Three-component reactions of isocyanoacetates, amines and 3-formylchromones initiated by an unexpected *aza*-Michael addition

Jia-Yu Liao, Wei Jie Yap, Ji'En Wu, Ming Wah Wong* and Yu Zhao*

Table of Contents	Page
I. General information	S2
II. Optimization of reaction conditions	S 3
III. Ag-catalyzed three-component reactions	S 4
IV. Characterization of compounds 5	S5
V. X-ray crystallographic analysis of 5a	S14
VI. Cleavage of the aldimine moiety in 5a	S16
VII. Observation of intermediates	S17
VIII. NMR spectra of the products	S18
IX. DFT calculations	S34
X. References	S43

Supporting Information

I. General information

¹**H** and ¹³**C NMR** spectra were recorded on a Bruker AFC 300 (300 MHz) or AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ¹H (chloroform δ 7.26; Acetone δ 2.05), ¹³C (chloroform δ 77.0; Acetone δ 29.8, 206.3). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constants (Hz) and integration. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. High resolution mass spectra (HRMS) were obtained on a Finnigan/MAT 95XL-T spectrometer.

Unless otherwise noted, all the reactions were carried out open to air at ambient temperature. Dichloromethane, diethyl ether (Et₂O), tetrahydrofuran (THF), and toluene were dried over a Pure Solv solvent purification system. Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received without further purification. Other chemicals including all the 3-formylchromones, amines, isocyanoacetates, metal salts and phosphine ligands were purchased from commercial suppliers and used as received without further purification. Imine **6** was prepared by condensing 3-formylchromone **1a** with *p*-anisidine **2a** using catalytic amount of *p*-toluenesulfonic acid (TsOH) under azeotropic removal of water.¹

	+ NH ₂ + OMe	CN CO ₂ Me	10 mol% Metal Salt 20 mol% Ligand Solvent, 24 °C, 18 h 4 Å MS	OH O N-PMP CO ₂ Me
	Lu	<u>u</u>		
Entry	Metal Salt	Ligand	Solvent	Yield $(\%)^b$
1	Ag ₂ O	/	THF	27
2	Ag ₂ CO ₃	/	THF	17
3	Cu ₂ O	/	THF	6
4	Cu(OAc) ₂	/	THF	16
5	Ag ₂ O	PPh ₃	THF	37
6	Ag ₂ O	dppf	THF	21
7	Ag ₂ O	dppe	THF	17
8	Ag ₂ O	PPh ₃	1,4-dioxane	35
9	Ag ₂ O	PPh ₃	Et ₂ O	14
10	Ag ₂ O	PPh ₃	toluene	23
11	Ag ₂ O	PPh ₃	CHCl ₃	19
12	Ag ₂ O	PPh ₃	CH_2Cl_2	19
13 ^c	Ag ₂ O	PPh ₃	THF	53
14 ^{<i>c</i>-<i>d</i>}	Ag ₂ O	PPh ₃	THF	70

II. Optimization of reaction conditions^a

^{*a*} The reactions were carried out under ambient atmosphere with 0.1 mmol of **1a**, 0.12 mmol of **2a** and 0.12 mmol of **3a** in 1 mL of the solvent. ^{*b*} Isolated yields. ^{*c*} 2 mL of THF was used. ^{*d*} 2.0 equiv of **2a** was used.

Note: The variation of other conditions such as reaction temperatures failed to afford a higher yield.

III. Ag-catalyzed three-component reactions

General procedure. To a 10 mL vial charged with Ag₂O (2.3 mg, 0.010 mmol), PPh₃ (5.2 mg, 0.020 mmol) and 4 Å MS (30 mg) was added anhydrous THF (2.0 mL). The mixture was allowed to stir at ambient temperature for 5 min, then amine **2** (0.20 mmol) was added in one portion, followed by isocyanoacetate **3** (0.12 mmol) and 3-formylchromone **1** (0.10 mmol). The reaction mixture was allowed to stirred at ambient temperature for 18 h, concentrated and purified by flash chromatography (hexanes/ethyl acetate) to afford the product **5**.

IV. Characterization of compounds 5

Methyl (*E*)-4-(2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1*H*-pyrro le-2-carboxylate (5a)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 70% yield. ¹H NMR (500 MHz, Acetone- d_6): δ 11.88 (s, 1H), 9.52 (s, 1H), 8.50 (d, J = 1.8 Hz, 1H), 8.02 (dd, J = 8.2, 1.6 Hz, 1H), 7.62-7.56 (m, 1H), 7.50 (d, J = 1.9 Hz, 1H), 7.34-7.24 (m, 2H), 7.07-6.96 (m, 4H), 3.91 (s, 3H), 3.83 (s, 3H); ¹³C NMR (126 MHz, Acetone- d_6): δ 194.0, 163.3, 161.5, 159.7, 144.0, 141.3, 137.0, 132.7, 127.7, 125.2, 125.1, 123.6, 121.7, 120.9, 120.1, 118.9 115.5, 55.8, 52.5; HRMS (ESI): m/z calcd. for [C₂₁H₁₇N₂O₅, M-H]⁻: 377.1143; Found: 377.1144.

Methyl (*E*)-4-(2-hydroxy-5-methylbenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1*H*-pyrrole-2-carboxylate (5b)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 55% yield. ¹H NMR (500 MHz, Acetone- d_6): δ 11.66 (s, 1H), 9.52 (s, 1H), 8.50 (d, J = 1.8 Hz, 1H), 7.79 (d, J = 1.4 Hz, 1H), 7.50 (d, J = 1.9 Hz, 1H), 7.44-7.39 (m, 1H), 7.32-7.26 (m, 2H), 7.03-6.98 (m, 2H), 6.94 (d, J = 8.5 Hz, 1H), 3.91 (s, 3H), 3.83 (s, 3H), 2.33 (s, 3H); ¹³C NMR (126 MHz, S5

Acetone-*d*₆): δ 194.0, 161.5, 161.2, 159.7, 144.1, 141.3, 137.9, 132.3, 129.2, 127.6, 125.3, 125.1, 123.6, 121.7, 120.7, 118.7, 115.5, 55.8, 52.5, 20.5; **HRMS** (ESI): m/z calcd. for [C₂₂H₁₉N₂O₅, M-H]⁻: 391.1299; Found: 391.1294.

