Supplementary Information

Anthracene-arylamine hole transporting materials for perovskite solar cells

Xuepeng Liu,^{a,b} Fantai Kong,^{*a} Rahim Ghadari,^c Shengli Jin,^d Ting Yu,^{a,b} Wangchao Chen,^{a,b} Guozhen Liu,^{a,b} Zhan'ao Tan,^d Jian Chen^a and Songyuan Dai^{*d,a}

^a Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, P.R. China, Email: kongfantai@163.com ^b University of Science and Technology of China, Hefei, 230026, P.R. China

^c Computational Chemistry Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran

^d Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing, 102206, P.R. China, Email: sydai@ncepu.edu.cn

Contents

- Materials and Synthesis of HTMs
- Device fabrication

Instrumentation

- Fig. S1 The absorption spectra of in solution films
- Fig. S2 Photoluminescence spectrum of compounds
- Fig. S3 DFT calculations
- Fig. S4 Hole-mobility measurements
- Fig. S5 DSC curves
- Table S1
 Optical, electrochemical and hole mobility parameters
- Fig. S6 AFM topographical images of HTM films
- Fig. S7 steady-state PL study of perovskite/HTM bilayer
- Fig. S8 Error bars of the devices with different HTMs
- Table S2
 Detailed device parameters of every sample for Fig. S8
- Fig. S9 J-V curves measured by scan direction
- Table S3 The detailed device parameters for Fig. S9
- Fig. S10 Stability test of the devices
- Table S4Detailed device parameters for Fig. S10

Analysis of relative costs of HTMs

- Table S5Materials, quantities and cost for the synthesis of A102
- Table S6
 Estimated chemical synthesis cost

Fig. S11 The J-V curves of the CH₃NH₃PbI₃-based solar cells

Table S9 Detailed device parameters for Fig. S11

Fig. S12-17 The ¹HNMR, ¹³CNMR and HRMS

1. Materials and Synthesis of HTMs

All chemicals and reagents were purchased from TCI, Alfa, Sigma-Aldrich or Sinopharm Chemical Reagent Co.. Toluene was dehydrated by 4Å molecular sieves. Other chemicals were used as received with further processing. The final products are synthesized *via* Buchwald-Hartwig and Suzuki-Miyaura cross-coupling reaction, respectively. The detailed synthetic procedures of them are shown as follows.

Scheme 1. Synthetic routes for A101 and A102. (i) t-BuOK, Pd(OAc)₂, P(tBu)₃, toluene, reflux; (ii) K₂CO₃, Pd(PPh₃)₄, DMF, 90 °C.

A101: Compound 1 (0.69 g, 3 mmol), Compound 2 (0.47 g, 1.4 mmol), t-BuONa (0.96 g, 10 mmol), Pd(OAc)₂ (67 mg, 0.3 mmol), 30 mL anhydrous toluene, P(t-Bu)₃ (0.1 M in toluene, 0.3 mL) were added into a 100 mL flask and degassed using Ar. Then the reaction mixture is kept with stirring at 100 °C for 2 days. After cooling down, the reaction mixture is diluted by 50 mL dichloromethane (DCM) and washed with 60 mL water for 2 times. The organic phase is dried by NaSO₄, then removed solvent using a rotary evaporator. The crude product is purified by column chromatography (DCM : PE = 1 : 2) to obtain the product as orange solid (0.73 g, 83%). ¹H NMR (400 MHz, DMSO) δ 8.12 (d, J = 6.3 Hz, 4H), 7.46 (d, J = 7.4 Hz, 4H), 6.91 (d, J = 8.0 Hz, 8H), 6.81 (d, J = 8.7 Hz, 8H), 3.67 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.95, 142.07, 137.62, 131.96, 126.48, 125.27, 121.22, 114.64, 55.53. HRMS (MALDI-TOF) m/z: [M-H] calcd 632.27; found 632.22.

A102: Compound 1 (0.27 g, 0.8 mmol), compound 3 (0.74 g, 1.8 mmol), Pd(PPh₃)₄ (58 mg, 0.5 mmol), DMF (15 mL) and 2 M K₂CO₃ (3 mL) were added into a 50 mL flask and degassed using Ar. The reaction mixture is stirred at 90 °C overnight. After cooling down, the reaction mixture is poured into cold Na₂SO₄ aqueous solution, and crude product precipitate out as solids. The crude product is purified by column chromatography (DCM : PE = 1 : 2) to obtain the product as a yellow solid (0.77 g, 78%). ¹H NMR (400 MHz, DMSO) δ 7.74 (s, 4H), 7.45 (s, 4H), 7.23 (s, 12H), 7.01 (s, 12H), 3.78 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 156.01, 147.96, 140.96, 136.99, 131.89, 130.59, 130.29, 127.21, 126.95, 124.82, 119.85, 114.79, 55.53. HRMS (MALDI-TOF) m/z: [M-H] calcd 784.33; found 784.28.

