (d), SAPO-34-PTMS-24h (e), SAPO-34-PTMS-48h (f), SAPO-34-PTMS-72h (g)

Fig S6 TEM images of SAPO-34-PTMS-6h (a), SAPO-34-PTMS-9h (b), SAPO-34-PTMS-12h (c), SAPO-34-PTMS-24h (d)

Fig S7 N₂ physisorption isotherms of SAPO-34-PTMS-6h, SAPO-34-PTMS-9h, SAPO-34-PTMS-12h, SAPO-34-PTMS-24h, respectively

Fig S8 SEM images of SAPO-34-C-2.5h (a), SAPO-34-C-3h (b), SAPO-34-C-6h (c), SAPO-34-C-9h (d), SAPO-34-C-12h (e), SAPO-34-C-24h (f), SAPO-34-C-48h (g), SAPO-34-C-72h (h)

Fig S9 Mercury intrusion pore size distribution for SAPO-34-PTMS and SAPO-34In

Fig S10 XRD pattern of SAPO-34-In

Fig S11 ²⁹Si (a, b), ³¹P (c, d), ²⁷Al (e, f) MAS NMR spectra of SAPO-34-PTMS and SAPO-34-C, respectively

Fig S12 NH₃-TPD profiles for SAPO-34-C, SAPO-34-PTMS and SAPO-34-In

1 1			2			
sample	$S_{\rm BET}$	$S_{ m micro}$	Sext	Vmicro	V_{total}	
	$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	
SAPO-34-PTMS-6h	385	280	141	0.11	0.86	
SAPO-34-PTMS-9h	454	311	106	0.13	0.80	
SAPO-34-PTMS-12h	473	350	104	0.14	0.78	
SAPO-34-PTMS-24h	608	519	89	0.20	0.63	

Table S1 Textural properties of hierarchical SAPO-34 after various hydrothermal

spectra								
sample	Si(OT)n(OH)4-n	Si(4Al)	Si(3Al)	Si(2Al)	Si(1Al)	Si(0Al)		
	(%)	(%)	(%)	(%)	(%)	(%)		
SAPO-34-PTMS	4.0	42.0	30.5	13.0	2.6	7.9		
SAPO-34-C	3.2	29.6	15.0	21.8	16.0	14.4		

 Table S2 Distribution of silicon atoms by deconvolution of different ²⁹Si MAS NMR

 spectre