Supporting Information

Gold-catalyzed Oxidative Hydroacylation Reactions of α -Imino Alkynes with Aldehydes and O_2

Yu-Chen Hsu, Jing-He Lai and Rai-Shung Liu*

Contents:

(1) Experiments for measurement of hydrogen evolved	S2
(2) Representative synthetic procedures	S4
(3) Standard procedures for catalytic operations	S5
(4) Figure S1- ¹⁸ O-labeling experiments with a complete oxygen transfer	-S6
(5) Figure S2-The relative energy (kcal/mol) of E and Z-form of 3a at M06-2X/6-3	31
G (d,p) level of theory	S9
(6) Table S1-S2-Geometrical coordinates of E and Z -form of 3a at M06-2X/6-31G	ſ
(d,p) level of theory	-S9
(7) Spectral data for compounds	S11
(8) X-ray crystallographic structure and data for compound 3a , 3m and 3t	S30
(9) ¹ H, ¹³ C and ¹ H NOE Spectral of key compound	-S57

(1) Experiments for measurement of hydrogen evolved

A 100-mL one-neck flask was charged with $P(t-Bu)_2(o-biphenyl)AuCl (5 mol %)$ and AgNTf₂ (5 mol%), and the mixture was charged with N₂/O₂ (20:1). This mixture was added dry toluene (0.5 mL), and stirred at room temperature for 5 min. To this mixture was added a dry toluene (2.5 mL) of compound **1a** (50 mg, 0.15 mmol), benzaldehyde (4 equiv, 64 mg, 0.61 mmol) and 1 equiv H₂O. This flask was tightly sealed with a new rubber septum and heated to 70 °C for 24 h. GC analysis was conducted on a MS 5A-columna using a 0.5 mL gas syringe, before heating and after the reaction. The calibration of hydrogen volume was done on a 0.5 mL sample of a standard 1% H₂/N₂ (volume ratio). We observed no hydrogen before the reaction, and the oxygen content was 5.5 %. The GC H₂/N₂ area ratios of the reactions and the calibrated gas are as follows 136/199600 and 1054/192613. With these data, the yield of hydrogen is calculated to be 3.7% according to the following procedure.

$$\frac{H_2}{N_2}$$
 (the reaction) : H₂ /N₂ (1% standard sample) = X : 0.005 mL H₂

- $\Rightarrow \frac{136}{199600} : \frac{1054}{192613} = X : 0.005$
- $\Rightarrow X = 0.00062 \text{ mL } H_2$

The total volume is 100 mL, corresponding to 0.00554 mmol. The yield of the reaction is thus 3.7%.

 $\frac{200X}{22400} = \frac{0.124}{22400} = 5.54 \text{ x } 10^{-6} \text{ mol}$

 $\frac{5.54 \text{ x } 10^{-6}}{0.1518 \text{ x } 10^{-3}} = 0.037$

T=24 (h)

T = 24 (h)

(2) Representative synthetic procedures:

(A) General procedure:

Unless otherwise noted, all the reaction for the preparation of the substrates were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents, Tetrahydrofuran (THF), toluene and hexane were dried with sodium, benzophenone and distilled before use. Dichloromethane (DCM) were dried over CaH₂ and distilled before use. All other commercial reagents were used without further purification, unless otherwise indicated. Reactions were magnetically stirred and monitored by thin layer chromatography carried out on 0.25 mm E. Merck silica gel plate ($60_f - 254$) using UV light as visualizing agents. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz, 500 MHz, 600MHz, Varian 400 MHz and 700 MHz. Spectrometers using chloroform-*d* (CDCl₃) as the internal standards.

(B) Preparation of starting materials:

1. Preparation of ¹⁸O-benzaldehyde (¹⁸O-2a):

 $H_2^{18}O$ (189µL, 9.42 mmol) was added to a solution of benzaldehyde (0.2 g, 1.89 mmol) and *p*-TSA (17.9 mg, 0.0943 mmol) in dry THF (2 mL), and the mixture was stirred for 30 h at 70°C. Aqueous K₂CO₃ solution was added and the mixture was extracted with ether. The organic solution concentrated under reduced pressure to get the ¹⁸O-2a (0.22g, 90%, 1.70mmol) and The ¹⁸O content of sample ¹⁸O-2a was estimated peak heights of ¹⁶O- and ¹⁸O-parent peaks in mass spectrum[s³].

[s³] J.M. Tang, T.A, Liu. R. S. Liu, J. Org. Chem. 2008, 73, 8479-8483

2. Preparation of *N*-(1-(4-(trifluoromethyl)phenyl)-3-phenylprop-2- ynylidene)

-2-methylpropan-2-amine (3a):

To a flask was added 1-bromo-4-(trifluoromethyl)benzene (0.5 mmol, 112.5 mg), phenylacetylene (0.6 mmol, 61.3mg), *tert*-butyl isocyanide (0.6mmol, 68µL), Pd(OAc)₂ (0.015mmol, 3.37mg), DPEPhos (Bis[(2-diphenylphosphino)phenyl] ether) (0.03 mmol, 16.16 mg), Cs₂CO₃ (1.0 mmol, 325.82mg), and anhydrous DMSO (2.0mL); this mixture was stirred at 100 °C for 2 h. After a completion of the reaction, as indicated by TLC, the mixture was filtered through a celite bed and the solvent was concentrated under reduced pressure. The residues were purified by an alumina oxide column (10 % EA/hexane, R_f = 0.53) to give compound **1a** (133 mg, 0.40 mmol, 81%) as orange oil.

All the substrates **1a-1p** were prepared according to literature procedures $[s^4]$.

[s⁴] T. Tang, X. D. Fei, Z. Y. Ge, Z. Chen, Y. M. Zhu, S. J. Ji, *J. Org. Chem.* **2013**, *78*, 3170-3175

(3) Standard procedures for catalytic operations:

A reaction flask was charged with chloro[(1,1'-biphenyl-2-yl)di-tertbutylphosphine] gold(I) (4.0 mg, 0.008 mmol) and silver bis(trifluoromethane -sulfonyl) imide (2.9 mg, 0.008 mmol), and the mixture was purged with under a mixture of N₂/O₂ (20:1). This mixture was added dry toluene (0.5 mL) and stirred at room temperature for 5 minutes. To this mixture was added a dry Toluene solution (2.5 mL) of compound **1a** (50 mg, 0.15 mmol), benzaldehyde (64 mg, 0.61 mmol) and H₂O (2.7 μ L, 0.15 mmol). The mixture was heated to 70 °C. The solution was monitored by TLC until a complete consumption of starting material (17 h). The mixtures were filterd from a celite bed and purified by a silica column (20%,

EA/hexane, $R_f = 0.3$) to afford **3a** as a yellow solid (57 mg, 0.13 mmol, 83%). (4) Figure S1- ¹⁸O-labeling experiments with a complete oxygen transfer

Data:YU-6-106 Comment: Description: Ionization Mode:ESI+ History:Average(MS[1] 0.77..0.81) Acquired:4/18/2017 9:35:31 PM Operator:AccuTOF m/z Calibration File:20161229TFANa_... Created:4/18/2017 9:39:00 PM Created by:AccuTOF

 Charge number:1
 Tolerance:1.50[mDa]
 Unsaturation Number:-20.0 .. 100.0 (F...

 Element:¹²C:27 .. 27, ¹H:24 .. 24, ¹⁰B:0 .. 0, ⁷⁹Br:0 .. 0, ³⁵Cl:0 .. 0, ¹⁹F:3 .. 3, ¹⁴N:1 .. 1, ²³Na:1 .. 1, ¹⁶O:1 .. 1, ¹⁸O:1

(5) Figure S2. The relative energy (kcal/mol) of *E* and *Z*-form of 3a at M06-2X/6-31G (d,p) level of theory.

Method of calculations:

In this present work, geometry optimizations were carried out without any symmetry restriction by using M06-2X/6-31G(d,p) level of theory. The vibrational frequency calculations were performed to establish the nature of the stationary points (local minimal states) at the same level of theory. The relative energy are ΔG values at 298.15 K and 1 atm.

Z-form, $\Delta G_{rel} = 0$

E-form, $\Delta G_{rel} = 3.1$

Figure S3. The relative energy (kcal/mol) of *E* and *Z*-form of 3a at M06-2X/6-31G(d,p) level of theory.

(6) Table S1-S2.Geometrical coordinates of *E* and *Z*-form of 3a at M06-2X/6-31G(d,p) level of theory.

Table S1 M06-2X/6-31G(d,p) 3a-E-from				
Atomic	C	oordinates (An	gstroms)	
Number	Х	Y	Z	
6	-2.042405	-0.553010	0.596275	
8	-1.334864	-0.986849	1.489817	

6	-3.433627	-0.097827	0.928745
6	-4.396025	-1.021071	1.332914
6	-3.715437	1.268333	0.969965
6	-5.659799	-0.582062	1.718032
1	-4.150917	-2.079173	1.344710
6	-4.970881	1.705913	1.377612
1	-2.948136	1.980153	0.677219
6	-5.948158	0.780201	1.738138
1	-6.415013	-1.302502	2.015100
1	-5.188271	2.768444	1.412583
1	-6.930838	1.121756	2.046628
7	-1.557807	-0.384794	-0.696411
6	-2.377453	-0.534321	-1.953737
6	-0.130300	-0.571806	-0.749999
6	0.378540	-1.787844	-0.965355
1	-0.307849	-2.630764	-1.012256
6	0.663432	0.647730	-0.455210
6	0.173330	1.904221	-0.823556
6	1.885022	0.573759	0.226883
6	0.903700	3.058783	-0.566666
1	-0.790472	1.974887	-1.317384
6	2.616549	1.722047	0.487508
1	2.250432	-0.383138	0.584394
6	2.128398	2.963190	0.082628
1	0.527029	4.029028	-0.869826
1	3.562769	1.660129	1.015560
6	2.930086	4.190691	0.403501
9	4.208234	4.054439	0.020345
9	2.949045	4.434966	1.723514
9	2.440416	5.283887	-0.197756
6	1.825712	-2.132208	-1.137401
8	2.468165	-1.731162	-2.086318
6	2.409852	-3.037437	-0.102335
6	1.756798	-3.241105	1.117446
6	3.635643	-3.657426	-0.359423
6	2.330844	-4.074799	2.073397
1	0.818121	-2.728482	1.322701
6	4.198223	-4.495372	0.593740

1	4.122631	-3.467999	-1.310799
6	3.544041	-4.705089	1.808749
1	1.832877	-4.229747	3.024719
1	5.145877	-4.985782	0.396279
1	3.985987	-5.359863	2.553392
6	-1.455118	-0.380118	-3.171224
1	-0.916858	0.572320	-3.145570
1	-0.718632	-1.179778	-3.247230
1	-2.072871	-0.396135	-4.072106
6	-3.039010	-1.916765	-1.988939
1	-3.706625	-2.050191	-1.132846
1	-3.634538	-2.021352	-2.901106
1	-2.290442	-2.713442	-1.981800
6	-3.463445	0.547397	-2.067778
1	-3.869207	0.521140	-3.083005
1	-4.289716	0.389990	-1.375793
1	-3.047430	1.544465	-1.895073

(7) Spectral data for compounds:

Spectral data for *N*-(1-(4-(trifluoromethyl)phenyl)-3-phenylprop-2-ynylidene)-2methylpropan-2-amine (1a)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.53$, 133 mg, 0.40 mmol, 81%); ¹H NMR (600 MHz, CDCl₃): δ 8.16(d, J = 8.4 Hz, 2 H), 7.63 (d, J = 8.4 Hz, 2 H), 7.57 (dd, J = 8.0 Hz & 1.2 Hz, 2 H), 7.46 ~ 7.38 (m, 3 H), 1.53 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃): δ 145.7, 142.6, 131.6, 129.9, 128.7, 127.6, 125.1, 125.1, 121.6, 99.5, 83.5, 57.4, 29.4; ESI-MS (M+H) calcd. For C₂₀H₁₉F₃N: 330.14700; Found: 330.14700.

Spectral data for 2-methyl-N-(1,3-diphenylprop-2-ynylidene)propan-2-amine

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.54$, 118 mg, 0.45 mmol, 90%); ¹H NMR (500 MHz, CDCl₃): δ 8.08~8.06 (m, 2H), 7.57 (dd, J = 7.5Hz & 2Hz, 2H), 7.42~7.37 (m, 6H), 1.54 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 147.0, 139.5, 131.6, 130.0, 129.6, 128.6, 128.1, 127.2, 122.0, 98.9, 84.1, 57.0, 29.5; EI-MS calcd. for C₁₉H₁₉N: 261.1517; Found: 261.1516.