2. Device fabrication

FTO glass plates were sequentially cleaned by ultrasonic bath, water and ethanol. The compact TiO₂ layer was deposited on the etched substrate by spray pyrolysis at 450 °C using a precursor solution of 0.6 ml titanium diisopropoxide and 0.4 ml bis(acetylacetonate) in 7 ml anhydrous isopropanol. Mesoporous TiO₂ films was deposited on the substrate by spin-coating of a diluted particle TiO₂ paste (Dyesol 30NR-T, 1:5 w/w diluted in ethanol) at 5500 rpm for 20 s. Then the substrates were sintered at 510 °C for 30 min. After cooling down, The perovskite layer was deposited by spin-coating the perovskite precursor solution by a single step procedure. The perovskite precursor solution contained PbI₂ (1.1 M), FAI (1 M), PbBr₂ (0.2 M) and MABr (0.2 M) dissolved in a mixed solvent of DMF and DMSO solution (800 µl, volume ratio 1:4). The spin-coating procedure was carried out first 2000 rpm for 10 s. second 5000 rpm for 30 s. 90 µl chlorobenzene was poured on the spinning substrate during the second spin-coating step 15 s before the end of the procedure. The substrate was immediately heated at 100 °C for 1h on a hotplate. The HTM was subsequently deposited on the substrate by spin-coating at 4000 rpm for 20 s. The HTM solution were prepared in anhydrous toluene (A101: 12 mg mL⁻¹, A102: 45 mg mL⁻¹, spiro-OMeTAD: 73 mg mL⁻¹) with 15 μ L of 4-tert-butylpyridine, 8 μ L of lithium bis(trifluoromethylsulphonyl)imide (520 mg mL⁻¹ in acetonitrile) and 6 μ L (tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) bis(trifluoromethylsulphonyl)imide solution (300 mg mL⁻¹ in acetonitrile). Finally, a ~60 nm thick Au counter electrode was deposited on top of the film by thermal evaporation.

3. Instrumentation

¹H NMR and ¹³C NMR spectra were carried out on a Brücker spectrometer (400 MHz) with chemical shifts against tetramethylsilane (TMS). Time-of-flight mass spectrometer (MALDI-TOF-MS) experiments were recorded using a MS Bruker Daltonik Reflex III and Bruker solariX spectrometer. The steady-state photoluminescence measurements were obtained from a Fluorescence Detector

(Fluorolog-3, HORIBA, USA) with a standard 450 W xenon CW lamp. Cyclic voltammetry was recorded on a CHI660d electrochemical analyzer (CH Instruments, Inc., China). A normal three electrode system was used and consisted of a platinum working electrode, a platinum wire counter electrode, and a calomel reference electrode. Redox potential of them was measured in DCM with 0.1 M tetrabutylammonium hexafluorophosphate with a scan rate of 50 mV s⁻¹ (*vs.* Fc/Fc⁺ as an external reference). The UV-vis spectra were measured on a U3900H UV-Vis spectrophotometer (Hitachi, Japan). The current-voltage (*J-V*) characteristics of the PSC were carried out under AM 1.5 (100 mW cm⁻²) illumination that was provided by a 3A grade solar simulator (Newport,USA, 94043A). The incident photon-to-current conversion efficiency (IPCE) was recorded on QE/IPCE measurement kit (Newport, USA). The morphologies of the samples were investigated by atomic force microscopy (5500 AFM (Agilent Technologies)).

Fig. S1 The absorption spectra of A101, A102, and spiro-OMeTAD in CH_2Cl_2 solution and on glass films, respectively.

Fig. S2 Photoluminescence spectrum of A101, A102 and spiro-OMeTAD in CH₂Cl₂.

Fig. S3 Geometry-optimized structures of the molecules and electron density distribution of the frontier molecular orbitals obtained from DFT calculations.

Fig. S4 Hole-mobility measurements for A101, A102 and spiro-OMeTAD.

Fig. S5 DSC curves of A101 and A102.