Methyl (*E*)-4-(5-ethyl-2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1 *H*-pyrrole-2-carboxylate (5c)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 49% yield. ¹H NMR (500 MHz, Acetone- d_6): δ 11.65 (s, 1H), 9.53 (s, 1H), 8.51 (d, J = 1.6 Hz, 1H), 7.82 (d, J = 2.1 Hz, 1H), 7.50 (d, J = 1.9 Hz, 1H), 7.46 (dd, J = 8.5, 2.2 Hz, 1H), 7.32-7.27 (m, 2H), 7.04-6.99 (m, 2H), 6.97 (d, J = 8.5 Hz, 1H), 3.92 (s, 3H), 3.83 (s, 3H), 2.66 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H); ¹³C NMR (126 MHz, Acetone- d_6): δ 194.0, 161.5, 161.3, 159.7, 144.0, 141.3, 136.8, 135.7, 131.2, 127.7, 125.3, 125.1, 123.6, 121.6, 120.8, 118.8, 115.5, 55.8, 52.5, 28.5, 16.2; HRMS (ESI): m/z calcd. for [C₂₃H₂₁N₂O₅, M-H]⁻: 405.1456; Found: 405.1461.

Methyl (*E*)-4-(2-hydroxy-5-isopropylbenzoyl)-1-(((4-methoxyphenyl)imino)methy l)-1*H*-pyrrole-2-carboxylate (5d)

The crude reaction mixture was purified by flash column chromatography S6

(hexanes/EtOAc 5:1). Yellow wax, 45% yield. ¹H NMR (500 MHz, CDCl₃): δ 11.73 (s, 1H), 9.56 (s, 1H), 8.56 (d, J = 1.8 Hz, 1H), 7.74 (d, J = 2.2 Hz, 1H), 7.54 (d, J = 1.9 Hz, 1H), 7.41 (dd, J = 8.6, 2.2 Hz, 1H), 7.25-7.18 (m, 2H), 7.00 (d, J = 8.5 Hz, 1H), 6.96-6.90 (m, 2H), 3.92 (s, 3H), 3.84 (s, 3H), 2.92 (dt, J = 13.8, 6.9 Hz, 1H), 1.27 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 193.3, 161.0, 160.7, 158.6, 142.7, 140.2, 139.3, 134.5, 129.0, 127.2, 124.6, 123.7, 122.7, 121.7, 119.6, 118.2, 114.6, 55.5, 52.1, 33.2, 24.0; HRMS (ESI): m/z calcd. for [C₂₄H₂₃N₂O₅, M-H]⁻: 419.1612; Found: 419.1623.

Methyl (*E*)-4-(5-fluoro-2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1*H*-pyrrole-2-carboxylate (5e)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 46% yield. ¹H NMR (500 MHz, CDCl₃): δ 11.68 (s, 1H), 9.54 (s, 1H), 8.55 (d, *J* = 1.8 Hz, 1H), 7.60 (dd, *J* = 8.9, 3.1 Hz, 1H), 7.53 (d, *J* = 1.9 Hz, 1H), 7.28-7.20 (m, 3H), 7.03 (dd, *J* = 9.1, 4.5 Hz, 1H), 6.96-6.90 (m, 2H), 3.92 (s, 3H), 3.84 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 192.3, 160.9, 158.8 (d, *J* = 1.3 Hz), 158.7, 154.9 (d, *J* = 238.6 Hz), 142.6, 140.1, 127.0, 124.0, 123.9, 123.5 (d, *J* = 23.6 Hz), 122.7, 121.5, 119.7 (d, *J* = 7.3 Hz), 119.4 (d, *J* = 6.3 Hz), 116.6 (d, *J* = 23.7 Hz), 114.6, 55.5, 52.1; **HRMS** (ESI): m/z calcd. for [C₂₁H₁₆FN₂O₅, M-H]⁻: 395.1049; Found: 395.1049.

Methyl (*E*)-4-(5-bromo-2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1*H*-pyrrole-2-carboxylate (5f)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 52% yield. ¹H NMR (500 MHz, Acetone- d_6): δ 11.58 (s, 1H), 9.52 (s, 1H), 8.52 (d, J = 1.8 Hz, 1H), 8.04 (d, J = 2.5 Hz, 1H), 7.70 (dd, J = 8.9, 2.5 Hz, 1H), 7.50 (d, J = 1.9 Hz, 1H), 7.33-7.24 (m, 2H), 7.06-6.98 (m, 3H), 3.92 (s, 3H), 3.83 (s, 3H); ¹³C NMR (126 MHz, Acetone- d_6): δ 192.8, 161.7, 161.4, 159.8, 144.0, 141.3, 139.2, 134.5, 127.9, 125.3, 124.9, 123.7, 123.1, 121.4, 121.1, 115.5, 111.2, 55.8, 52.6; HRMS (ESI): m/z calcd. for [C₂₁H₁₆BrN₂O₅, M-H]⁻: 455.0248; Found: 455.0252.

Methyl (*E*)-4-(4-chloro-2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1*H*-pyrrole-2-carboxylate (5g)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 60% yield. ¹H NMR (500 MHz, CDCl₃): δ 12.16 (s, 1H), 9.54 (s, 1H), 8.52 (s, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.52 (d, J = 1.7 Hz, 1H), 7.24-7.18 (m, 2H), 7.07 (s, 1H), 6.98-6.90 (m, 3H), 3.92 (s, 3H), 3.83 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 192.5, 163.4, 160.9, 158.7, 142.6, 141.9, 140.1, 132.6, 126.9, 124.2, 123.9, 122.7, 121.5, 119.7, 118.6, 118.4, 114.6, 55.5, 52.1; HRMS (ESI): m/z calcd. for [C₂₁H₁₆ClN₂O₅, M-H]⁻: 411.0765; Found: 411.0766.

Methyl (*E*)-4-(5-chloro-2-hydroxy-4-methylbenzoyl)-1-(((4-methoxyphenyl)imino) methyl)-1*H*-pyrrole-2-carboxylate (5h)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 50% yield. ¹H NMR (500 MHz, CDCl₃): δ 11.88 (s, 1H), 9.54 (s, 1H), 8.54 (d, *J* = 1.7 Hz, 1H), 7.86 (s, 1H), 7.51 (d, *J* = 1.8 Hz, 1H), 7.25-7.19 (m, 2H), 6.97-6.90 (m, 3H), 3.92 (s, 3H), 3.84 (s, 3H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 192.0, 161.2, 160.9, 158.7, 145.3, 142.6, 140.2, 131.1, 126.9, 124.3, 124.1, 123.9, 122.8, 121.4, 120.5, 118.8, 114.6, 55.5, 52.1, 20.8; HRMS (ESI): m/z calcd. for [C₂₂H₁₈ClN₂O₅, M-H]⁻: 425.0910; Found: 425.0912.