Spectral data for 2-methyl-*N*-(3-phenyl-1-*p*-tolylprop-2-ynylidene)propan-2amine (1c)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.62$, 124 mg, 0.45 mmol, 90%); ¹H NMR (500 MHz, CDCl₃): δ 7.97 (d, J = 8Hz, 2H), 7.57 (dd, J = 7.5Hz & 2Hz, 2H), 7.42~7.38 (m, 3H), 7.19 (d, J = 8Hz, 2H), 2.38 (s, 3H), 1.54 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 147.0, 140.2, 136.8, 131.6, 129.6, 128.8, 128.6, 127.2, 122.0, 98.7, 84.2, 56.9, 29.6, 21.3; EI-MS calcd. for C₂₀H₂₁N: 275.1674; Found: 275.1675.

Spectral data for *N*-(1-(4-methoxyphenyl)-3-phenylprop-2-ynylidene)-2methylpropan-2-amine (1d)

Brown Oil; (10% ethylacetate/hexane, $R_f = 0.39$, 108 mg, 0.37 mmol, 74%); ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, J = 8.5Hz, 2H), 7.57 (dd, J = 7Hz & 2Hz, 2H),

7.42~7.37 (m, 3H), 6.90 (d, J = 9Hz, 2H), 3.83 (s, 3H), 1.53 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 161.3, 131.6, 129.5, 128.8, 128.6, 127.0, 122.0, 113.9, 113.4, 98.5, 84.1, 56.7, 55.4, 29.6; EI-MS calcd. for C₂₀H₂₁NO: 291.1623; Found: 291.1622.

Spectral data for *N*-(1-(4-chlorophenyl)-3-phenylprop-2-ynylidene)-2methylpropan-2-amine (1e)

Yellow Oil; (10% ethylacetate/hexane, $R_f = 0.57$, 91 mg, 0.31 mmol, 62%); ¹H NMR (500 MHz, CDCl₃): δ 8.01 (dd, J = 6.5Hz & 2Hz), 7.57~7.56 (m, 2H) 7.43~7.40 (m, 3H), 7.35 (dd, J = 6.5Hz & 2Hz, 2H), 1.52 (s, 9H) ; ¹³C NMR (125 MHz, CDCl₃): δ 145.8, 137.9, 136.1, 131.6, 129.8, 128.7, 128.6, 128.3, 121.7, 99.1, 83.6, 57.1, 29.5; ESI-MS (M+H) calcd. for C₁₉H₁₉ClN: 296.1206; Found: 296.12030.

Spectral data for 2-methyl-*N*-(3-phenyl-1-(thiophen-3-yl)prop-2-ynylidene) propan-2-amine (1f)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.72$, 120 mg, 0.45 mmol, 90%); ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 4.4Hz, 1H), 7.58~7.56 (m, 1H), 7.52~7.50 (m, 2H), 7.43~7.39 (m, 3H), 7.27~7.25 (m, 1H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 142.6, 131.6, 129.6, 128.3, 126.5, 125.5, 121.8, 97.2, 84.3, 56.8, 29.6; EI-MS calcd. for C₁₇H₁₇NS: 267.1082; Found: 267.1084.

Spectral data for *N*-(3-(4-fluorophenyl)-1-phenylprop-2-ynylidene)-2methylpropan-2-amine (1g)

Yellow Oil; (10% ethylacetate/hexane, $R_f = 0.73$, 82 mg, 0.29 mmol, 49%); ¹H NMR (700 MHz, CDCl₃): δ 8.04 (dd, J = 6.3Hz & 2.8Hz, 2H), 7.56 (dd, J = 8.4Hz & 5.6Hz, 2H), 7.39~7.38 (m, 3H), 7.09 (t, J = 8.4Hz, 2H), 1.53 (s, 9H); ¹³C NMR (175 MHz, CDCl₃): δ 164.0, 146.8, 139.4, 133.7, 130.0, 128.2, 127.2, 118.1, 116.1, 97.7, 83.8, 56.9, 29.4; EI-MS calcd. for C₁₉H₁₈FN: 279.1423; Found: 279.1418.

Spectral data for *N*-(3-(4-chlorophenyl)-1-phenylprop-2-ynylidene)-2methylpropan-2-amine (1h)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.71$, 131 mg, 0.42 mmol, 88%); ¹H NMR (600 MHz, CDCl₃): δ 8.04 (dd, J = 6.6Hz & 1.8Hz, 2H), 7.49 (d, J = 9Hz, 2H), 7.39~7.36 (m, 5H), 1.53 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 139.3, 135.9, 132.8, 130.1, 129.0, 128.2, 127.2, 125.3, 120.4, 97.5, 84.8, 57.0, 29.5; EI-MS calcd. for C₁₉H₁₈ClN: 295.1128; Found: 295.1131.

Spectral data for *N*-(3-(4-methoxyphenyl)-1-phenylprop-2-ynylidene)-2methylpropan-2-amine (1i)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.50$, 122 mg, 0.42 mmol, 84%); ¹H NMR (600 MHz, CDCl₃): δ 8.08~8.06 (m, 2H), 7.52 (dt, J = 9.6Hz & 2.4Hz, 2H), 7.40~7.38 (m, 3H), 6.91 (dt, J = 9.6Hz & 2.4Hz, 2H), 3.83 (s, 3H), 1.54 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 160.7, 147.2, 139.6, 133.3, 129.9, 128.1, 127.2, 114.3, 114.0, 99.4, 83.4, 56.8, 55.4, 29.5; ESI-MS (M+H) calcd. for C₂₀H₂₂NO: 292.1701; Found: 292.1696.

Spectral data for 2-methyl-*N*-(3-(naphthalen-1-yl)-1-phenylprop-2-ynylidene) propan-2-amine (1j)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.63$, 138 mg, 0.45 mmol, 89%); ¹H NMR (600 MHz, CDCl₃): δ 8.31 (d, J = 8.4Hz, 1H), 8.14 (s, 2H), 7.95 (d, J = 7.8Hz, 1H), 7.92 (d, J = 8.4Hz, 1H), 7.86 (d, J = 7.7Hz, 1H), 7.63 (t, J = 7.2Hz, 1H), 7.58 (t, J = 7.2Hz, 1H), 7.53 (t, J = 7.2Hz, 1H), 7.48 (s, 3H), 1.61 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 147.9, 139.0, 132.6, 132.6, 131.3, 130.2, 128.7, 128.4, 128.3, 127.3, 127.1, 126.7, 125.5, 125.2, 118.9, 97.7, 87.9, 56.9, 29.1; EI-MS calcd. for C₂₃H₂₁N: 311.1674; Found: 311.1672.

Spectral data for 2-methyl-*N*-(1-phenyl-3-(thiophen-3-yl)prop-2-ynylidene) propan-2-amine (1k)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.64$, 125 mg, 0.47 mmol, 93%); ¹H NMR (600 MHz, CDCl₃): δ 8.00~7.99 (m, 2H), 7.69 (s, 1H), 7.42 (d, J = 4.8Hz, 3H), 7.38 (q, J = 2.4Hz, 1H), 7.24 (t, J = 4.8Hz, 1H), 1.49 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 147.8, 138.7, 130.8, 130.1, 129.3, 128.2, 126.9, 126.2, 120.3, 94.7, 83.3, 56.7, 29.0; EI-MS calcd. for C₁₇H₁₇NS: 267.1082; Found: 267.1081.

Spectral data for 2-methyl-N-(1-phenylhept-2-ynylidene)propan-2-amine (11)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.55$, 42 mg, 0.17 mmol, 35%); ¹H NMR (600 MHz, CDCl₃): δ 7.97~7.96 (m, 2H), 7.38 (d, J = 5.4Hz, 3H), 2.49 (t, J = 5.4Hz, 2H), 1.64~1.60 (m, 2H), 1.46 (s, 11H), 0.93 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz,

CDCl₃): δ 148.0, 139.4, 129.8, 128.0, 126.9, 102.3, 75.7, 56.3, 29.8, 28.9, 22.1, 19.2, 13.7; EI-MS calcd. for C₁₇H₂₃N: 241.1830; Found: 241.1834.

Spectral data for *N*-(3-cyclopropyl-1-phenylprop-2-ynylidene)-2-methylpropan-2-amine (1m)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.61$, 95 mg, 0.42 mmol, 84%); ¹H NMR (600 MHz, CDCl₃): δ 7.91~7.90 (m, 2H), 7.37~7.34 (m, 3H), 1.54~1.50 (m, 1H), 1.40 (s, 9H), 0.98~0.95 (m, 2H), 0.91~0.88 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 147.9, 139.3, 129.8, 128.0, 126.9, 105.4, 71.3, 56.2, 28.9, 8.8, 0.3; ESI-MS (M+H) calcd. for $C_{16}H_{20}N$: 226.1596; Found: 226.15982.

Spectral data for *N*-(3-cyclohexyl-1-phenylprop-2-ynylidene)-2-methylpropan-2-amine (1n)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.68$, 101 mg, 0.38 mmol, 75%); ¹H NMR (600 MHz, CDCl₃): δ 8.00~7.98 (m, 2H), 7.35~7.34 (m, 3H), 2.70~2.67 (m, 1H), 1.92~1.91 (m, 2H), 1.76~1.74 (m, 2H), 1.62~1.55 (m, 3H), 1.47 (s, 9H), 1.39~1.36 (m, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 139.8, 131.5, 129.7, 127.9, 127.2, 105.4, 76.2, 56.5, 31.9, 29.7, 29.3, 25.8, 24.8; ESI-MS (M+H) calcd. for C₁₉H₂₆N: 268.2065; Found: 268.2061.

Spectral data for 2-methyl-*N*-(4-methyl-1-phenylpent-4-en-2-ynylidene) propan-2-amine (10)

Yellow Oil; (10% ethylacetate/hexane, $R_f = 0.72$, 88 mg, 0.39 mmol, 78%); ¹H NMR (600 MHz, CDCl₃): δ 8.00~7.98 (m, 2H), 7.38~7.35 (m, 3H), 5.52~5.51 (m, 1H), 5.44~5.43 (m, 1H), 2.02 (s, 3H), 1.49 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 147.0, 139.4, 129.9, 128.1, 127.2, 126.1, 124.1, 100.1, 83.0, 56.8, 29.4, 22.5; EI-MS calcd. for C₁₆H₁₉N: 225.1517; Found: 225.1511.

Spectral data for *N*-(1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-ynylidene)-2-methylpropan-2-amine (1p)

Orange Oil; (10% ethylacetate/hexane, $R_f = 0.38$, 114 mg, 0.35 mmol, 70%); ¹H NMR (600 MHz, CDCl₃): δ 8.01~7.99 (m, 2H), 7.51~7.50 (m, 2H), 7.35~7.33 (m, 2H), 6.92~6.91 (m, 2H), 3.84 (s, 3H), 1.52 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 160.9, 146.0, 138.1, 135.9, 133.3, 128.6, 128.2, 114.4, 113.7, 99.6, 83.0, 56.9, 55.4, 29.5; EI-MS calcd. for C₂₀H₂₀CINO: 325.1233; Found: 325.1231.

Spectral data for Benzaldehyde-a-d1 (D-2a)

Colorless Oil; (10% ethylacetate/hexane, $R_f = 0.45$, 538mg, 5.02 mmol, 50%); ¹H NMR (400 MHz, CDCl₃): δ 7.88~7.86 (m, 2H), 7.63~7.60 (m, 1H), 7.53~7.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 192.20, 192.03, 191.85, 136.36, 134.44, 129.72,

128.99; EI-MS calcd. for C₇H₅DO: 107.0481; Found: 107.0480.

Spectral data for *N-tert*-butyl-*N*-((*Z*)-1-(4-(trifluoromethyl)phenyl)-3-oxo-3-phenylprop-1-enyl)benzamide (3a)

Yellow solid; mp: 149.5°C; (20% ethylacetate/hexane, $R_f = 0.30, 57 \text{ mg}, 0.13 \text{ mmol}, 83\%$); ¹H NMR (500 MHz, CDCl₃): δ 7.80 (d, J = 8.5Hz, 2H), 7.72 (d, J = 8.5Hz, 2H), 7.51~7.32 (m, 3H), 7.31 (t, J = 8Hz, 2H), 7.25~7.23 (m, 2H), 7.07 (s, 1H), 7.04 (t, J = 7Hz, 1H), 6.90 (t, J = 7.5Hz, 2H), 1.55 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 188.2, 170.6, 150.0, 143.9, 138.3, 138.0, 133.0, 129.3, 128.9, 128.4, 128.0, 127.9, 127.4, 126.7, 126.4, 126.0, 124.7, 61.4, 28.9; ESI-MS (M+H) calcd. for C₂₇H₂₅F₃NO₂: 452.1837; Found: 452.18351.