Table S1 Optical, electrochemical and hole mobility of synthesized HTMs.

HTM	$\lambda_{max}{}^{[a]}\!/\!nm$	Eg ^[b] /eV	HOMO ^[c] /eV	LUMO ^[d] /eV	$M^{[e]}/cm^2V^{-1}s^{-1}$
A101	491	2.25	-5.26	-3.01	7.85 × 10 ⁻⁵
A102	401	2.75	-5.31	-2.56	9.02 × 10 ⁻⁵
spiro- OMeTAD	385	2.98	-5.13	-2.15	2.07 × 10 ⁻⁵

[a] UV-vis absorption spectra and emission spectra were measured in DCM solution. [b] (Optical band gap) E_g were estimated from UV absorption onset. [c] HOMO was calculated as $E^{1/2}_{ox}$ vs. Fc/Fc⁺ + 0.67 vs. NHE + 4.44 vs. Vacuum. [d] LUMO = HOMO + E_g. [e] *M*: Hole mobility

Fig. S6 AFM topographical images of HTM films based on A101, A102 and spiro-

Fig. S7 Steady state PL spectra of pristine perovskite and perovskite/HTM bilayer under excitation at 473 nm.

Fig. S8 Power conversion efficiency (PCE), short-circuit current density (J_{sc}) , opencircuit voltage (V_{oc}) and fill factor (FF) versus different HTMs. Error bars represent photovoltaic parameters deviations for the PSC devices employing A101, A102 or spiro-OMeTAD as HTM. Each group contains 10 independent samples.

Table S2 Detailed dev	vice parameters of	f perovskite solar	cells with	different	HTMs
for Table 1 and Fig. S	8.				

НТМ	Sample No.	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
A101	1	1.01	16.76	67	11.38

	2	0.91	18.44	63	10.68
	3	0.95	17.19	61	10.07
	4	1.00	16.54	69	11.44
	5	0.99	19.71	65	12.72
	6	0.97	15.77	64	9.84
	7	1.03	19.37	67	13.41
	8	0.98	17.15	66	11.04
	9	1.02	18.02	67	12.40
	10	0.97	16.62	70	11.27
	average	0.99±0.03	17.56±1.06	66±2.1	11.42±0.85
	Sample No.	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
	1	1.06	20.50	73	15.91
	2	1.04	20.35	74	15.73
	3	1.07	20.56	75	16.48
	4	1.04	20.09	72	14.91
	5	1.05	20.76	75	16.50
A102	6	1.07	21.39	78	17.56
	7	1.05	19.77	73	15.17
	8	1.04	21.18	76	16.74
	9	1.08	20.21	78	17.03
	10	1.06	20.29	75	16.16
	average	1.06±0.01	20.59±0.37	75±1.54	16.22±0.64
	Sample No.	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
	1	1.04	20.95	75	16.22
	2	1.01	20.28	72	14.73
spiro- OMeTAD	3	1.05	20.69	70	15.22
	4	1.05	20.60	72	15.71
	5	1.03	19.82	72	14.73

6	1.02	19.64	73	14.60
7	1.06	19.62	76	15.77
8	1.09	20.56	76	16.96
9	1.04	20.47	71	15.14
10	1.06	21.40	76	17.27
average	1.04±0.02	20.40±0.45	73±1.79	15.63±0.75

Fig. S9 *J-V* curves measured by forward scan (from short circuit to open circuit) and reverse scan (from open circuit to short circuit) of the PSCs with different HTMs under AM 1.5 illumination.

НТМ		$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
A101	Reverse	1.03	19.37	67	13.41
-	Forward	0.97	19.56	58	11.04
A102	Reverse	1.07	21.39	78	17.56
	Forward	1.05	21.12	71	15.64
spiro-OMeTAD	Reverse	1.06	21.40	76	17.27
1	Forward	1.05	21.01	70	15.31

Table S3 Summary of device parameters with different HTMs measured throughforward and reverse scans for Fig. S9.

Fig. S10 Stability test for the devices based on A102 and spiro-OMeTAD.

Table S4 The detail stability data of the devices with **A101**, **A102** or spiro-OMeTAD for Fig. S10.