Methyl (*E*)-4-(3,5-dibromo-2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)meth yl)-1*H*-pyrrole-2-carboxylate (5i)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 30% yield. ¹H NMR (500 MHz, CDCl₃): δ 12.53 (s, 1H), 9.54 (s, 1H), 8.55 (s, 1H), 7.99 (d, J = 1.2 Hz, 1H), 7.90 (s, 1H), 7.50 (s, 1H), 7.23 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 3.93 (s, 3H), 3.84 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 191.8, 160.8, 158.8, 158.3, 142.4, 141.0, 139.9, 132.9, 127.4, 124.2, 123.4, 122.8, 121.5, 121.3, 114.6, 113.3, 110.5, 55.5, 52.2; HRMS (ESI): m/z calcd. for [C₂₁H₁₅Br₂N₂O₅, M-H]⁻: 532.9353; Found: 532.9337.

Methyl (*E*)-4-(2-hydroxybenzoyl)-1-(((4-phenoxyphenyl)imino)methyl)-1*H*-pyrro le-2-carboxylate (5j)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 48% yield. ¹H NMR (500 MHz, CDCl₃): δ 11.96 (s, 1H), 9.56 (s, 1H), 8.55 (d, J = 1.5 Hz, 1H), 8.00-7.84 (m, 1H), 7.57 (d, J = 1.6 Hz, 1H), 7.55-7.49 (m, 1H), 7.36 (t, J = 7.9 Hz, 2H), 7.23 (d, J = 8.7 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H), 7.09-7.00 (m, 5H), 6.98 (t, J = 7.6 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 193.3, 162.7, 161.0, 157.2, 156.1, 143.7, 142.6, 136.1, 131.7, 129.8, 127.0, 124.6, 123.8, 123.4, 122.8, 121.9, 119.9, 119.7, 119.0, 118.8, 118.5, 52.1; HRMS (ESI): m/z calcd. for [C₂₆H₂₁N₂O₅, M+H]⁺: 441.1445; Found: 441.1448.

Methyl (*E*)-1-(((4-(dimethylamino)phenyl)imino)methyl)-4-(2-hydroxybenzoyl)-1 *H*-pyrrole-2-carboxylate (5k)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Brown wax, 69% yield. ¹H NMR (500 MHz, CDCl₃): δ 12.00 (s, 1H), 9.56 (s, 1H), 8.56 (d, J = 1.8 Hz, 1H), 7.95 (dd, J = 7.9, 1.2 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 7.53-7.49 (m, 1H), 7.26-7.20 (m, 2H), 7.06 (d, J = 8.3 Hz, 1H), 6.98 (q, J = 7.4 Hz, 1H), 6.75 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 2.99 (s, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 193.4, 162.7, 161.0, 140.9, 135.9, 131.7, 127.0, 124.2, 123.6,

122.8, 121.6, 120.0, 119.0, 118.4, 113.0, 52.0, 40.7; **HRMS** (ESI): m/z calcd. for [C₂₂H₂₂N₃O₄, M+H]⁺: 392.1605; Found: 392.1610.

Methyl (*E*)-4-(2-hydroxybenzoyl)-1-(((4-morpholinophenyl)imino)methyl)-1*H*-py rrole-2-carboxylate (5l)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 1:1). Yellow wax, 65% yield. ¹H NMR (500 MHz, CDCl₃): δ 11.98 (s, 1H), 9.56 (s, 1H), 8.55 (d, J = 1.7 Hz, 1H), 7.93 (dd, J = 8.0, 1.4 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 11.3, 4.2 Hz, 1H), 7.23 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 8.4 Hz, 1H), 7.01-6.90 (m, 3H), 3.92 (s, 3H), 3.90-3.82 (m, 4H), 3.24-3.12 (m, 4H); ¹³C NMR (126 MHz, CDCl₃): δ 193.3, 162.7, 161.0, 142.3, 136.0, 131.7, 127.0, 124.4, 123.7, 122.6, 121.7, 119.9, 119.0, 118.4, 116.2, 66.8, 52.0, 49.3; HRMS (ESI): m/z calcd. for [C₂₄H₂₂N₃O₅, M-H]⁻: 432.1565; Found: 432.1569.

Methyl (*E*)-1-((cyclopropylimino)methyl)-4-(2-hydroxybenzoyl)-1*H*-pyrrole-2-ca rboxylate (5p)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 10:1). Pale yellow wax, 23% yield. ¹H NMR (300 MHz, CDCl₃): δ 11.97 (s, 1H), 9.41 (s, 1H), 8.27 (d, J = 1.9 Hz, 1H), 7.87 (dd, J = 8.0, 1.6 Hz, 1H), S11

7.60-7.39 (m, 2H), 7.04 (dd, J = 8.4, 0.8 Hz, 1H), 6.99-6.88 (m, 1H), 3.90 (s, 3H), 3.21-2.98 (m, 1H), 0.96-0.80 (m, 4H); ¹³**C NMR** (75 MHz, CDCl₃): δ 193.4, 162.6, 161.0, 143.3, 135.9, 131.7, 127.1, 123.9, 123.0, 121.1, 119.9, 118.9, 118.4, 52.0, 37.1, 8.5; **HRMS** (ESI): m/z calcd. for [C₁₇H₁₅N₂O₄, M-H]⁻: 311.1044; Found: 311.1046.

Ethyl (*E*)-4-(2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1*H*-pyrrole -2-carboxylate (5q)

The crude reaction mixture was purified by flash column chromatography (hexanes/EtOAc 5:1). Yellow wax, 69% yield. ¹H NMR (500 MHz, Acetone- d_6): δ 11.87 (s, 1H), 9.53 (s, 1H), 8.50 (s, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.59 (dd, J = 11.2, 4.3 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.32-7.22 (m, 2H), 7.08-6.96 (m, 4H), 4.38 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, Acetone- d_6): δ 194.1, 163.3, 161.0, 159.7, 144.1, 141.3, 136.9, 132.7, 127.6, 125.5, 125.1, 123.6, 121.6, 121.0, 120.1, 118.9, 115.5, 61.9, 55.8, 14.5; HRMS (ESI): m/z calcd. for [C₂₂H₂₁N₂O₅, M+H]⁺: 393.1445; Found: 393.1450.