Spectral data Deuterium-labeling for *N-tert*-butyl-*N*-((*Z*)-1-(4-(trifluoromethyl) phenyl)-3-oxo-3-phenylprop-1-enyl)benzamide (D-3a)

Yellow solid; mp: 149.5°C; (20% ethylacetate/hexane, $R_f = 0.36$, 48 mg, 0.11 mmol, 70%); ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, J = 8.5Hz, 2H), 7.72 (d, J = 8.5Hz, 2H), 7.51~7.46 (m, 3H), 7.31 (t, J = 7.5Hz, 2H), 7.24 (d, J = 7.5Hz, 2H), 7.07 (s, 0.2H), 7.04 (t, J = 7.5Hz, 1H), 6.89 (t, J = 7.5Hz, 2H), 1.55 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 188.2, 170.6, 150.0, 143.9, 138.4, 138.0, 133.0, 132.5, 132.2, 132.0, 131.7, 129.3, 128.9, 128.4, 128.0, 127.9, 127.4, 126.4, 126.0, 126.0, 124.7, 61.4, 28.9;

ESI-MS (M+H) calcd. for C₂₇H₂₄DF₃NO₂: 453.1900; Found:453.19009.

Spectral data for *N-tert*-butyl-*N*-(3-oxo-1,3-diphenylprop-1-enyl)benzamide (3b)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.32$, 66 mg, 0.17 mmol, 90%); ¹H NMR (500 MHz, CDCl₃) Z/E = 90/10 major isomer: δ 7.72~7.70 (m, 2H), 7.51 (d, J = 7.9Hz, 2H), 7.47~7.41 (m, 4H), 7.31~7.28 (m, 4H), 7.04~7.01 (m, 2H), 6.89 (t, J = 7.7Hz, 2H), 1.55 (s, 9H); ¹H NMR (500 MHz, CDCl₃) minor isomer: δ 7.34~7.33 (m, 4H), 7.24~7.23 (m, 2H), 7.15 (d, J = 7.1Hz, 2H), 7.10 (t, J = 7.7Hz, 2H), 6.31 (s, 1H), (remaining peaks merging with major isomer); ¹³C NMR (125 MHz, CDCl₃): δ 188.4, 170.6, 151.6, 140.3, 138.7, 138.4, 132.7, 130.5, 129.0, 128.6, 128.3, 127.9, 127.7, 127.3, 126.4, 122.9, 61.2, 28.9; ESI-MS (M+H) calcd. for C₂₆H₂₆NO₂: 384.1964; Found: 384.19659.

Spectral data for *N-tert*-butyl-*N*-(3-oxo-3-phenyl-1-*p*-tolylprop-1-enyl)benzamide (3c)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.34$, 56 mg, 0.14 mmol, 78%); ¹H NMR (500 MHz, CDCl₃) Z/E = 91/9 major isomer: δ 7.61 (d, J = 8.2Hz, 2H), 7.49 (d, J = 7.5Hz, 2H), 7.44 (t, J = 7.3Hz, 2H), 7.31~7.26 (m, 5H), 7.03 (t, J = 7.5Hz, 1H), 6.99 (s, 1H), 6.89 (t, J = 7.8Hz, 2H), 2.43 (s, 3H), 1.54 (s, 9H); ¹H NMR (500 MHz, CDCl₃) minor isomer: δ 7.15 (t, J = 7.5Hz, 2H), 7.11 (t, J = 7.1Hz, 1H), 6.24 (s, 1H), 2.40 (s, 3H), 1.53 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (125 MHz, 200)

CDCl₃): δ 188.4, 170.6, 151.8, 141.0, 138.8, 138.6, 137.5, 132.6, 129.7, 128.6, 128.3, 127.9, 127.7, 127.2, 126.5, 122.1, 61.1, 28.9, 21.4; ESI-MS (M+Na) calcd. for C₂₇H₂₇NNaO₂: 420.1939; Found: 420.1937.

Spectral data for *N-tert*-butyl-*N*-(1-(4-methoxyphenyl)-3-oxo-3-phenylprop-1-enyl)benzamide (3d)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.22$, 41 mg, 0.10 mmol, 59%); ¹H NMR (600 MHz, CDCl₃) Z/E = 95/5 major isomer: δ 7.65 (d, J = 8.9Hz, 2H), 7.52 (d, J =7.3Hz, 2H), 7.44 (t, J = 6.8Hz, 1H), 7.31~7.29 (m, 4H), 7.04 (t, J = 7.4Hz, 1H), 6.97 (d, J = 7.0Hz, 2H), 6.95 (s, 1H), 6.90 (t, J = 7.7Hz, 2H), 3.88 (s, 3H), 1.55 (s, 9H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 7.21 (d, J = 8.9Hz, 2H), 7.16 (t, J = 7.6Hz, 2H), 7.12 (t, J = 7.3Hz, 2H), 6.64 (dd, J = 9Hz & 1.8Hz, 2H), 6.22 (s,1H), 3.71 (s, 3H), 1.54 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (150 MHz, CDCl₃): δ 188.3, 170.6, 161.6, 151.6, 138.9, 138.8, 132.6, 132.5, 129.4, 128.6, 128.3, 127.9, 127.2, 126.4, 120.9, 114.3, 61.1, 55.5, 28.9; ESI-MS (M+H) calcd. for C₂₇H₂₈NO₃: 414.2069; Found: 414.20690.

Spectral data for *N-tert*-butyl-*N*-((*Z*)-1-(4-chlorophenyl)-3-oxo-3-phenylprop-1enyl)benzamide (3e)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.32$, 56 mg, 0.13 mmol, 80%); ¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, J = 7.7Hz, 2H), 7.50 (d, J = 7.5Hz, 2H), 7.48~7.43 (m,

3H), 7.30 (t, J = 7.8Hz, 2H), 7.25 (d, J = 8.3Hz, 2H), 7.04 (t, J = 7.5Hz, 1H), 7.00 (s, 1H), 6.90 (t, J = 7.7Hz, 2H), 1.54 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 188.3, 170.6, 150.5, 138.8, 138.5, 138.2, 136.6, 132.8, 129.3, 128.9, 128.8, 128.3, 127.9, 127.4, 126.4, 123.1, 61.3, 28.9; ESI-MS (M+H) calcd. for C₂₆H₂₅ClNO₂: 418.1574; Found: 418.15774.

Spectral data for *N-tert*-butyl-*N*-(3-oxo-3-phenyl-1-(thiophen-3-yl)prop-1-enyl) benzamide (3f)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.27, 51 \text{ mg}, 0.13 \text{ mmol}, 71\%$); ¹H NMR (500 MHz, CDCl₃) *Z/E* = 91/9 major isomer: δ 7.70 (m, 1H), 7.60 (d, *J* = 7.9Hz, 2H), 7.48 (t, *J* = 7.4Hz, 1H), 7.36~7.33 (m, 3H), 7.29~7.25 (m, 3H), 7.07 (t, *J* = 7.1Hz, 1H), 7.02 (s, 1H), 6.94 (t, *J* = 7.7Hz, 2H), 1.58 (s, 9H); ¹H NMR (500 MHz, CDCl₃) minor isomer: δ 7.16~7.15 (m, 3H), 6.21 (s, 1H), 1.56 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (125 MHz, CDCl₃): δ 188.5, 170.6, 146.3, 143.5, 138.9, 138.6, 132.7, 130.1, 128.7, 128.4, 127.9, 127.2, 127.2, 126.4, 126.1, 121.3, 60.9, 28.8; ESI-MS (M+Na) calcd. for C₂₄H₂₃NNaO₂S: 412.1347; Found: 412.1346.

Spectral data for *N-tert*-butyl-*N*-(3-(4-fluorophenyl)-3-oxo-1-phenylprop-1-enyl) benzamide (3g)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.38$, 48 mg, 0.12 mmol, 68%); ¹H NMR (600 MHz, CDCl₃) Z/E = 93/7 major isomer: δ 7.72~7.70 (m, 2H), 7.50~7.46 (m, 5H),

7.27 (d, J = 8.2Hz, 2H), 7.03 (t, J = 7.6Hz, 1H), 6.96~6.93 (m, 3H), 6.89 (t, J = 7.6Hz, 2H), 1.54 (s, 9H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 7.11 (t, J = 7.9Hz, 2H), 6.71 (t, J = 8.5Hz, 2H), 1.53 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (150 MHz, CDCl₃): δ 186.9, 170.4, 166.3, 164.6, 152.0, 140.3, 138.6, 134.7, 130.5, 129.0, 127.7, 127.3, 126.5, 122.9, 115.4, 115.3, 61.2, 28.8; ESI-MS (M+Na) calcd. for C₂₆H₂₄FNNaO₂: 424.1689; Found: 424.1682.

Spectral data for *N-tert*-butyl-*N*-(3-(4-chlorophenyl)-3-oxo-1-phenylprop-1-enyl) benzamide (3h)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.37$, 47 mg, 0.11 mmol, 67%); ¹H NMR (700 MHz, CDCl₃) Z/E = 93/7 major isomer: δ 7.71 (d, J = 5.6Hz, 2H), 7.49~7.46 (m, 3H), 7.40 (d, J = 8.4Hz, 2H), 7.28~7.23 (m, 4H), 7.05 (t, J = 7.7Hz, 1H), 6.92 (s, 1H), 6.90 (t, J = 7.7Hz, 2H), 1.54 (s, 9H); ¹H NMR (700 MHz, CDCl₃) minor isomer: δ 7.78 (d, J = 7.0Hz, 2H), 7.44~7.43 (m, 3H), 7.12 (t, J = 4.2Hz, 1H), 7.00 (d, J =7.0Hz, 2H), 6.24 (s, 1H), 1.52 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (175 MHz, CDCl₃): δ 187.2, 170.4, 152.4, 140.2, 139.1, 138.6, 136.7, 130.6, 129.3, 129.1, 128.8, 128.6, 127.7, 127.4, 126.5, 122.6, 61.3, 28.9; ESI-MS (M+H) calcd. for C₂₆H₂₅ClNO₂: 418.1574; Found: 418.15716.

Spectral data for *N-tert*-butyl-*N*-(3-(4-methoxyphenyl)-3-oxo-1-phenylprop-1enyl)benzamide (3i)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.18$, 67 mg, 0.16 mmol, 95%); ¹H NMR (600 MHz, CDCl₃) Z/E = 83/17 major isomer: δ 7.69~7.68 (m, 2H), 7.51 (d, J =8.8Hz, 2H), 7.46~7.44 (m, 3H), 7.29 (d, J = 8.2Hz, 2H), 7.03~7.00 (m, 2H), 6.88 (t, J =7.6Hz, 2H), 6.77 (d, J = 8.9Hz, 2H), 3.82 (s, 3H), 1.55 (s, 9H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 8.07 (d, J = 8.3Hz, 2H), 7.43~7.41 (m, 3H), 7.17~7.15 (m, 1H), 7.13~7.09 (m, 2H), 6.56 (d, J = 9Hz, 2H), 6.26 (s, 1H), 3.74 (s, 3H), 1.55 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (150 MHz, CDCl₃) major isomer: δ 187.1, 170.6, 163.3, 150.8, 140.4, 138.8, 140.4, 138.8, 133.5, 131.5, 129.4, 128.7, 128.4, 128.1, 127.2, 126.4, 123.3, 113.5, 61.1, 55.4, 28.8; ¹³C NMR (150 MHz, CDCl₃) minor isomer: δ 131.3, 131.0, 130.3, 130.2, 129.0, 128.9, 128.5, 128.1, 127.6, 126.7, 60.5, 55.3, 28.9, (remaining peaks merging with major isomer); ESI-MS (M+Na) calcd. for C₂₇H₂₇NNaO₃: 436.1889; Found: 436.1892.