	Time (hour)	$V_{\rm oc}$ (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
	2	1.02	17.73	66	11.95
	24	1.02	18.02	67	12.40
	48	0.98	17.76	64	11.17
	100	0.95	17.24	65	10.69
A101	160	0.96	16.81	61	9.85
	250	0.93	16.89	62	9.76
	400	0.94	15.98	60	9.04
	600	0.94	15.71	58	8.62
	2	1.05	20.27	74	15.78
	24	1.05	20.76	75	16.50
	48	1.03	20.83	71	15.28
A102	100	1.06	20.82	69	15.25
	160	1.05	19.91	72	15.14
	250	1.05	20.22	69	14.64
	400	1.03	20.32	69	14.43

	600	1.04	19.99	71	14.66
	2	1.06	20.01	73	15.58
	24	1.04	20.95	75	16.22
	48	1.06	20.01	73	15.38
spiro-	100	1.04	19.97	71	14.80
D D	160	1.03	19.44	69	13.79
	250	1.03	19.50	67	13.40
	400	1.01	19.92	68	13.62
	600	1.03	19.35	66	13.19

A simple analysis of relative costs of spiro-OMeTAD and A102

The lab synthesis cost of A102 are estimated on a model originally proposed by Osedach *et al.*^[1]. Recently, Pertrus and Malinauskas *et al.*^[2,3] has used the model to estimate the cost of hole transporting materials. For every synthetic step the required amounts of reactants, catalysts, reagents and solvents are calculated to obtain 1 gram of A102 are reported (Table S6).

	Table S	S5 Mate	erials, q	uantities	and o	cost for	the	synthesis	of A102.
--	---------	---------	-----------	-----------	-------	----------	-----	-----------	----------

Chemical	Weight	Price of	Cost of	Total cost
	Reagent or solvent	chemical	chemical	(RMB/g)
	(g/g)	(RMB/g)	(RMB/g product)	
4-methoxy-N-(4-	1.60	128	205	
methoxyphenyl)-N-(4-				
(4,4,5,5-tetramethyl-1,3,2-				
dioxaborolan-2-				
yl)phenyl)aniline ^[4]				
Tetrakis(4-	0.41	6.62	2.71	
bromophenyl)methane		(adamas)		
DMF	32	0.03	0.96	
Pd(PPh ₃) ₄	0.12	72	8.64	
K ₂ CO ₃	0.8	0.04	0.032	
Na ₂ SO ₄	5	0.02	0.1	
CH ₂ Cl ₂	450	0.03	13.5	

Petroleum ether	360	0.02	7.2	
A102				238

238 RMB/g = 34.6 /g

Table S6 Survey of the estimated chemical synthesis cost for different HTMs

compound	Material cost (\$/g)	Commercial price (\$/g)
A102	34.6	-
Spiro-OMeTAD	91.67 ^[2,3]	170-475 ^[2,3]

Fig. S11 The *J-V* curves of the CH₃NH₃PbI₃-based solar cells employing doped or pristine **A101**, **A102** or spiro-OMeTAD as HTM under AM 1.5 simulated sunlight.

Table S7 Photovoltaic parameters of the CH₃NH₃PbI₃-based solar cells obtained from *J-V* curves of the corresponding devices for Fig. S11.

HTM	$V_{\rm oc}$ (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
Doped A101	0.95	18.58	66	11.73
Doped A102	1.05	19.88	70	14.89
Doped spiro-OMeTAD	1.01	20.29	71	14.41
Pristine A102	0.94	14.91	52	7.22
Pristine spiro-OMeTAD	0.85	12.14	46	4.69

Fig. S12 ¹H-NMR of **A101**.

Fig. S13 ¹³C-NMR of A101.

Fig. S14 HRMS (MALDI-TOF) of A101.

Fig. S15 ¹H-NMR of **A102**.

Fig. S16 ¹³C-NMR of **A102**.

Fig. S17 HRMS (MALDI-TOF) of A102.

[1] T. P. Osedach, T. L. Andrew, V. Bulovic, Energ. Environ. Sci., 2013, 6, 711-718.

[2] M. L. Petrus, T. Bein, T. J. Dingemans, P. Docampo, J. Mater. Chem. A, 2015, 3, 12159-12162.

[3] T. Malinauskas, M. Saliba, T. Matsui, M. Daskeviciene, S. Urnikaite, P. Gratia, R. Send, H. Wonneberger, I. Bruder, M. Grätzel, *Energy Environ. Sci.* **2016**, *9*, 1681-1686.

[4] X. Liu, F. Kong, T. Cheng, W. Chen, Z. Tan, T. Yu, F. Guo, J. Chen, J. Yao, S. Dai, *ChemSusChem.* **2017**, *10*, 968-975.