Isopropyl (*E*)-4-(2-hydroxybenzoyl)-1-(((4-methoxyphenyl)imino)methyl)-1*H*-pyr role-2-carboxylate (5r)

The crude reaction mixture was purified by flash column chromatography S12

(hexanes/EtOAc 5:1). Yellow wax, 62% yield. ¹H NMR (500 MHz, Acetone-*d*₆): δ 11.87 (s, 1H), 9.55 (s, 1H), 8.50 (d, J = 1.6 Hz, 1H), 8.02 (dd, J = 8.2, 1.5 Hz, 1H), 7.67-7.57 (m, 1H), 7.50 (d, J = 1.8 Hz, 1H), 7.32-7.24 (m, 2H), 7.12-6.93 (m, 4H), 5.23 (dt, J = 12.5, 6.2 Hz, 1H), 3.83 (s, 3H), 1.38 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, Acetone-*d*₆): δ 194.1, 163.3, 160.6, 159.7, 144.2, 141.4, 136.9, 132.7, 127.6, 125.8, 125.1, 123.6, 121.5, 121.0, 120.1, 118.9, 115.5, 69.8, 55.8, 22.1; HRMS (ESI): m/z calcd. for [C₂₃H₂₃N₂O₅, M+H]⁺: 407.1601; Found: 407.1607.

V. X-ray crystallographic analysis of 5a

The conformation of 5a was determined by X-ray crystallographic analysis of a single crystal of 5a (Figure S1). The crystal was prepared from the solution of 5a in hexanes/ethyl acetate at 0 °C.

Figure S1. X-ray structure of **5a**

Table S1.	Crystal	data and	structure	refinement	for	F050
	_					

Identification code	F050	
Empirical formula	C25H27N2O5.25	
Formula weight	439.48	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 3.8268(2) Å	$\alpha = 90^{\circ}$
	b = 31.4297(12) Å	$\beta = 92.2510(10)^{\circ}$
	c = 17.1304(7) Å	$\gamma=90^\circ$
Volume	2058.77(16) Å ³	

Z	4
Density (calculated)	1.418 Mg/m ³
Absorption coefficient	0.817 mm ⁻¹
F(000)	932
Crystal size	0.360 x 0.260 x 0.160 mm ³
Theta range for data collection	2.812 to 68.231°
Index ranges	-4<=h<=4, -37<=k<=37, -20<=1<=20
Reflections collected	31351
Independent reflections	3774 [R(int) = 0.0382]
Completeness to theta = 67.679°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7533 and 0.6531
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3774 / 9 / 288
Goodness-of-fit on F ²	1.086
Final R indices [I>2sigma(I)]	R1 = 0.0819, wR2 = 0.2745
R indices (all data)	R1 = 0.0870, wR2 = 0.2815
Extinction coefficient	n/a
Largest diff. peak and hole	1.013 and -0.653 e.Å ⁻³

VI. Cleavage of the aldimine moiety in 5a

p-Toluenesulfonic acid monohydrate (79.4 mg, 0.42 mmol) was added to the mixture of **5a** (79.0 mg, 0.21 mmol), CHCl₃ (2 mL) and H₂O (1 mL). The reaction mixture was stirred at ambient temperature for 1 h, then was extracted with CH₂Cl₂. The organic extract was dried (Na₂SO₄), concentrated, and the residue was purified by flash chromatography (hexanes/ethyl acetate 3:1) to yield 45 mg of **7**.

Methyl 4-(2-hydroxybenzoyl)-1*H*-pyrrole-2-carboxylate (7, known compound²)

Pale yellow solid, 88% yield. ¹**H NMR** (300 MHz, CDCl₃): δ 12.04 (s, 1H), 10.17 (s, 1H), 7.89 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.61 (d, *J* = 1.5 Hz, 1H), 7.53-7.43 (m, 1H), 7.37 (d, *J* = 1.5 Hz, 1H), 7.04 (dd, *J* = 8.4, 1.0 Hz, 1H), 6.99-6.85 (m, 1H), 3.91 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 193.6, 162.5, 161.4, 135.6, 131.7, 127.9, 125.1, 123.8, 120.0, 118.8, 118.3, 116.7, 52.0.

VII. Observation of intermediates

A mixture of two unexpected intermediates **A** and **B** (tautomers to each other) were detected immediately after **1a** and **2a** were mixed together without catalyst, which were determined by NMR analysis to be the *aza*-Michael addition products. The structure of **A** was determined by the NOE correlation between H^1-H^2 and H^3-H^4 (Figure S2, in red box), and the structure of **B** was determined by the NOE correlation between H^a-H^b and H^b-H^c (Figure S2, in green box).

Figure S2. NOESY spectrum of intermediates A and B

VIII. NMR spectra of the products

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 25 10 0 f1 (ppm)

10.46 10 M - 10

210 200 190 190 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) 10 0 50 40 30 20

-1233

IX. DFT calculations

DFT calculations were performed with the Gaussian 09 programs.³ All equilibrium structures and transition states (Tables S2 and S3) were fully optimized using M06-2X density functional method⁴ together with the standard 6-31G^{*} basis set. The M06-2X functional was chosen in this study as it is better suited in handling kinetics, thermodynamics and non-covalent interactions.⁴⁻⁵ Frequency calculations were performed on the M06-2X/6-31G^{*} optimized geometries to confirm the nature of the stationary points as equilibrium structures (with all the real frequencies) or transition states (with only one imaginary frequency). The identities of all calculated transition states were confirmed by intrinsic reaction coordinate (IRC) calculations. The effect of solvation was evaluated by SMD implicit solvation model⁶ through M06-2X/6-31G^{*} optimized geometry. Relative Gibbs energies (Δ G) were computed at M06-2X/6-311+G^{**}/M06-2X/6-31G^{*} level in tetrahydrofuran (THF) solvent ($\epsilon = 7.58$) at 298 K.

Figure S3. The lowest unoccupied molecular orbital (LUMO) of 1a.

Figure S4. Computed reaction pathway of imine **6** formation under acidic conditions (TsOH) in THF. Relative Gibbs energies (Δ G₂₉₈, kJ/mol) are given in parentheses.

Table S2. Calculated electronic energies and number of imaginary frequencies for all M06-2X/6-31G* optimized structures.