¹H NOE Data of compound (3i)

Spectral data for *N-tert*-butyl-*N*-(3-(naphthalen-1-yl)-3-oxo-1-phenylprop-1-enyl) benzamide (3j)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.28$, 60 mg, 0.14 mmol, 87%); ¹H NMR (500 MHz, CDCl₃) *Z/E* = 83/17 major isomer: δ 8.08 (dd, *J* = 8.0Hz & 0.9Hz, 1H), 7.98 (d, *J* = 8.2Hz, 1H), 7.87 (d, *J* = 8.2Hz, 1H), 7.82 (d, *J* = 8.3Hz, 1H), 7.75~7.73 (m, 2H), 7.48~7.44 (m, 6H), 7.27 (t, *J* = 7.7Hz, 1H), 7.19 (t, *J* = 7.4Hz, 1H), 7.04 (t, *J* = 7.8Hz, 3H), 6.92 (s, 1H), 1.60 (s, 9H); ¹H NMR (500 MHz, CDCl₃) minor isomer: δ 8.61 (d, *J* = 8.6Hz, 1H), 7.69 (t, *J* = 7.4Hz, 2H), 7.58~7.56 (m, 2H), 7.33 (d, *J* = 1.7Hz, 2H), 7.00~6.97 (m, 2H), 6.89 (td, *J* = 8.0Hz & 1.8Hz, 3H), 6.40 (s, 1H), 6.38 (dd, *J* = 7.3Hz & 1.1Hz, 1H), 1.54 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (125 MHz, CDCl₃) major isomer: δ 191.0, 170.7, 151.8, 140.4, 137.6, 133.7, 132.1, 130.7, 130.1, 130.0, 129.0, 128.9, 128.4, 127.9, 127.6, 127.5, 127.3, 126.8, 126.3, 125.4, 125.4, 124.3, 61.6, 29.3; ¹³C NMR (125 MHz, CDCl₃) minor isomer: δ 195.6, 172.0, 149.7, 139.6, 137.3, 134.4, 133.6, 133.2, 132.8, 129.6, 129.1, 128.8, 128.4, 128.3, 128.1, 127.8, 126.7, 126.3, 123.8, 60.7, 29.0, (remaining peaks merging with major isomer); ESI-MS (M+Na) calcd. for C₃₀H₂₇NNaO₂: 456.1939; Found: 456.1937.

Spectral data for *N-tert*-butyl-*N*-((*Z*)-3-oxo-1-phenyl-3-(thiophen-3-yl)prop-1enyl)benzamide (3k)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.25$, 47 mg, 0.12 mmol, 65%); ¹H NMR (600 MHz, CDCl₃): δ 7.71~7.70 (m, 2H), 7.54 (d, J = 1.7Hz, 1H), 7.47~7.46 (m, 3H), 7.36 (dd, J = 5.2Hz & 1.4Hz, 1H), 7.29 (d, J = 7.8Hz, 2H), 7.20 (dd, J = 5.1Hz &

2.8Hz, 1H), 7.02 (t, J = 7.4Hz, 1H), 6.90~6.88 (m, 3H), 1.54 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 182.2, 170.6, 151.3, 143.6, 140.3, 138.6, 131.4, 130.5, 129.0, 128.7, 127.7, 127.1, 126.9, 126.5, 126.1, 123.4, 61.2, 28.9; ESI-MS (M+Na) calcd. for C₂₄H₂₃NNaO₂S: 412.1347; Found: 412.1341.

Spectral data for *N-tert*-butyl-*N*-(3-oxo-1-phenylhept-1-enyl)benzamide (31)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.30$, 22 mg, 0.06 mmol, 30%); ¹H NMR (600 MHz, CDCl₃) Z/E = 94/6 major isomer: δ 7.68~7.67 (m, 2H), 7.45~7.44 (m, 3H), 7.35 (d, J = 7.8Hz, 2H), 7.17 (t, J = 7.4Hz, 1H), 7.07 (t, J = 7.7Hz, 2H), 6.33 (s, 1H), 2.18~2.12 (m, 1H), 1.85~1.80 (m, 1H), 1.47 (s, 9H), 1.38~1.32 (m, 2H), 1.19~1.15 (m, 2H), 0.82 (t, J = 7.3Hz, 3H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 7.70~7.69 (m, 2H), 7.40~7.38 (m, 2H), 5.78 (s, 1H), 1.45 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (150 MHz, CDCl₃): δ 197.7, 170.5, 149.5, 140.2, 138.8, 130.4, 128.9, 128.8, 127.7, 127.2, 126.7, 124.6, 61.1, 44.3, 29.0, 25.7, 22.2, 13.8; ESI-MS (M+H) calcd. for C₂₄H₃₀NO₂: 364.2277; Found: 364.22775.

Spectral data for *N-tert*-butyl-*N*-(3-cyclopropyl-3-oxo-1-phenylprop-1-enyl) benzamide (3m)

Yellow solid, mp: 145.5°C; (20% ethylacetate/hexane, $R_f = 0.32$, 63 mg, 0.18 mmol, 82%); ¹H NMR (600 MHz, CDCl₃) Z/E = 91/9 major isomer: δ 7.69~7.68 (m, 2H), 7.45~7.43 (m, 3H), 7.35~7.33 (m, 2H), 7.19~7.15 (m, 1H), 7.07 (d, J = 7.9Hz, 2H), 6.51 (s, 1H), 1.61~1.57 (m, 1H), 1.46 (s, 9H), 1.00~0.92 (m, 2H), 0.82~0.68 (m, 2H);

¹H NMR (600 MHz, CDCl₃) minor isomer: δ 7.31~7.30 (m, 3H), 5.85 (s, 1H), 1.51 (s, 9H), 0.46~0.44 (m, 3H), (remaining peaks merging with major isomer); ¹³C NMR (150 MHz, CDCl₃): δ 197.4, 170.7, 148.9, 140.1, 138.7, 130.4, 128.9, 128.8, 127.8, 127.1, 126.7, 125.1, 61.1, 29.0, 22.7, 11.5, 11.4; ESI-MS (M+H) calcd. for C₂₃H₂₆NO₂: 348.1964; Found: 348.19631.

Spectral data for *N-tert*-butyl-*N*-(3-cyclohexyl-3-oxo-1-phenylprop-1-enyl) benzamide (3n)

Orange oil; (20% ethylacetate/hexane, $R_f = 0.40$, 38 mg, 0.10 mmol, 53%); ¹H NMR (500 MHz, CDCl₃) Z/E = 93/7 major isomer: δ 7.70~7.68 (m, 2H), 7.45~7.44 (m, 3H), 7.36 (d, J = 7.6Hz, 2H), 7.17 (t, J = 7.5Hz, 1H), 7.05 (t, J = 7.7Hz, 2H), 6.45 (s, 1H), 1.96~1.92 (m, 1H), 1.72~1.69 (m, 2H), 1.64~1.58 (m, 4H), 1.46 (s, 9H), 1.21~1.14 (m, 2H), 1.09 (t, J = 9.4Hz, 2H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 7.40 (d, J = 7.6Hz, 2H), 7.19 (s, 2H), 5.82 (s, 1H), 1.42 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (125 MHz, CDCl₃) major isomer: δ 200.0, 170.6, 150.5, 140.4, 138.8, 130.4, 128.9, 128.8, 127.8, 127.0, 126.9, 123.3, 61.2, 52.1, 29.2, 28.3, 27.8, 25.8, 25.7, 25.6; ¹³C NMR (125 MHz, CDCl₃) minor isomer: δ 131.1, 129.3, 128.5, 128.0, 126.7, 126.3, 28.9, (remaining peaks merging with major isomer); ESI-MS (M+Na) calcd. for C₂₆H₃₁NNaO₂: 412.2252; Found: 412.2250.

Spectral data for *N-tert*-butyl-*N*-(4-methyl-3-oxo-1-phenylpenta-1,4-dienyl) benzamide (30)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.32$, 21 mg, 0.06 mmol, 28%); ¹H NMR S26

(500 MHz, CDCl₃) Z/E = 83/17 major isomer: δ 7.66~7.63 (m, 2H), 7.45~7.43 (m, 3H), 7.33~7.31 (m, 2H), 7.12 (t, J = 7.5Hz, 1H), 7.03 (t, J = 7.7Hz, 2H), 6.79 (s, 1H), 5.41 (s, 1H), 5.28 (s, 1H), 1.77 (s, 3H), 1.50 (s, 9H); ¹H NMR (500 MHz, CDCl₃) minor isomer: δ 7.69 (d, J = 7.8Hz, 2H), 7.39 (t, J = 7.7Hz, 3H), 6.07 (s, 1H), 5.23 (s, 1H), 4.68 (s, 1H), 1.66 (s, 3H), 1.51 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (125 MHz, CDCl₃) major isomer: δ 189.9, 170.5, 1504., 145.7, 140.4, 138.8, 130.2, 128.9, 128.7, 127.6, 127.3, 126.6, 124.1, 122.4, 61.0, 28.8, 17.5; ¹³C NMR (125 MHz, CDCl₃) minor isomer: δ 195.6, 171.8, 147.4, 144.2, 139.4, 138.0, 131.0, 130.7, 129.5, 128.8, 128.5, 128.2, 128.1, 126.5, 60.4, 29.0, 17.0; ESI-MS (M+H) calcd. for C₂₃H₂₆NO₂: 348.1964; Found: 348.1958.

Spectral data for *N-tert*-butyl-*N*-(1-(4-chlorophenyl)-3-(4-methoxyphenyl)-3-oxoprop-1-enyl)benzamide (3p)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.20$, 66 mg, 0.14 mmol, 97%); ¹H NMR (600 MHz, CDCl₃) *Z/E* = 77/23 major isomer: δ 8.08 (d, *J* = 7.3Hz, 1H), 7.61 (d, *J* = 8.6Hz, 2H), 7.51 (d, *J* = 8.6Hz, 1H), 7.43 (t, *J* = 6.8Hz, 2H), 7.25 (d, *J* = 7.5Hz, 2H), 7.23 (t, *J* = 7.4Hz, 1H), 6.97 (s, 1H), 6.89 (t, *J* = 7.7Hz, 2H), 6.78 (d, *J* = 8.8Hz, 2H), 3.82 (s, 3H), 1.54 (s, 9H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 7.57 (t, *J* = 7.5Hz, 2H), 7.45~7.44 (m, 2H), 7.39~7.38 (m, 2H), 7.20 (d, *J* = 8.6Hz, 2H), 7.13 (d, *J* = 8.8Hz, 2H), 7.10 (d, *J* = 8.6Hz, 1H), 6.60 (d, *J* = 8.8Hz, 2H), 6.30 (s, 1H), 3.76 (s, 3H), 1.54 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) major isomer: δ 186.9, 170.7, 163.3, 149.6, 138.8, 136.3, 133.5, 131.2, 130.3, 129.2, 128.7, 128.4, 127.3, 126.3, 123.4, 113.5, 61.2, 55.4, 28.8; ¹³C NMR (150 MHz, CDCl₃) minor isomer; δ 191.6, 171.2, 163.6, 146.0, 138.5, 131.2, 131.1, 130.1, 129.5, 128.8, 128.7, 128.4, 128.2, 126.6, 113.6, 60.6, 55.4, 28.9, (remaining peaks merging with major isomer);ESI-MS (M+Na) calcd. for C₂₇H₂₆ClNNaO₃: 470.1499; Found: 470.1498.

Spectral data for *N-tert*-butyl-4-methyl-*N*-(3-oxo-1,3-diphenylprop-1-enyl) benzamide (3q)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.29$, 17 mg, 0.04 mmol, 23%); ¹H NMR (600 MHz, CDCl₃) Z/E = 87/13 major isomer: δ 7.72~7.71 (m, 2H), 7.49~7.45 (m, 6H), 7.28 (t, J = 7.5Hz, 2H), 7.18 (d, J = 8.2Hz, 2H), 7.01 (s, 1H), 6.67 (d, J = 8.0Hz, 2H), 2.09 (s, 3H), 1.54 (s, 9H); ¹H NMR (600 MHz, CDCl₃) minor isomer: δ 6.29 (s, 1H), 2.25 (s, 3H), 1.53 (s, 9H), (remaining peaks merging with major isomer); ¹³C NMR (150 MHz, CDCl₃): δ 188.4, 170.7, 151.7, 140.5, 138.6, 138.4, 135.8, 132.6, 130.4, 129.0, 128.1, 128.1, 127.9, 127.7, 126.6, 123.2, 61.1, 28.9, 21.1; ESI-MS (M+H) calcd. for C₂₇H₂₈NO₂: 398.2120; Found: 398.21163.

Spectral data for *N-tert*-butyl-4-chloro-*N*-((*Z*)-3-oxo-1,3-diphenylprop-1-enyl) benzamide (3r)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.31$, 18 mg, 0.04 mmol, 23%); ¹H NMR (600 MHz, CDCl₃): δ 7.70~7.69 (m, 2H), 7.54 (d, J = 7.8Hz, 2H), 7.49~7.47 (m, 3H), 7.34 (t, J = 8.0Hz, 2H), 7.25~7.23 (m, 3H), 7.07 (s, 1H), 6.85 (d, J = 8.5Hz, 2H), 1.53 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 188.4, 151.3, 140.1, 138.1, 137.1, 134.8, 133.0, 130.6, 129.1, 128.4, 128.0, 127.9, 127.6, 127.5, 123.1, 61.4, 28.8; ESI-MS (M+H) calcd. for C₂₆H₂₅ClNO₂: 418.1574; Found: 418.15736.

Spectral data for *N-tert*-butyl-*N*-((Z)-1-(4-(trifluoromethyl)phenyl)-3-oxo-3-

phenylprop-1-enyl)-4-methylbenzamide (3s)

Yellow oil; (20% ethylacetate/hexane, $R_f = 0.31$, 20 mg, 0.04 mmol, 29%); ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, J = 8.2Hz, 2H), 7.73 (d, J = 8.3Hz, 2H), 7.48~7.46 (m, 3H), 7.29 (t, J = 7.7Hz, 2H), 7.12 (d, J = 8.1Hz, 2H), 7.05 (s, 1H), 6.68 (d, J = 7.9Hz, 2H), 2.10 (s, 3H), 1.54 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 188.2, 170.7, 150.0, 144.1, 138.9, 137.9, 135.4, 132.9, 128.8, 128.4, 128.2, 128.1, 128.0, 127.9, 126.5, 126.0, 125.0, 61.3, 28.9, 21.1; ESI-MS (M+H) calcd. for C₂₈H₂₇F₃NO₂: 466.1994; Found: 466.19907.

Spectral data for *N-tert*-butyl-4-chloro-*N*-((*Z*)-1-(4-(trifluoromethyl)phenyl)-3-oxo-3-phenylprop-1-enyl)benzamide (3t)

Yellow solid; mp: 186.7°C; (20% ethylacetate/hexane, $R_f = 0.30, 22 \text{ mg}, 0.05 \text{ mmol}, 30\%$); ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, J = 8.3Hz, 2H), 7.74 (d, J = 8.4Hz, 2H), 7.53~7.50 (m, 3H), 7.35 (t, J = 7.6Hz, 2H), 7.19 (d, J = 8.5Hz, 2H), 7.11 (s, 1H), 6.86 (d, J = 8.5Hz, 2H), 1.53 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 188.2, 169.5, 149.6, 143.6, 137.7, 136.7, 135.1, 133.3, 132.7, 132.4, 132.1, 131.9, 128.5, 128.0, 127.9, 127.7, 127.7, 126.2, 126.2, 124.9, 61.6, 28.8; ESI-MS (M+H) calcd. for C₂₇H₂₄CIF₃NO₂: 486.1448; Found: 486.14469.

(8) a) X-ray crystallographic structure and data for compound '3a'

Table 1.	Crystal	data and	l structure	refinement	for	160222lt.

Identification code	160222LT	
Empirical formula	C27 H24 F3 N O2	
Formula weight	451.47	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 14.9856(13) Å	<i>α</i> = 90°.
	b = 10.6591(8) Å	β=93.353(4)°.
	c = 14.4299(13) Å	$\gamma = 90^{\circ}$.
53	U	

Volume	2301.0(3) Å ³
Z	4
Density (calculated)	1.303 Mg/m ³
Absorption coefficient	0.098 mm ⁻¹
F(000)	944
Crystal size	0.15 x 0.08 x 0.02 mm ³
Theta range for data collection	1.361 to 26.369°.
Index ranges	-18<=h<=18, -13<=k<=13, -18<=l<=10
Reflections collected	17841
Independent reflections	4693 [R(int) = 0.0428]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9485 and 0.8372
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4693 / 0 / 301
Goodness-of-fit on F ²	1.078
Final R indices [I>2sigma(I)]	R1 = 0.0631, wR2 = 0.1869
R indices (all data)	R1 = 0.0947, wR2 = 0.2198
Extinction coefficient	n/a
Largest diff. peak and hole	0.941 and -0.366 e.Å ⁻³

	Х	У	Z	U(eq)
F(1)	10955(2)	1308(2)	4356(2)	86(1)
F(2)	10552(2)	2767(4)	3488(2)	112(1)
F(3)	11244(1)	3182(2)	4757(2)	73(1)
O(1)	6848(1)	3601(2)	8342(1)	31(1)
O(2)	5461(1)	2145(2)	6820(1)	31(1)
N(1)	7093(1)	3556(2)	6789(1)	22(1)
C(1)	8074(3)	-705(3)	8139(2)	47(1)
C(2)	8631(2)	194(3)	7816(2)	44(1)
C(3)	8322(2)	1404(3)	7637(2)	36(1)
C(4)	7434(2)	1702(3)	7777(2)	29(1)
C(5)	7091(2)	3030(3)	7659(2)	26(1)
C(6)	7182(2)	2740(2)	5998(2)	22(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å 2x 10³) for 160222lt. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(7)	6483(2)	2086(2)	5627(2)	25(1)
C(8)	5578(2)	2004(2)	5994(2)	25(1)
C(9)	4803(2)	1717(2)	5322(2)	23(1)
C(10)	4894(2)	1615(2)	4371(2)	25(1)
C(11)	4145(2)	1309(2)	3788(2)	30(1)
C(12)	3321(2)	1118(2)	4158(2)	29(1)
C(13)	7196(3)	-415(3)	8295(2)	44(1)
C(14)	6874(2)	799(3)	8123(2)	34(1)
C(15)	6754(2)	4900(2)	6630(2)	25(1)
C(16)	5784(2)	5028(3)	6903(2)	31(1)
C(17)	6791(2)	5239(3)	5606(2)	32(1)
C(18)	7366(2)	5792(3)	7210(2)	32(1)
C(19)	3237(2)	1246(2)	5104(2)	29(1)
C(20)	3968(2)	1540(2)	5685(2)	26(1)
C(21)	8076(2)	2668(2)	5596(2)	22(1)
C(22)	8274(2)	1701(2)	4987(2)	28(1)
C(23)	9097(2)	1622(3)	4615(2)	32(1)
C(24)	9752(2)	2513(3)	4836(2)	30(1)
C(25)	9578(2)	3459(3)	5462(2)	33(1)
C(26)	8748(2)	3531(3)	5836(2)	32(1)
C(27)	10627(2)	2449(3)	4384(2)	42(1)

Table 3. Bond lengths [Å] and angles [°] for 160222lt.

1.313(4)
1.335(4)
1.303(4)
1.230(3)
1.224(3)
1.375(3)
1.447(3)
1.533(3)
1.371(5)
1.382(5)
0.9300
1.390(4)
0.9300

C(3)-C(4)	1.394(4)
C(3)-H(22)	0.9300
C(4)-C(14)	1.388(4)
C(4)-C(5)	1.512(4)
C(6)-C(7)	1.343(4)
C(6)-C(21)	1.493(3)
C(7)-C(8)	1.486(4)
C(7)-H(16)	0.9300
C(8)-C(9)	1.502(4)
C(9)-C(10)	1.390(4)
C(9)-C(20)	1.396(4)
C(10)-C(11)	1.402(4)
C(10)-H(15)	0.9300
C(11)-C(12)	1.388(4)
C(11)-H(14)	0.9300
C(12)-C(19)	1.385(4)
C(12)-H(2)	0.9300
C(13)-C(14)	1.399(4)
C(13)-H(24)	0.9300
C(14)-H(23)	0.9300
C(15)-C(17)	1.525(4)
C(15)-C(16)	1.534(4)
C(15)-C(18)	1.536(4)
C(16)-H(4)	0.9600
C(16)-H(3)	0.9600
C(16)-H(5)	0.9600
C(17)-H(6)	0.9600
C(17)-H(8)	0.9600
C(17)-H(7)	0.9600
C(18)-H(11)	0.9600
C(18)-H(9)	0.9600
C(18)-H(10)	0.9600
C(19)-C(20)	1.376(4)
C(19)-H(12)	0.9300
C(20)-H(13)	0.9300
C(21)-C(26)	1.393(4)
C(21)-C(22)	1.399(4)
C(22)-C(23)	1.375(4)

C(22)-H(17)	0.9300
C(23)-C(24)	1.389(4)
C(23)-H(20)	0.9300
C(24)-C(25)	1.389(4)
C(24)-C(27)	1.499(4)
C(25)-C(26)	1.387(4)
C(25)-H(19)	0.9300
C(26)-H(18)	0.9300
Q(5) N(1) Q(c)	110.7(2)
C(5)-N(1)-C(6)	118.7(2)
C(5)-N(1)-C(15)	120.0(2)
C(0)-N(1)-C(15)	119.21(18)
C(2)-C(1)-C(13)	120.2(3)
C(2)- $C(1)$ - $H(1)$	119.9
C(13)-C(1)-H(1)	119.9
C(1) - C(2) - C(3)	120.6(3)
C(1)- $C(2)$ - $H(21)$	119.7
C(3)- $C(2)$ - $H(21)$	119.7
C(2)-C(3)-C(4)	119.7(3)
C(2)- $C(3)$ -H(22)	120.1
C(4)-C(3)-H(22)	120.1
C(14) - C(4) - C(3)	119.7(3)
C(14)-C(4)-C(5)	118.7(3)
C(3)-C(4)-C(5)	121.2(2)
O(1) - C(5) - N(1)	123.1(2)
U(1) - U(5) - U(4)	119.2(2)
N(1)-C(5)-C(4)	117.7(2)
C(7)- $C(6)$ - $N(1)$	121.4(2)
C(7)- $C(6)$ - $C(21)$	121.0(2)
N(1)-C(6)-C(21)	117.6(2)
C(6)-C(7)-C(8)	126.5(2)
C(6)-C(7)-H(16)	116.8
C(8)-C(7)-H(16)	116.8
O(2)-C(8)-C(7)	121.7(2)
O(2)-C(8)-C(9)	120.3(2)
C(7)-C(8)-C(9)	118.0(2)
C(10)-C(9)-C(20)	120.1(2)
C(10)-C(9)-C(8)	122.4(2)

C(20)-C(9)-C(8)	117.5(2)
C(9)-C(10)-C(11)	119.2(2)
C(9)-C(10)-H(15)	120.4
C(11)-C(10)-H(15)	120.4
C(12)-C(11)-C(10)	120.2(2)
C(12)-C(11)-H(14)	119.9
C(10)-C(11)-H(14)	119.9
C(19)-C(12)-C(11)	119.8(2)
C(19)-C(12)-H(2)	120.1
C(11)-C(12)-H(2)	120.1
C(1)-C(13)-C(14)	120.0(3)
C(1)-C(13)-H(24)	120.0
C(14)-C(13)-H(24)	120.0
C(4)-C(14)-C(13)	119.7(3)
C(4)-C(14)-H(23)	120.1
C(13)-C(14)-H(23)	120.1
C(17)-C(15)-N(1)	109.7(2)
C(17)-C(15)-C(16)	108.5(2)
N(1)-C(15)-C(16)	110.8(2)
C(17)-C(15)-C(18)	109.1(2)
N(1)-C(15)-C(18)	108.4(2)
C(16)-C(15)-C(18)	110.4(2)
C(15)-C(16)-H(4)	109.5
C(15)-C(16)-H(3)	109.5
H(4)-C(16)-H(3)	109.5
C(15)-C(16)-H(5)	109.5
H(4)-C(16)-H(5)	109.5
H(3)-C(16)-H(5)	109.5
C(15)-C(17)-H(6)	109.5
C(15)-C(17)-H(8)	109.5
H(6)-C(17)-H(8)	109.5
C(15)-C(17)-H(7)	109.5
H(6)-C(17)-H(7)	109.5
H(8)-C(17)-H(7)	109.5
C(15)-C(18)-H(11)	109.5
C(15)-C(18)-H(9)	109.5
H(11)-C(18)-H(9)	109.5
C(15)-C(18)-H(10)	109.5

H(11)-C(18)-H(10)	109.5
H(9)-C(18)-H(10)	109.5
C(20)-C(19)-C(12)	120.5(3)
C(20)-C(19)-H(12)	119.7
C(12)-C(19)-H(12)	119.7
C(19)-C(20)-C(9)	120.1(2)
C(19)-C(20)-H(13)	120.0
C(9)-C(20)-H(13)	120.0
C(26)-C(21)-C(22)	117.7(2)
C(26)-C(21)-C(6)	121.5(2)
C(22)-C(21)-C(6)	120.8(2)
C(23)-C(22)-C(21)	121.3(2)
C(23)-C(22)-H(17)	119.4
C(21)-C(22)-H(17)	119.4
C(22)-C(23)-C(24)	120.5(2)
C(22)-C(23)-H(20)	119.8
C(24)-C(23)-H(20)	119.8
C(25)-C(24)-C(23)	119.2(3)
C(25)-C(24)-C(27)	121.2(2)
C(23)-C(24)-C(27)	119.6(2)
C(26)-C(25)-C(24)	120.0(2)
C(26)-C(25)-H(19)	120.0
C(24)-C(25)-H(19)	120.0
C(25)-C(26)-C(21)	121.3(2)
C(25)-C(26)-H(18)	119.4
C(21)-C(26)-H(18)	119.4
F(3)-C(27)-F(1)	108.0(3)
F(3)-C(27)-F(2)	105.4(3)
F(1)-C(27)-F(2)	102.5(3)
F(3)-C(27)-C(24)	114.2(3)
F(1)-C(27)-C(24)	113.2(3)
F(2)-C(27)-C(24)	112.6(3)