Compound	Total energy (Hartrees)	No of Imaginary Frequencies
1a	-610.089839	0
1aH ⁺	-610.41271	0
2a	-401.94351	0
2aH ⁺	-402.30072	0
6	-935.65403	0
6H ⁺	-936.03100	0
H ₂ O	-76.37338	0
Α	-1012.05531	0
В	-1012.06188	0

С	-1012.05079	0
TS1	-1012.03152	1
TS2	-1012.42152	1
TS3	-1012.36962	1
ТѕОН	-895.11546	0
TsO-	-894.59411	0
ImTS1	-1012.42151	1
ImInt	-1012.43829	0
ImTS2	-1012.36962	1

Table S3. Cartesian coordinates of all calculated structures (M06-2X/6-31G*).

		1a				1aH⁺	
Н	3.962828	-1.600738	0.000000	Н	4.008394	-1.582226	0.027159
С	3.121469	-0.915900	0.000000	С	3.162557	-0.904045	0.008147
Н	1.611005	-2.467489	0.000000	Н	1.671680	-2.476122	0.089237
С	1.826622	-1.403388	0.000000	С	1.869687	-1.409933	0.042962
С	2.287241	1.358847	0.000000	С	2.313508	1.367233	-0.076823
С	0.738998	-0.522065	0.000000	С	0.780848	-0.535455	0.018403
С	3.347486	0.467404	0.000000	С	3.381540	0.475944	-0.051352
С	0.989551	0.850385	0.000000	С	1.036082	0.835427	-0.041122
С	-0.653515	-1.028846	0.000000	С	-0.604389	-1.034115	0.053873
Н	4.363392	0.849433	0.000000	Н	4.394711	0.862349	-0.078219
Н	2.433950	2.433408	0.000000	Н	2.455499	2.441216	-0.122829
С	-1.662250	0.037498	0.000000	С	-1.637981	0.053209	0.019788
С	-1.289005	1.336241	0.000000	С	-1.244318	1.382637	-0.039479
Н	-2.011196	2.146640	0.000000	Н	-1.922398	2.234557	-0.067572
0	-0.029072	1.772308	0.000000	0	-0.013174	1.762579	-0.068327
0	-0.928105	-2.216929	0.000000	0	-0.919767	-2.200826	0.105655
С	-3.107510	-0.284977	0.000000	С	-2.969990	-0.365796	0.051216
Η	-3.341164	-1.363505	0.000000	Н	-3.157933	-1.438755	0.097313
0	-3.975715	0.559658	0.000000	Н	-3.933502	1.301295	-0.006985
				0	-4.051735	0.334228	0.033935
		2a					
С	-0.351573	0.108932	-1.850422			2aH+	
С	-0.248696	0.012102	0.961837	C	1.726093	-0.084470	-0.002791
С	-1.526041	0.141404	-1.085221	С	-1.007415	0.275084	-0.015573
С	0.866939	0.029440	-1.178686	C	1.223239	1.213476	-0.050225
С	0.925995	-0.018391	0.214536	C	0.906145	-1.196567	0.038020
С	-1.475314	0.092330	0.297099	C	-0.474466	-1.019243	0.031718
Η	-2.488525	0.211521	-1.585800	C	-0.145614	1.387724	-0.056414
Η	1.791955	0.010137	-1.749602	Η	1.882072	2.077446	-0.081935

Н	1.895479	-0.081035	0.695169	Н	1.315690	-2.203198	0.074804
Н	-2.383052	0.114908	0.891345	Н	-1.117010	-1.889793	0.063664
0	-0.310475	-0.032724	2.325390	Н	-0.585431	2.378009	-0.092596
С	0.910527	-0.105079	3.020367	0	-2.310336	0.560616	-0.025831
Н	1.467202	-1.015287	2.761396	C	-3.247021	-0.509525	0.013462
Н	0.657825	-0.127052	4.080927	Н	-3.132410	-1.157470	-0.861730
Н	1.541729	0.769537	2.815695	Н	-4.228941	-0.040954	-0.003484
Ν	-0.405371	0.220540	-3.249868	Н	-3.132079	-1.091842	0.933583
Н	-1.263273	-0.141644	-3.648016	Ν	3.200871	-0.272589	0.003899
Н	0.394668	-0.189639	-3.716148	Н	3.641861	0.115697	-0.840609
				Н	3.442677	-1.270445	0.040369
		6		Н	3.642076	0.176355	0.817668
С	1.285328	-0.157022	-0.009508				
С	2.211113	0.959053	0.227118			6H ⁺	
0	3.066181	-1.702952	-0.394849	С	1.320050	-0.258830	-0.083610
С	3.638733	0.584699	0.121076	C	2.214395	0.899858	0.189083
С	1.768217	-1.384823	-0.302994	0	3.139421	-1.708624	-0.523188
С	4.002754	-0.727431	-0.182349	C	3.647724	0.577054	0.111148
С	4.648874	1.533375	0.325121	C	1.854902	-1.464835	-0.443379
Н	1.120852	-2.234875	-0.490104	C	4.059634	-0.711375	-0.231959
Н	5.577154	-2.141120	-0.524151	C	4.625244	1.542690	0.377053
С	5.979474	1.170437	0.226160	Η	1.274264	-2.339936	-0.726117
Н	4.343886	2.548061	0.561280	Η	5.668316	-2.082239	-0.590552
Н	6.759720	1.907041	0.385483	C	5.967123	1.207861	0.299903
С	6.321211	-0.154937	-0.079514	Н	4.297216	2.542698	0.642117
Н	7.365795	-0.439931	-0.156031	Н	6.725371	1.954917	0.506443
С	5.340155	-1.110066	-0.285709	C	6.349698	-0.094653	-0.045136
0	1.843005	2.093697	0.487139	Н	7.402252	-0.350799	-0.103532
С	-0.160585	0.082306	0.078595	C	5.398310	-1.068430	-0.316856
Н	-0.444708	1.114514	0.312860	0	1.767574	1.999071	0.450354
Ν	-1.003521	-0.859132	-0.091268	C	-0.079612	0.011816	0.005388
С	-2.380524	-0.562661	-0.042250	Н	-0.352173	1.060225	0.117689
С	-5.144605	-0.113309	0.100325	Ν	-1.048277	-0.857377	-0.001418
С	-3.238689	-1.541740	0.478474	C	-2.445103	-0.577341	0.012467
С	-2.934915	0.624793	-0.521669	C	-5.174571	-0.083597	0.120691
С	-4.308015	0.855094	-0.455060	C	-3.299941	-1.539964	0.560431
С	-4.599431	-1.316666	0.565010	C	-2.948183	0.612383	-0.504879
Η	-2.807179	-2.474991	0.825945	C	-4.311855	0.866250	-0.444867
Η	-2.293636	1.370029	-0.983363	C	-4.654690	-1.293163	0.614934
Η	-4.708271	1.782621	-0.847171	H	-2.901778	-2.469793	0.958597
Η	-5.272826	-2.059817	0.978814	H	-2.293885	1.334207	-0.984430
0	-6.493272	0.008028	0.217443	H	-4.694451	1.791552	-0.857017
C	-7.078764	1.209576	-0.230551	H	-5.344138	-2.015162	1.037380
Η	-6.683023	2.074325	0.316442	0	-6.499169	0.059382	0.221307