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 160222lt. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
F(1)	48(1)	58(1)	159(3)	-15(2)	52(2)	3(1)
F(2)	45(1)	231(4)	61(2)	37(2)	24(1)	12(2)
F(3)	35(1)	86(2)	101(2)	-40(1)	30(1)	-22(1)
O(1)	33(1)	40(1)	20(1)	-1(1)	6(1)	3(1)
O(2)	32(1)	40(1)	22(1)	-1(1)	5(1)	-8(1)
N(1)	22(1)	25(1)	19(1)	0(1)	2(1)	-1(1)
C(1)	75(3)	34(2)	31(2)	1(1)	-9(2)	10(2)
C(2)	53(2)	47(2)	33(2)	3(1)	-4(2)	16(2)
C(3)	40(2)	40(2)	27(1)	4(1)	-1(1)	6(1)
C(4)	36(2)	36(2)	14(1)	1(1)	-2(1)	-1(1)
C(5)	23(1)	34(1)	21(1)	-1(1)	3(1)	-2(1)
C(6)	24(1)	26(1)	17(1)	3(1)	3(1)	0(1)
C(7)	25(1)	31(1)	19(1)	0(1)	2(1)	0(1)
C(8)	28(1)	23(1)	23(1)	1(1)	4(1)	-3(1)
C(9)	25(1)	19(1)	26(1)	1(1)	2(1)	1(1)
C(10)	22(1)	25(1)	27(1)	-1(1)	8(1)	0(1)
C(11)	33(2)	32(1)	25(1)	-3(1)	3(1)	2(1)
C(12)	28(1)	28(1)	31(1)	-1(1)	-2(1)	-3(1)
C(13)	74(2)	36(2)	23(1)	4(1)	-5(2)	-11(2)
C(14)	45(2)	38(2)	19(1)	2(1)	1(1)	-6(1)
C(15)	28(1)	23(1)	24(1)	1(1)	6(1)	2(1)
C(16)	29(1)	31(1)	32(1)	2(1)	6(1)	4(1)
C(17)	41(2)	29(1)	26(1)	4(1)	8(1)	1(1)
C(18)	32(2)	30(1)	34(2)	-5(1)	10(1)	-3(1)
C(19)	24(1)	29(1)	34(2)	4(1)	4(1)	-5(1)
C(20)	31(1)	25(1)	24(1)	3(1)	6(1)	-1(1)
C(21)	22(1)	23(1)	21(1)	2(1)	0(1)	-1(1)
C(22)	25(1)	30(1)	29(1)	-5(1)	2(1)	-6(1)
C(23)	28(1)	36(2)	32(2)	-11(1)	6(1)	-1(1)
C(24)	24(1)	34(2)	32(2)	0(1)	3(1)	1(1)
C(25)	24(1)	33(2)	43(2)	-7(1)	3(1)	-6(1)
C(26)	28(2)	30(1)	36(2)	-10(1)	5(1)	-2(1)
C(27)	28(2)	48(2)	52(2)	-8(2)	7(1)	-3(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å $^2x \ 10^3$)

for 160222lt.

	Х	у	Z	U(eq)
H(1)	8287	-1513	8254	56
H(21)	9222	-8	7715	53
H(22)	8705	2012	7425	43
H(16)	6574	1640	5087	30
H(15)	5446	1749	4125	30
H(14)	4200	1233	3152	36
H(2)	2826	905	3771	35
H(24)	6820	-1027	8515	53
H(23)	6287	1001	8239	41
H(4)	5604	5891	6854	46
H(3)	5740	4748	7531	46
H(5)	5402	4526	6496	46
H(6)	6391	4706	5242	48
H(8)	7390	5126	5417	48
H(7)	6617	6099	5516	48
H(11)	7966	5724	7016	48
H(9)	7356	5572	7855	48
H(10)	7160	6639	7123	48
H(12)	2683	1131	5349	34
H(13)	3907	1621	6319	32
H(17)	7842	1100	4830	33
H(20)	9215	969	4214	38
H(19)	10019	4043	5631	40
H(18)	8638	4168	6255	38

b) X-ray crystallographic structure and data for compound '3m'

3m (CCDC 1529472)

Table 1. Crystal data and structure refinement for 160947LT_0M.			
Identification code	160947lt_0m		
Empirical formula	C23 H25 N O2		
Formula weight	347.44		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.7947(6) Å	$\alpha = 77.035(2)^{\circ}$.	
	b = 10.1593(6) Å	$\beta = 75.489(3)^{\circ}$.	

	c = 10.2676(6) Å	$\gamma = 71.193(2)^{\circ}$.
Volume	924.74(10) Å ³	
Z	2	
Density (calculated)	1.248 Mg/m ³	
Absorption coefficient	0.079 mm ⁻¹	
F(000)	372	
Crystal size	$0.08 \ x \ 0.05 \ x \ 0.02 \ mm^3$	
Theta range for data collection	2.074 to 26.365°.	
Index ranges	-12<=h<=12, -12<=k<=11, -12	<=l<=12
Reflections collected	14156	
Independent reflections	3785 [R(int) = 0.0225]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalen	ıts
Max. and min. transmission	0.9485 and 0.8903	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3785 / 0 / 238	
Goodness-of-fit on F ²	1.120	
Final R indices [I>2sigma(I)]	R1 = 0.0482, wR2 = 0.1386	
R indices (all data)	R1 = 0.0577, wR2 = 0.1604	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.494 and -0.368 e.Å -3	

Table 2.	Atomic co	ordinates	$(x 10^4)$ and equivalen	t isotropic displacement parameters (Å $^2x 10^3$)
for 160947	LT_0M.	U(eq) is d	efined as one third of	the trace of the orthogonalized U ^{ij} tensor.

	X	у	Z	U(eq)
O(1)	1328(1)	1400(2)	1501(1)	32(1)
O(2)	1757(1)	4723(1)	1313(1)	24(1)
N(1)	2068(1)	2054(1)	3129(1)	18(1)
C(1)	2163(2)	7515(2)	934(2)	26(1)
C(2)	2165(2)	6477(2)	2234(2)	21(1)
C(3)	1773(2)	5156(2)	2328(2)	19(1)
C(4)	1502(2)	4388(2)	3733(2)	19(1)
C(5)	1717(2)	2988(2)	4109(2)	18(1)
C(6)	1045(2)	2089(2)	2418(2)	20(1)
C(7)	-530(2)	2955(2)	2799(2)	18(1)
C(8)	-1395(2)	2741(2)	4087(2)	19(1)

C(9)	-2893(2)	3412(2)	4311(2)	22(1)
C(10)	-3543(2)	4315(2)	3260(2)	23(1)
C(11)	-1188(2)	3851(2)	1744(2)	21(1)
C(12)	-2679(2)	4532(2)	1977(2)	24(1)
C(13)	3658(2)	1196(2)	2720(2)	22(1)
C(14)	4614(2)	1483(3)	3530(3)	44(1)
C(15)	3760(2)	-365(2)	3020(2)	34(1)
C(16)	4235(2)	1634(3)	1207(2)	42(1)
C(17)	3589(2)	6601(2)	1261(2)	29(1)
C(18)	1646(2)	2321(2)	5559(2)	18(1)
C(19)	1842(2)	2991(2)	6533(2)	22(1)
C(20)	1754(2)	2364(2)	7888(2)	25(1)
C(21)	1485(2)	1069(2)	8308(2)	24(1)
C(22)	1301(2)	383(2)	7364(2)	22(1)
C(23)	1388(2)	1002(2)	6001(2)	18(1)

Table 3. Bond lengths [Å] and angles [°] for $160947LT_0M$.

O(1)-C(6)	1.222(2)
O(2)-C(3)	1.224(2)
N(1)-C(6)	1.367(2)
N(1)-C(5)	1.440(2)
N(1)-C(13)	1.525(2)
C(1)-C(17)	1.477(3)
C(1)-C(2)	1.504(2)
C(1)-H(26)	0.9900
C(1)-H(25)	0.9900
C(2)-C(3)	1.487(2)
C(2)-C(17)	1.522(2)
C(2)-H(17)	1.0000
C(3)-C(4)	1.483(2)
C(4)-C(5)	1.349(2)
C(4)-H(18)	0.9500
C(5)-C(18)	1.486(2)
C(6)-C(7)	1.511(2)
C(7)-C(8)	1.394(2)
C(7)-C(11)	1.396(2)

C(8)-C(9)	1.387(2)
C(8)-H(3)	0.9500
C(9)-C(10)	1.391(2)
C(9)-H(24)	0.9500
C(10)-C(12)	1.390(2)
C(10)-H(2)	0.9500
C(11)-C(12)	1.385(2)
C(11)-H(5)	0.9500
C(12)-H(4)	0.9500
C(13)-C(15)	1.521(3)
C(13)-C(14)	1.525(3)
C(13)-C(16)	1.531(2)
C(14)-H(7)	0.9800
C(14)-H(6)	0.9800
C(14)-H(8)	0.9800
C(15)-H(9)	0.9800
C(15)-H(11)	0.9800
C(15)-H(10)	0.9800
C(16)-H(14)	0.9800
C(16)-H(12)	0.9800
C(16)-H(13)	0.9800
C(17)-H(16)	0.9900
C(17)-H(15)	0.9900
C(18)-C(23)	1.397(2)
C(18)-C(19)	1.410(2)
C(19)-C(20)	1.388(2)
C(19)-H(23)	0.9500
C(20)-C(21)	1.378(3)
C(20)-H(22)	0.9500
C(21)-C(22)	1.389(2)
C(21)-H(21)	0.9500
C(22)-C(23)	1.393(2)
C(22)-H(20)	0.9500
C(23)-H(19)	0.9500
C(6)-N(1)-C(5)	120.64(13)
C(6)-N(1)-C(13)	119.48(13)
C(5)-N(1)-C(13)	119.14(12)

C(17)-C(1)-C(2)	61.40(11)
C(17)-C(1)-H(26)	117.6
C(2)-C(1)-H(26)	117.6
C(17)-C(1)-H(25)	117.6
C(2)-C(1)-H(25)	117.6
H(26)-C(1)-H(25)	114.7
C(3)-C(2)-C(1)	120.00(14)
C(3)-C(2)-C(17)	115.83(14)
C(1)-C(2)-C(17)	58.42(12)
C(3)-C(2)-H(17)	116.6
C(1)-C(2)-H(17)	116.6
C(17)-C(2)-H(17)	116.6
O(2)-C(3)-C(4)	123.82(15)
O(2)-C(3)-C(2)	121.92(15)
C(4)-C(3)-C(2)	114.16(13)
C(5)-C(4)-C(3)	126.95(14)
C(5)-C(4)-H(18)	116.5
C(3)-C(4)-H(18)	116.5
C(4)-C(5)-N(1)	122.06(14)
C(4)-C(5)-C(18)	121.51(14)
N(1)-C(5)-C(18)	116.41(13)
O(1)-C(6)-N(1)	122.90(15)
O(1)-C(6)-C(7)	117.05(14)
N(1)-C(6)-C(7)	119.99(14)
C(8)-C(7)-C(11)	119.18(15)
C(8)-C(7)-C(6)	123.08(14)
C(11)-C(7)-C(6)	117.01(14)
C(9)-C(8)-C(7)	120.17(15)
C(9)-C(8)-H(3)	119.9
C(7)-C(8)-H(3)	119.9
C(8)-C(9)-C(10)	120.53(15)
C(8)-C(9)-H(24)	119.7
C(10)-C(9)-H(24)	119.7
C(12)-C(10)-C(9)	119.30(16)
C(12)-C(10)-H(2)	120.4
C(9)-C(10)-H(2)	120.4
C(12)-C(11)-C(7)	120.42(15)
C(12)-C(11)-H(5)	119.8

C(7)-C(11)-H(5)	119.8
C(11)-C(12)-C(10)	120.40(15)
C(11)-C(12)-H(4)	119.8
C(10)-C(12)-H(4)	119.8
C(15)-C(13)-N(1)	109.76(13)
C(15)-C(13)-C(14)	109.24(16)
N(1)-C(13)-C(14)	109.43(14)
C(15)-C(13)-C(16)	110.49(16)
N(1)-C(13)-C(16)	110.15(14)
C(14)-C(13)-C(16)	107.74(17)
C(13)-C(14)-H(7)	109.5
C(13)-C(14)-H(6)	109.5
H(7)-C(14)-H(6)	109.5
C(13)-C(14)-H(8)	109.5
H(7)-C(14)-H(8)	109.5
H(6)-C(14)-H(8)	109.5
C(13)-C(15)-H(9)	109.5
C(13)-C(15)-H(11)	109.5
H(9)-C(15)-H(11)	109.5
C(13)-C(15)-H(10)	109.5
H(9)-C(15)-H(10)	109.5
H(11)-C(15)-H(10)	109.5
C(13)-C(16)-H(14)	109.5
C(13)-C(16)-H(12)	109.5
H(14)-C(16)-H(12)	109.5
C(13)-C(16)-H(13)	109.5
H(14)-C(16)-H(13)	109.5
H(12)-C(16)-H(13)	109.5
C(1)-C(17)-C(2)	60.17(11)
C(1)-C(17)-H(16)	117.8
C(2)-C(17)-H(16)	117.8
C(1)-C(17)-H(15)	117.8
C(2)-C(17)-H(15)	117.8
H(16)-C(17)-H(15)	114.9
C(23)-C(18)-C(19)	117.79(15)
C(23)-C(18)-C(5)	120.96(14)
C(19)-C(18)-C(5)	121.25(15)
C(20)-C(19)-C(18)	120.66(16)

C(20)-C(19)-H(23)	119.7
C(18)-C(19)-H(23)	119.7
C(21)-C(20)-C(19)	120.71(16)
C(21)-C(20)-H(22)	119.6
C(19)-C(20)-H(22)	119.6
C(20)-C(21)-C(22)	119.65(15)
C(20)-C(21)-H(21)	120.2
C(22)-C(21)-H(21)	120.2
C(21)-C(22)-C(23)	120.11(16)
C(21)-C(22)-H(20)	119.9
C(23)-C(22)-H(20)	119.9
C(22)-C(23)-C(18)	121.07(15)
C(22)-C(23)-H(19)	119.5
C(18)-C(23)-H(19)	119.5

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 160947LT_0M. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	24(1)	48(1)	25(1)	-16(1)	-7(1)	-2(1)
O(2)	30(1)	27(1)	17(1)	-1(1)	-7(1)	-9(1)
N(1)	14(1)	24(1)	15(1)	0(1)	-3(1)	-5(1)
C(1)	31(1)	24(1)	22(1)	5(1)	-6(1)	-11(1)
C(2)	22(1)	22(1)	17(1)	-1(1)	-4(1)	-5(1)
C(3)	15(1)	22(1)	18(1)	-1(1)	-4(1)	-2(1)
C(4)	17(1)	24(1)	15(1)	-3(1)	-4(1)	-6(1)
C(5)	13(1)	23(1)	18(1)	-1(1)	-5(1)	-7(1)
C(6)	18(1)	27(1)	13(1)	-1(1)	-3(1)	-7(1)
C(7)	16(1)	24(1)	18(1)	-4(1)	-6(1)	-7(1)
C(8)	21(1)	23(1)	15(1)	-1(1)	-6(1)	-8(1)
C(9)	21(1)	26(1)	19(1)	-4(1)	-3(1)	-9(1)
C(10)	17(1)	28(1)	26(1)	-6(1)	-7(1)	-5(1)
C(11)	22(1)	29(1)	16(1)	-1(1)	-6(1)	-11(1)
C(12)	24(1)	27(1)	22(1)	0(1)	-12(1)	-8(1)
C(13)	14(1)	29(1)	21(1)	-3(1)	-2(1)	-2(1)

C(14)	17(1)	60(1)	61(1)	-29(1)	-12(1)	-1(1)
C(15)	26(1)	30(1)	39(1)	-6(1)	-1(1)	0(1)
C(16)	24(1)	50(1)	30(1)	8(1)	7(1)	-1(1)
C(17)	23(1)	29(1)	33(1)	-4(1)	0(1)	-9(1)
C(18)	16(1)	22(1)	18(1)	-1(1)	-7(1)	-4(1)
C(19)	22(1)	21(1)	24(1)	-2(1)	-9(1)	-6(1)
C(20)	26(1)	31(1)	20(1)	-5(1)	-10(1)	-5(1)
C(21)	24(1)	29(1)	16(1)	0(1)	-6(1)	-4(1)
C(22)	20(1)	22(1)	21(1)	0(1)	-5(1)	-3(1)
C(23)	17(1)	20(1)	18(1)	-3(1)	-6(1)	-3(1)

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å 2 x 10 3) for 160947LT_0M.

	x	у	Z	U(eq)
H(26)	1823	7317	187	31
H(25)	1903	8525	1008	31
H(17)	1932	6872	3099	25
H(18)	1138	4942	4445	22
H(3)	-959	2135	4814	23
H(24)	-3478	3254	5189	26
H(2)	-4567	4779	3418	28
H(5)	-609	3994	860	26
H(4)	-3114	5152	1255	28
H(7)	4553	2487	3337	67
H(6)	5636	931	3267	67
H(8)	4266	1213	4505	67
H(9)	3473	-648	4004	51
H(11)	4773	-910	2704	51
H(10)	3100	-544	2547	51
H(14)	3687	1395	659	63
H(12)	5281	1137	974	63
H(13)	4105	2652	1020	63
H(16)	4213	7041	1542	35
H(15)	4134	5832	721	35

H(23)	2035	3881	6259	26
H(22)	1881	2833	8534	30
H(21)	1425	648	9237	29
H(20)	1116	-511	7649	26
H(19)	1271	520	5362	22

c) X-ray crystallographic structure and data for compound '3t'

3t (CCDC 1529475)

Table 1. Crystal data and structure refinement for 160808lt_0m.

Identification code	160808LT_0m
Empirical formula	C27 H23 Cl F3 N O2
Formula weight	485.91
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	$a = 9.3330(4) \text{ Å}$ $\alpha = 85.635(2)^{\circ}.$

	b = 10.1568(4) Å	β= 69.299(2)°.
	c = 12.9438(5) Å	$\gamma = 88.318(2)^{\circ}$.
Volume	1144.44(8) Å ³	
Z	2	
Density (calculated)	1.410 Mg/m ³	
Absorption coefficient	0.217 mm ⁻¹	
F(000)	504	
Crystal size	$0.20 \ge 0.18 \ge 0.15 \text{ mm}^3$	
Theta range for data collection	1.686 to 26.407°.	
Index ranges	-11<=h<=11, -12<=k<=12, -16	i<=l<=16
Reflections collected	19165	
Independent reflections	4667 [R(int) = 0.0240]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalent	ıts
Max. and min. transmission	0.9485 and 0.8989	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4667 / 0 / 310	
Goodness-of-fit on F ²	1.057	
Final R indices [I>2sigma(I)]	R1 = 0.0455, wR2 = 0.1212	
R indices (all data)	R1 = 0.0500, wR2 = 0.1282	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.649 and -0.387 e.Å $^{\text{-3}}$	

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å $^2x \ 10^3$) for 160808lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
Cl(1)	9618(1)	13561(1)	5821(1)	32(1)
F(1)	3589(2)	4406(1)	6215(1)	32(1)
F(2)	1848(1)	5602(1)	7305(1)	34(1)
F(3)	3235(2)	6397(1)	5679(1)	36(1)
O(1)	6474(2)	9664(1)	10468(1)	24(1)
O(2)	10536(2)	8277(1)	8613(1)	25(1)
N(1)	7256(2)	8061(2)	9239(1)	16(1)
C(1)	8765(2)	12405(2)	6923(2)	23(1)
C(2)	9243(2)	12304(2)	7824(2)	25(1)
C(3)	8629(2)	11318(2)	8656(2)	23(1)

C(4)	7565(2)	10422(2)	8586(2)	18(1)
C(5)	7029(2)	9352(2)	9507(2)	18(1)
C(6)	7776(2)	7721(2)	8110(2)	16(1)
C(7)	9205(2)	7952(2)	7403(2)	18(1)
C(8)	10424(2)	8550(2)	7707(2)	18(1)
C(9)	11530(2)	9475(2)	6869(2)	18(1)
C(10)	12643(2)	10064(2)	7171(2)	22(1)
C(11)	13649(2)	10967(2)	6443(2)	26(1)
C(12)	13572(2)	11299(2)	5400(2)	28(1)
C(13)	7022(2)	6928(2)	10128(2)	20(1)
C(14)	7739(3)	5670(2)	9584(2)	27(1)
C(15)	7856(3)	7235(2)	10909(2)	30(1)
C(16)	5309(2)	6720(2)	10761(2)	30(1)
C(17)	6597(2)	7139(2)	7751(1)	16(1)
C(18)	5058(2)	7501(2)	8206(2)	18(1)
C(19)	3974(2)	6989(2)	7836(2)	18(1)
C(20)	4433(2)	6107(2)	7008(2)	18(1)
C(21)	3279(2)	5621(2)	6560(2)	23(1)
C(22)	5951(2)	5717(2)	6564(2)	21(1)
C(23)	7026(2)	6231(2)	6932(2)	19(1)
C(24)	12470(2)	10727(2)	5089(2)	27(1)
C(25)	11452(2)	9815(2)	5828(2)	22(1)
C(26)	7057(2)	10586(2)	7691(2)	21(1)
C(27)	7650(2)	11581(2)	6863(2)	23(1)

Table 3. Bond lengths [Å] and angles [°] for 160808lt_0m.

Cl(1)-C(1)	1.745(2)
F(1)-C(21)	1.333(2)
F(2)-C(21)	1.342(2)
F(3)-C(21)	1.349(2)
O(1)-C(5)	1.229(2)
O(2)-C(8)	1.224(2)
N(1)-C(5)	1.373(2)
N(1)-C(6)	1.435(2)
N(1)-C(13)	1.527(2)
C(1)-C(27)	1.382(3)

C(1)-C(2)	1.384(3)
C(2)-C(3)	1.387(3)
C(2)-H(23)	0.9500
C(3)-C(4)	1.397(3)
C(3)-H(22)	0.9500
C(4)-C(26)	1.395(3)
C(4)-C(5)	1.506(3)
C(6)-C(7)	1.339(3)
C(6)-C(17)	1.489(2)
C(7)-C(8)	1.487(2)
C(7)-H(15)	0.9500
C(8)-C(9)	1.495(3)
C(9)-C(25)	1.392(3)
C(9)-C(10)	1.396(3)
C(10)-C(11)	1.381(3)
C(10)-H(19)	0.9500
C(11)-C(12)	1.393(3)
C(11)-H(18)	0.9500
C(12)-C(24)	1.385(3)
C(12)-H(1)	0.9500
C(13)-C(14)	1.526(3)
C(13)-C(16)	1.529(3)
C(13)-C(15)	1.531(3)
C(14)-H(2)	0.9800
C(14)-H(4)	0.9800
C(14)-H(3)	0.9800
C(15)-H(6)	0.9800
C(15)-H(5)	0.9800
C(15)-H(7)	0.9800
C(16)-H(8)	0.9800
C(16)-H(10)	0.9800
C(16)-H(9)	0.9800
C(17)-C(18)	1.396(3)
C(17)-C(23)	1.400(3)
C(18)-C(19)	1.391(3)
C(18)-H(14)	0.9500
C(19)-C(20)	1.391(3)
С(19)-Н(13)	0.9500

C(20)-C(22)	1.385(3)
C(20)-C(21)	1.502(2)
C(22)-C(23)	1.383(3)
C(22)-H(12)	0.9500
C(23)-H(11)	0.9500
C(24)-C(25)	1.396(3)
C(24)-H(16)	0.9500
C(25)-H(17)	0.9500
C(26)-C(27)	1.388(3)
C(26)-H(20)	0.9500
C(27)-H(21)	0.9500
C(5)-N(1)-C(6)	121.44(15)
C(5)-N(1)-C(13)	121.47(14)
C(6)-N(1)-C(13)	117.05(14)
C(27)-C(1)-C(2)	121.27(18)
C(27)-C(1)-Cl(1)	119.00(16)
C(2)-C(1)-Cl(1)	119.70(15)
C(1)-C(2)-C(3)	118.89(18)
C(1)-C(2)-H(23)	120.6
C(3)-C(2)-H(23)	120.6
C(2)-C(3)-C(4)	121.03(18)
C(2)-C(3)-H(22)	119.5
C(4)-C(3)-H(22)	119.5
C(26)-C(4)-C(3)	118.63(17)
C(26)-C(4)-C(5)	124.71(16)
C(3)-C(4)-C(5)	116.65(16)
O(1)-C(5)-N(1)	122.63(17)
O(1)-C(5)-C(4)	119.01(16)
N(1)-C(5)-C(4)	118.28(15)
C(7)-C(6)-N(1)	122.96(16)
C(7)-C(6)-C(17)	121.54(16)
N(1)-C(6)-C(17)	115.45(15)
C(6)-C(7)-C(8)	124.03(16)
C(6)-C(7)-H(15)	118.0
C(8)-C(7)-H(15)	118.0
O(2)-C(8)-C(7)	120.95(17)
O(2)-C(8)-C(9)	120.76(16)