Η	-8.147504	1.116595	-0.037671	C	-7.094518	1.259165	-0.254734
Н	-6.914466	1.357745	-1.305093	Н	-6.699581	2.128444	0.281457
				Н	-8.159759	1.158475	-0.056484
		H ₂ O		Н	-6.929409	1.374715	-1.331083
0	0.001289	0.000000	0.000992	Н	-0.813849	-1.848930	0.003822
Η	0.005546	0.000000	0.966465				
Н	0.935818	0.000000	-0.241518			TS1	
				Н	-6.125283	1.444197	-0.604284
		Α		C	-5.247356	1.672853	-0.007592
Н	5.237707	0.470669	0.634509	C	-2.944303	2.167759	1.492516
С	4.342711	1.069451	0.495535	C	-4.243612	0.704257	0.046759
С	1.997377	2.525082	0.078696	C	-5.111470	2.871917	0.677076
С	3.167511	0.401755	0.141132	C	-3.956942	3.116359	1.426214
С	4.351355	2.446818	0.649554	C	-3.101775	0.970247	0.801371
С	3.174136	3.170046	0.434123	Н	-5.896714	3.619359	0.631460
С	1.995821	1.137961	-0.063705	Н	-3.844517	4.054062	1.961539
Η	5.263946	2.961398	0.930904	Н	-2.033073	2.334645	2.057528
Η	3.173566	4.249786	0.550020	C	-4.395550	-0.595722	-0.680250
Η	1.073109	3.067714	-0.088219	0	-5.367021	-0.804492	-1.399335
С	3.174456	-1.067983	-0.085069	0	-2.052591	0.076463	0.875516
0	4.214191	-1.707503	-0.112549	C	-2.261839	-1.196820	0.467573
0	0.828862	0.546545	-0.450403	C	-3.340283	-1.533507	-0.403005
C	0.629253	-0.807859	-0.031107	C	-3.408821	-2.909684	-0.777216
Н	0.375244	-0.782523	1.039040	0	-2.688588	-3.781687	-0.268564
С	1.842363	-1.667595	-0.279422	H	-4.173660	-3.179717	-1.523893
С	1.781665	-2.994544	-0.534974	N	-2.590401	-2.116537	2.030872
0	0.691327	-3.734946	-0.691138	H	-2.706923	-3.046465	1.604600
Н	2.708065	-3.556528	-0.624115	H	-3.485239	-1.769618	2.375930
Ν	-0.531176	-1.317172	-0.738074	C	-1.530198	-2.050696	2.981976
Н	-0.083268	-3.121195	-0.645736	C	0.642981	-1.837908	4.708598
Н	-0.355131	-1.186761	-1.735220	C	-0.491379	-2.982234	2.909957
C	-1.775406	-0.698848	-0.369329	C	-1.469406	-1.005258	3.893896
C	-4.203241	0.461001	0.387193	C	-0.389930	-0.899536	4.767596
C	-2.461579	-1.168746	0.753470	C	0.586610	-2.876254	3.770937
C	-2.310638	0.353032	-1.101150	H	-0.538605	-3.785391	2.178337
C	-3.527606	0.929820	-0.739714	H	-2.266724	-0.266918	3.926423
C	-3.658562	-0.588947	1.135968	H	-0.366998	-0.084348	5.480493
Н	-2.050456	-2.000818	1.318822	H	1.402644	-3.589838	3.741241
Η	-1.766901	0.737190	-1.959837	0	1.735110	-1.828461	5.511690
Н	-3.924296	1.744578	-1.333549	C	1.834466	-0.795875	6.468770
Н	-4.206386	-0.940795	2.003480	H	1.864193	0.189668	5.988601
0	-5.388495	0.949897	0.834277	Н	2.769224	-0.967698	7.001552
C	-5.981906	1.995894	0.097653	Н	0.998926	-0.829438	7.178489
Η	-5.345725	2.889599	0.089446	H	-1.309615	-1.704876	0.315109
							S38

		2.221990	0.001150				
Η	-6.187404	1.688965	-0.935090			TS2	
				Н	-2.696484	1.867884	1.527123
		В		С	-2.970132	1.627436	0.504534
С	0.995674	3.986873	-2.433845	С	-3.615134	0.925992	-2.127100
С	-1.092284	2.209814	-3.031363	С	-2.425301	0.463269	-0.053305
С	-0.320359	4.276610	-2.002229	С	-3.821756	2.426093	-0.234916
С	1.257753	2.778432	-3.092490	С	-4.141989	2.069666	-1.553814
С	0.226168	1.903211	-3.383617	С	-2.755786	0.127608	-1.369041
С	-1.350446	3.384994	-2.346712	Н	-4.242977	3.326882	0.198875
Н	2.281352	2.573493	-3.387038	Н	-4.810280	2.696790	-2.135514
Н	0.444232	0.979952	-3.912343	Н	-3.847802	0.629537	-3.143992
Н	-2.374291	3.645464	-2.096072	0	-2.260159	-0.988930	-1.979476
Н	-1.904017	1.542253	-3.298527	С	-1.429472	-1.788575	-1.285418
С	-0.567584	5.531586	-1.245163	Н	-1.088623	-2.647397	-1.853313
0	0.219702	6.480412	-1.350782	С	-1.052154	-1.575532	-0.013518
С	-1.728741	5.664630	-0.355132	С	-1.515290	-0.403821	0.720750
С	-2.263652	4.579055	0.314390	0	-1.164234	-0.159513	1.870511
Н	-1.853937	3.584909	0.151254	С	-0.151242	-2.558956	0.664189
С	-2.192857	7.011677	-0.059403	Н	-0.603519	-2.858251	1.629381
0	-3.136106	7.271191	0.682750	Ν	1.217168	-1.886289	1.102625
Н	-1.643549	7.822977	-0.562971	Н	1.297792	-1.753778	2.111464
Ν	-3.260925	4.656874	1.194551	С	1.676296	-0.739041	0.363184
Н	-3.655508	5.594383	1.310832	С	2.516581	1.453295	-1.130956
С	-3.767574	3.588950	1.966632	С	2.005871	-0.898571	-0.977575
С	-4.850804	1.507726	3.488240	С	1.750736	0.519160	0.959266
С	-2.987383	2.472895	2.288994	С	2.176836	1.608227	0.217484
С	-5.077432	3.662066	2.430047	С	2.424859	0.195553	-1.730795
С	-5.622429	2.632292	3.192487	Н	1.918578	-1.883573	-1.427113
С	-3.530125	1.439069	3.031059	Н	1.448817	0.645402	1.994712
Н	-1.946536	2.421948	1.985580	Н	2.246822	2.597253	0.656904
Н	-5.684829	4.528698	2.184794	Н	2.680377	0.051884	-2.773633
Н	-6.645159	2.718063	3.539402	0	0.393762	-3.534114	-0.082943
Н	-2.938728	0.567993	3.291528	0	2.921509	2.580845	-1.769269
0	-5.281208	0.445264	4.213266	С	3.239863	2.476303	-3.139525
С	-6.602373	0.485332	4.707608	Н	4.084413	1.795571	-3.302374
Η	-6.748963	1.336849	5.383206	Н	3.516761	3.479617	-3.462788
Η	-6.746775	-0.443380	5.259108	Н	2.378467	2.129781	-3.723515
Н	-7.331665	0.541111	3.890266	Н	1.470423	-2.943268	0.586657
0	2.028158	4.815838	-2.231560				
Н	1.658610	5.669219	-1.910534			TS3	
				Н	-4.956119	-1.007373	1.821846
		С		С	-4.956757	-0.422150	0.907946
ц	1 253164	0.017521	2 167207	C	-1 865558	1 070066	1 163517

C	-0.00×1.75			-		1 1/31/////	
L C	1.525752	2.731137	0 198438	c	2 419584	1 180957	-2 698952
C	1.323952	2.431139	-0.206457	C	1 963359	1.726578	-4.973194
C	1.948274	1.229174	-0.514261	C	0 953588	0.753289	-5.003308
C	1.217808	0.049555	-0.403696	C	1.416816	0.208863	-2.699494
С	-0.115474	0.065019	0.009161	C	2.704929	1.948350	-3.823799
		ТѕОН		C	0.683316	-0.000145	-3.875964
				Н	-0.089723	-0.761770	-3.867032
Н	6.093842	1.397650	-1.924520			ImTS1	
Н	6.771086	2.663430	-0.864025				
Н	6.761996	0.962460	-0.324489	Н	7.204338	0.078728	-1.610318
C	6.210430	1.728523	-0.884464	Н	8.226787	1.053496	-0.519445
0	4.964888	2.004038	-0.289168	Н	7.438807	-0.428552	0.085910
Н	-0.957278	-3.466089	0.541844	С	7.328767	0.437432	-0.580144
0	-0.544017	-3.131216	1.352549	0	6.257848	1.258895	-0.187625
Н	5.260880	-0.595395	-1.107304	Н	-0.806939	-1.981140	1.777752
Н	2.680788	2.281089	0.750350	0	0.129861	-1.694969	1.585508
Н	0.938973	0.556682	1.025534	Н	5.529767	-1.303262	-0.840715
Н	3.525492	-2.308208	-0.860287	Н	4.176709	2.569212	0.401918
С	4.319387	-0.327449	-0.641765	Η	1.841738	1.754744	0.396295
С	2.852099	1.268215	0.400957	Н	3.213407	-2.123787	-0.798189
С	1.878007	0.291155	0.551418	С	4.734673	-0.623961	-0.553747
С	3.336717	-1.301251	-0.496289	С	3.952828	1.537038	0.151163
С	4.078186	0.972099	-0.193680	С	2.648804	1.064816	0.158596
С	2.107647	-1.016840	0.102280	С	3.423420	-1.092674	-0.528634
Н	1.566664	-2.938301	0.429538	С	5.009179	0.697773	-0.203711
Ν	1.143241	-2.045241	0.195929	С	2.349328	-0.272587	-0.163758
Н	0.233388	-1.417802	2.023305	Η	0.683550	-1.991920	0.655167
С	-0.022459	-1.861074	1.051594	N	1.047786	-0.785811	-0.207829
0	-2.115132	-0.450374	2.432981	Η	0.473027	0.395751	1.485899
С	-2.100669	-0.373297	1.215611	С	0.150751	-0.359572	0.760657
С	-1.062549	-0.993738	0.380950	0	-2.443636	-1.380292	1.873247
Н	-0.308118	-1.222515	-1.608019	С	-2.459115	-0.599122	0.915509
С	-1.070525	-0.815001	-0.953030	С	-1.252975	-0.119391	0.250818
0	-1.993963	-0.113602	-1.634807	Н	-0.500648	0.813138	-1.516868
Н	-3.842512	1.220939	-2.774587	С	-1.365565	0.537993	-0.923118
Н	-5.753630	2.330858	-1.618222	0	-2.519103	0.912595	-1.491587
Н	-5.969884	2.185334	0.851782	Н	-4.800069	1.640515	-2.383887
С	-3.019573	0.468482	-0.944117	Н	-6.995969	1.123640	-1.318049
С	-5.015210	1.782202	-1.041979	Н	-7.084394	-0.200058	0.779865
C	-5.137614	1.700079	0.353070	C	-3.691385	0.616605	-0.860851
C	-3.120925	0.373278	0.444398	C	-6.075084	0.774112	-0.862089
C	-3 960804	1.001923	-1 697783	C	-6 125936	0.026270	0.325230
С	-4.196098	1.001925	1.086394	С	-3.717067	-0.125011	0.321581