C(7)-C(8)-C(9)	118.28(16)
C(25)-C(9)-C(10)	119.04(18)
C(25)-C(9)-C(8)	122.92(16)
C(10)-C(9)-C(8)	117.98(17)
C(11)-C(10)-C(9)	120.16(18)
C(11)-C(10)-H(19)	119.9
C(9)-C(10)-H(19)	119.9
C(10)-C(11)-C(12)	120.58(18)
C(10)-C(11)-H(18)	119.7
C(12)-C(11)-H(18)	119.7
C(24)-C(12)-C(11)	119.95(19)
C(24)-C(12)-H(1)	120.0
C(11)-C(12)-H(1)	120.0
C(14)-C(13)-N(1)	109.47(15)
C(14)-C(13)-C(16)	110.03(16)
N(1)-C(13)-C(16)	109.67(15)
C(14)-C(13)-C(15)	106.95(17)
N(1)-C(13)-C(15)	109.56(15)
C(16)-C(13)-C(15)	111.11(17)
C(13)-C(14)-H(2)	109.5
C(13)-C(14)-H(4)	109.5
H(2)-C(14)-H(4)	109.5
C(13)-C(14)-H(3)	109.5
H(2)-C(14)-H(3)	109.5
H(4)-C(14)-H(3)	109.5
C(13)-C(15)-H(6)	109.5
C(13)-C(15)-H(5)	109.5
H(6)-C(15)-H(5)	109.5
C(13)-C(15)-H(7)	109.5
H(6)-C(15)-H(7)	109.5
H(5)-C(15)-H(7)	109.5
C(13)-C(16)-H(8)	109.5
C(13)-C(16)-H(10)	109.5
H(8)-C(16)-H(10)	109.5
C(13)-C(16)-H(9)	109.5
H(8)-C(16)-H(9)	109.5
H(10)-C(16)-H(9)	109.5
C(18)-C(17)-C(23)	118.95(16)

C(18)-C(17)-C(6)	120.95(16)
C(23)-C(17)-C(6)	120.09(16)
C(19)-C(18)-C(17)	120.51(16)
C(19)-C(18)-H(14)	119.7
C(17)-C(18)-H(14)	119.7
C(20)-C(19)-C(18)	119.46(17)
C(20)-C(19)-H(13)	120.3
C(18)-C(19)-H(13)	120.3
C(22)-C(20)-C(19)	120.67(16)
C(22)-C(20)-C(21)	119.91(17)
C(19)-C(20)-C(21)	119.37(17)
F(1)-C(21)-F(2)	107.08(15)
F(1)-C(21)-F(3)	106.00(15)
F(2)-C(21)-F(3)	106.23(16)
F(1)-C(21)-C(20)	112.78(16)
F(2)-C(21)-C(20)	112.76(16)
F(3)-C(21)-C(20)	111.52(15)
C(23)-C(22)-C(20)	119.70(17)
C(23)-C(22)-H(12)	120.2
C(20)-C(22)-H(12)	120.2
C(22)-C(23)-C(17)	120.68(17)
C(22)-C(23)-H(11)	119.7
C(17)-C(23)-H(11)	119.7
C(12)-C(24)-C(25)	119.36(19)
C(12)-C(24)-H(16)	120.3
C(25)-C(24)-H(16)	120.3
C(9)-C(25)-C(24)	120.91(18)
C(9)-C(25)-H(17)	119.5
C(24)-C(25)-H(17)	119.5
C(27)-C(26)-C(4)	120.65(17)
C(27)-C(26)-H(20)	119.7
C(4)-C(26)-H(20)	119.7
C(1)-C(27)-C(26)	119.37(18)
C(1)-C(27)-H(21)	120.3
C(26)-C(27)-H(21)	120.3

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	33(1)	22(1)	31(1)	6(1)	-2(1)	-1(1)
F(1)	39(1)	26(1)	40(1)	-10(1)	-23(1)	-6(1)
F(2)	23(1)	45(1)	37(1)	-9(1)	-14(1)	-8(1)
F(3)	51(1)	37(1)	34(1)	8(1)	-33(1)	-13(1)
O (1)	28(1)	28(1)	17(1)	-6(1)	-6(1)	-4(1)
O(2)	19(1)	36(1)	20(1)	3(1)	-9(1)	-4(1)
N(1)	17(1)	20(1)	12(1)	0(1)	-6(1)	-5(1)
C(1)	21(1)	18(1)	24(1)	-1(1)	-2(1)	2(1)
C(2)	21(1)	20(1)	34(1)	-2(1)	-10(1)	-4(1)
C(3)	22(1)	22(1)	26(1)	-3(1)	-11(1)	-3(1)
C(4)	16(1)	17(1)	21(1)	-4(1)	-6(1)	0(1)
C(5)	15(1)	23(1)	18(1)	-3(1)	-7(1)	-4(1)
C(6)	18(1)	17(1)	16(1)	0(1)	-8(1)	-1(1)
C(7)	19(1)	21(1)	16(1)	-2(1)	-7(1)	0(1)
C(8)	15(1)	21(1)	17(1)	-2(1)	-6(1)	1(1)
C(9)	15(1)	19(1)	21(1)	-4(1)	-6(1)	1(1)
C(10)	22(1)	23(1)	23(1)	-3(1)	-9(1)	-1(1)
C(11)	22(1)	24(1)	34(1)	-4(1)	-11(1)	-6(1)
C(12)	26(1)	24(1)	28(1)	2(1)	-3(1)	-6(1)
C(13)	20(1)	25(1)	14(1)	3(1)	-7(1)	-8(1)
C(14)	32(1)	24(1)	25(1)	3(1)	-10(1)	-2(1)
C(15)	42(1)	33(1)	23(1)	6(1)	-21(1)	-11(1)
C(16)	22(1)	35(1)	25(1)	10(1)	-3(1)	-7(1)
C(17)	20(1)	16(1)	15(1)	1(1)	-9(1)	-4(1)
C(18)	22(1)	17(1)	14(1)	-2(1)	-6(1)	-3(1)
C(19)	18(1)	19(1)	18(1)	1(1)	-7(1)	-1(1)
C(20)	23(1)	18(1)	16(1)	2(1)	-12(1)	-5(1)
C(21)	27(1)	24(1)	23(1)	-1(1)	-14(1)	-6(1)
C(22)	26(1)	19(1)	18(1)	-5(1)	-8(1)	-2(1)
C(23)	18(1)	20(1)	19(1)	-2(1)	-6(1)	-2(1)
C(24)	30(1)	32(1)	23(1)	-5(1)	-12(1)	2(1)
C(25)	21(1)	26(1)	20(1)	-2(1)	-7(1)	0(1)
C(26)	20(1)	21(1)	22(1)	-3(1)	-8(1)	-2(1)

Table 4.Anisotropic displacement parameters $(Å ^2x 10^3)$ for 160808lt_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(27)	25(1)	22(1)	20(1)	-1(1)	-7(1)	1(1)

	Х	У	Z	U(eq)
H(23)	9979	12900	7872	30
H(22)	8937	11250	9284	27
H(15)	9455	7720	6662	22
H(19)	12708	9842	7880	26
H(18)	14401	11367	6656	31
H(1)	14275	11916	4902	33
H(2)	7202	5415	9102	41
H(4)	7655	4958	10158	41
H(3)	8822	5829	9143	41
H(6)	8918	7478	10474	46
H(5)	7842	6453	11405	46
H(7)	7341	7970	11347	46
H(8)	4852	7542	11086	44
H(10)	5164	6018	11351	44
H(9)	4815	6469	10251	44
H(14)	4749	8102	8773	22
H(13)	2928	7241	8146	22
H(12)	6251	5100	6010	25
H(11)	8067	5965	6626	23
H(16)	12408	10953	4380	33
H(17)	10695	9422	5617	27
H(20)	6299	10010	7648	25
H(21)	7292	11695	6260	27

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å 2 x 10 3) for 160808lt_0m.

-1.532

-1.539

S63

S64

S68

Yu-6-52	164.031 162.600	——146.821	139.392 133.672 133.672 130.023	127.164 118.058 118.038 118.038 116.121 115.995 110.709		83.829 -83.821 -83.821 -77.181 -77.000	-76.817 	31.919	29.650 29.590 29.516 29.355 29.355 22.684	
exp1 CARBON SAMPLE date Oct 7 2016 solvent cdc13 file /home/vnmr1/D esktop/Yu-6-52-C.f id ACQUISITION sw 46296.3	PRESATURA satmode wet ~ SPECIA ~ temp gain spin n hst	ATION n AL 25.0 30 not used 0.008					F 1g	, t-Bu		
at 1:468 np 135926 fb 17000 bs 8 dl 3.500 nt 1000 ct 760 TRANSMITTER tn C13 sfrq 175.972 tof 4438.8 tpwr 59 pw 7.000 DECOUPLER dn H1 dof 0 dm nny demonstrates and a second	pw90 alfa FLAGS il in dp hs PROCESS lb fn DISPLA sp wp rfl rfp rp lp	14.000 10.000 S n y nn SING 1.00 262144 AY -0.3 35189.9 15580.6 13548.2 -42.4 0								
dıµw±''''''''''''''''''''''''''''''''''''	wd sc 16 vs 16 th ai ph	50 ⁸ 45918 2	140	120	100 S70	80	60	40	20	ppm

8.046 8.043 8.035 8.035 7.502 7.394 7.394 7.383 7.385 7.385 7.388 7.388 7.388 7.388

190 180 170	160	150	140	130 1	20 110	100	90 80 70) 60 50	40 30 20	ppm
PCED2 92.00 usec PL2 120.00 dB PL12 9.00 dB PL13 14.00 dB SF02 598.5029925 MHz F2 Processing parameters SI 65536 SFF 150.4929500 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00		~~~~				MeO				
NUC1 13C P1 4.80 usec PL1 0 dB SF01 150.5094992 MHz ====== CHANNEL f2 CPDPRG2 waltz16							N	⊷t-Bu		
SWH 40043.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 sec CB 4096 DW 11.100 usec DE 6.50 usec TE 303.6 K D1 3.5000000 sec DELTA 3.40000010 sec MCWERK 0.01500000 sec										
F2 - Acquisition Parameters Date20161028 Time 3.19 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG zgpg TD 32768 SOLVENT CDC13 NS 170 DS 0										
Current Data Parameters NAME Yu-6-69 EXPNO 2 PROCNO 1	·					·				
	160.7	147.2	139.6	133.2 129.8 128.0 128.0	$\sim^{114.3}_{113.9}$	99.37	83.41 77.21 77.00 76.79	56.84	29.51	

-1.612

S106

1.456 1.290 7.714 7.703 .483 7.475 .463 7.430 .403 7.391 7.277 7.265 7.258 7.246 7.240 7.230 7.056 .045 7.035 6.994 6.928 .916 6.908 6.897 6.886 .235 1.604 .539 1.521 1.402 1.312 1.301 1.264 1.233 0.869 0.859 0.849 0.835 .049 Yu-6-59 ø 0 5 ۰ ف H exp1 PROTON SAMPLE PRESATURATION Cl Oct 7 2016 satmode date n solvent cdc13 wet n file /home/vnmr1/D~ SPECIAL esktop/Yu-6-59-H.f~ temp 25.0 Ö t-Bu id gain 12 ACQUISITION spin not used 11904.8 hst 0.008 sw 2.753 6.500 at pw90 65536 alfa 10.000 np fb 4000 FLAGS **3h** *Z*/*E* = 93/7 8 11 bs n 2.000 in d1 n nt 16 dp Y ct 16 hs nn PROCESSING TRANSMITTER H1 fn not used tn 699.749 DISPLAY sfrq 349.9 -350.0 tof \mathbf{sp} 7347.1 tpwr 62 wp 3.250 rfl 7173.1 pw DECOUPLER rfp 5066.2 dn C13 rp -64.1 dof 0 lp 0 dm nnn PLOT W40 Cold 165 decwave WC 8 dpwr 40 sc 10 9 8 7 6 5 4 3 2 1 dmf 38462 vs 356 ppm1 th <u> ЧЧ ЧЩ Ч ЧЩ Н</u> ų ų ai ph9.74 0.03206202823 2.007.42.818.02.2 0.08

NOE

S113

NOE