Н	1.690567	-0.897870	-0.646733	H	2.172722	2.314149	-5.860906
Н	2.980797	1.226353	-0.848453	Н	3.495026	2.689476	-3.778602
Н	-0.472808	3.439596	0.411586	C	1.144569	-0.573586	-1.485437
Н	-1.756291	1.316594	0.622567	0	0.306220	-1.462925	-1.422191
С	-0.910063	-1.210135	0.119725	0	3.190544	1.417131	-1.581420
Н	-1.703032	-1.239623	-0.634846	C	2.964228	0.721077	-0.478414
Н	-0.276508	-2.088505	-0.022694	C	1.986475	-0.205844	-0.335757
Н	-1.388586	-1.288921	1.100700	C	1.871557	-0.973341	0.948638
S	2.241670	3.938778	-0.322818	0	3.103986	-1.242188	1.556591
0	3.482594	3.681817	-1.030819	Н	1.247432	-1.862813	0.811933
0	1.341219	5.001882	-0.697105	Ν	1.211576	-0.151473	2.057483
0	2.647134	4.221453	1.222763	Н	1.502597	0.825742	1.925979
Н	3.581438	3.969612	1.330370	Н	3.676017	0.969558	0.305254
				Н	1.676534	-0.476038	2.916700
		TsO-		C	-0.258295	-0.213260	2.264242
С	-0.177103	0.030713	-0.002310	C	-1.116117	-0.664017	1.278195
С	2.630516	0.012968	0.000730	C	-0.725618	0.229971	3.502285
С	0.521655	0.025791	1.201056	C	-2.486344	-0.682007	1.537032
С	0.524173	0.040998	-1.204176	Н	-0.756121	-1.015944	0.315579
С	1.916122	0.032804	-1.199573	C	-2.081934	0.214573	3.753242
С	1.913521	0.016414	1.199555	Н	-0.039554	0.581700	4.269512
Н	-0.044551	0.051637	2.127492	C	-2.976902	-0.243896	2.770298
Н	-0.042267	0.076792	-2.129971	Н	-3.154301	-1.043108	0.765116
Н	2.462241	0.048448	-2.141783	Н	-2.482560	0.545276	4.704745
Н	2.457541	0.018726	2.142958	0	-4.270781	-0.225095	3.114699
С	4.139214	-0.031675	0.000244	C	-5.225264	-0.700200	2.176613
Н	4.508917	-1.060297	-0.093589	Н	-6.192878	-0.609167	2.666624
Н	4.549090	0.379150	0.928340	Н	-5.214181	-0.090877	1.266583
Н	4.555161	0.540103	-0.835886	Н	-5.036024	-1.749591	1.926815
S	-1.985614	-0.030716	0.000467	Н	3.600153	-1.878236	1.017448
0	-2.292587	-1.470625	0.078957				
0	-2.358932	0.733738	1.205740			ImTS2	
0	-2.360704	0.602331	-1.278251	Н	-0.097588	1.006303	-4.263383
				C	0.986388	0.956054	-4.254459
		ImInt		C	3.790036	0.798344	-4.147996
Н	0.292277	1.550457	-4.160570	C	1.614819	0.477411	-3.095666
С	1.351907	1.317461	-4.162499	C	1.746973	1.347087	-5.339757
С	4.092679	0.692486	-4.091928	C	3.147007	1.266579	-5.282234
С	1.917687	0.788290	-2.990902	C	3.010155	0.407186	-3.063388
С	2.142966	1.528222	-5.274309	Н	1.265664	1.717098	-6.238209
С	3.511852	1.215219	-5.234924	Н	3.739093	1.575379	-6.137400
С	3.282284	0.484343	-2.979299	Н	4.870028	0.728932	-4.082449
Н	1.709934	1.935258	-6.181204	C	0.838172	0.059605	-1.926739
Н	4.126764	1.382294	-6.113116	0	-0.384297	0.111882	-1.844840
•							\$41

Н	5.145553	0.439323	-4.039931		0	3.683214	-0.050947	-1.953908
С	1.113202	0.560554	-1.795135		С	3.002028	-0.453946	-0.889381
0	-0.097248	0.816417	-1.740040		С	1.653524	-0.432292	-0.808805
0	3.886049	-0.043001	-1.865519		С	0.883404	-0.922142	0.365452
С	3.166370	-0.272522	-0.777565		0	1.828686	-1.120067	1.534039
С	1.848020	0.014516	-0.650696		Н	0.333661	-1.851968	0.201249
С	1.114728	-0.391791	0.603699		Ν	0.076153	0.090144	1.041461
0	1.907462	-0.535926	1.720171		Н	-0.015457	0.936672	0.477798
Н	0.570008	-1.330810	0.468313		Н	3.658443	-0.799708	-0.097776
Ν	-0.000995	0.624895	0.884205		Н	1.220833	-0.247090	1.937117
Н	-0.392628	0.846488	-0.070158		С	-1.201548	-0.364666	1.573767
Н	3.759511	-0.740030	0.002585		С	-2.268158	-0.628299	0.721290
Н	0.421107	1.488786	1.243821		С	-1.332024	-0.542341	2.951281
С	-1.047600	0.134966	1.787952		С	-3.474705	-1.081629	1.244145
С	-2.237799	-0.305588	1.231486		Н	-2.151367	-0.478249	-0.348539
С	-0.816980	0.081980	3.161396		С	-2.529264	-0.994645	3.476532
С	-3.238020	-0.806304	2.059493		Н	-0.510143	-0.290840	3.618461
Н	-2.396745	-0.255658	0.156690		С	-3.610673	-1.268568	2.625876
С	-1.810404	-0.412169	3.984295		Н	-4.299153	-1.281711	0.570892
Н	0.126323	0.415306	3.582075		Н	-2.663984	-1.132424	4.543615
С	-3.027181	-0.860017	3.442353		0	-4.729630	-1.699689	3.229088
Н	-4.169545	-1.141628	1.621085		С	-5.864478	-1.975872	2.423465
Н	-1.676385	-0.467810	5.058687		Н	-6.646471	-2.293644	3.110705
0	-3.921006	-1.316630	4.330196		Н	-6.190074	-1.079156	1.885321
С	-5.171048	-1.787583	3.849448		Н	-5.652096	-2.780833	1.711373
Н	-5.726193	-2.106184	4.729739		Н	1.650152	-1.949096	2.025785
Н	-5.718847	-0.988729	3.338039					
Н	-5.033158	-2.638371	3.173556					
Н	2.566160	0.177773	1.752118					
1				1				

X. References

- 1 Baruah, A. K.; Prajapati, D.; Sandhu, J. S. J. Chem. Soc., Perkin Trans. 1 1987, 1995.
- 2 Fitton, A. O.; Frost, J. R.; Suschitzky, H.; Houghton, P. G. Synthesis 1977, 133.
- 3 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.
- 4 (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. (b) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- 5 (a) Yang, H.; Wong, M. W. J. Org. Chem. 2011, 76, 7399. (b) Yang, H.; Wong, M. W. J. Am. Chem. Soc. 2013, 135, 5808. (c) Kee, C. W.; Wong, M. W. J. Org. Chem. 2016, 81, 7459.
- 6 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.