The first porphyrin-salen based chiral metal-organic framework for

asymmetric cyanosilylation of aldehydes

Jiawei Li, Yanwei Ren,* Chaorong Qi and Huanfeng Jiang*

Contents

1. Materials and methods2
2. Synthesis
3. Catalytic experiments4
4. Table 1. Crystallographic data and structure refinement for 15
5. Fig. S1-S4. Additional X-ray crystallographic structures7
6. Fig.S5. TGA curve of 17
7. Fig. S6. PXRD patterns of 17
8. Fig. S7. Solid state CD spectra of (R)-1 and (S)-18
9. Fig. S8. CO_2 adsorption and desorption curves of 1 at 273 K8
10. Fig. S9. N_2 adsorption and desorption curves at 77 K and pore distribution curve9
11. Fig. S10. Hot filtrate experiment of cyanosilylation of <i>para</i> -methoxybenzaldehyde10
12. Fig. S11. ¹ H NMR and ¹³ C NMR of L ¹
13. Fig. S12. HR-MS of L ¹
14. Fig. S13. HPLC of cyanosilylation products
15. References

1. Materials and methods

All of the reagents were commercially available and were used without further purification. Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8 powder diffractometer at 40 kV, 40 mA with Cu K α radiation (λ = 1.5406 Å), with a scan speed of 17.7 s/step and a step size of 0.01995° (20). Solid-state circular dichroism (CD) spectra were recorded on a J-800 spectropolarimeter (Jasco, Japan). Thermogravimetric analyses (TGA) were performed on a Q600 SDT instrument under a flow of N₂ at a heating rate of 10°C/min. ¹H NMR and ¹³C NMR were done on a Bruker Model AM-400 (400 MHz) spectrometer. Elemental analyses (EA) for C, H and N were carried out using a Vario EL III Elemental Analyzer. Infrared (IR) spectra were measured from a KBr pellets on a Nicolet Model Nexus 470 FT-IR spectrometer in the range of 4000-400 cm⁻¹. Gas chromatography-mass spectroscopy (GC-MS) spectrometry was recorded on Shimadzu Model GCMS-QP5050A system that was equipped with a 0.25mm×30m DB-WAX capillary column. The content of metal ions was determined by Atomic Absorption Spectrometer (Z-2000, HITACHI). The gas adsorption measurement was performed on a MicroActive ASAP 2460 systems under N₂ (77 K) and CO₂ (273 K). HPLC was recorded on Agilent 1200 series system with a Analytical CHIRALCEL OD-H chiral column from Daicel for enantiomeric excess determination.

Single-crystal XRD analyses of **1** was performed on an Xcalibur Onyx Nova four-circle diffractometer using CuK α radiation (λ =1.54184 Å) at 100 K. The empirical absorption correction was performed using the CrystalClear program. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares technique using the SHELX-97 program package.¹ The Cd and Ni atoms in the asymmetric unit were located firstly from the difference Fourier map and refined anisotropically. The other atoms (O, C and N) in the salen and porphyrin rings were then located from the difference Fourier map and partly refined isotropically, as a result of the relatively weak diffraction, (which is not uncommon for this kind of framework with large solvent accessible void space). Restraints (DELU and SIMU) on displacement parameters, and DFIX for bond lengths of salen framework were applied, and all phenyl rings of 1,2-diphenylethylenediimine on salen ligand were constrained to ideal six-member rings. SQUEEZE subroutine of the PLATON software suite² was applied to remove the scattering from the highly disordered guest molecules. The resulting new HKL file was used to further refine the structure. Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined

2

using a riding model. The final values of refinement parameters are listed in Table S1. Note that the contributions of guest molecules have been included in the overall formula, formula weight, density, F(000) calculations reported in Table S1 and in the CIF. CCDC 1537778 contains the supplementary crystallographic data for this paper.

2. Synthesis

CdL² was synthesized according to the literature.³

2.1 Synthesis of L¹

A mixture of compound 3-tert-butyl-5-(4-pyridyl)salicylaldehyde (510.8 mg, 2 mmol), (R, R)-1,2-diphenylethylenediamine (212 mg, 1 mmol, 0.5 equiv), in EtOH (15 mL) was heated to reflux for 8 h before being allowed to cool to room temperature. The solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel with EtOAc to get a yellow solid. Yield: 629 mg (91 %). Melt Point: 132.5-133.2 °C. IR (v/cm⁻¹): 3399.7, 3028.7, 2955.7, 2911.2, 2871.2, 1625.9, 1594.7, 1445.7, 1391.6, 1265.9, 1170.4, 1056.2, 990.5, 890.4, 821.3, 773.2, 703.6, 623.7, 545.6, 511.3. Elemental analysis, calcd. for $C_{46}H_{46}N_4O_2$: C, 80.43; H, 6.75; N, 8.16; found: C, 80.39; H, 6.78; N, 8.13. ¹H NMR (CDCl₃): δ 14.08(s, 2H), 8.57(s,4H), 8.42(s, 2H), 7.51(s, 2H), 7.33(s, 4H), 7.24(s, 12H), 4.79(s,2H), 1.44(s, 18H). ¹³C NMR (400 MHz, CDCl₃): δ 166.84, 161.34, 150.03, 147.95, 138.93, 138.39, 128.54, 128.46, 128.30, 127.98, 127.85, 127.58, 120.87, 118.82, 80.06, 35.05, 29.24.

2.2 Synthesis of NiL¹

A solution of above metal-free salen ligand (0.365 g, 0.5 mmol) in MeOH (30 mL) was added dropwise to Ni(OAc)₂·4H₂O (0.125 g, 0.5 mmol) in MeOH (30 mL). The reaction mixture was stirred at room temperature for 2 h, and then reflux for 3 h. The resulted red powder was collected by filtration, washed with MeOH and dried under reduced pressure. Yield: 717 mg (96 %). Melt Point: 401.8-402.3 °C. IR: 3028.5, 2949.2, 2908.7, 1611.8, 1588.3, 1548.5, 1496.5, 1438.5, 1398.4, 1331.6, 1287.7, 1263.9, 1233.5, 1174.1, 1080.5, 991.6, 900.2, 860.9, 824.4, 788.2, 763.2, 698.7, 637.9, 619.6, 575.3, 520.5. EA, calcd. for C₄₆H₄₄N₄NiO₂: C, 74.30; H, 5.96; N, 7.53; found: C, 74.26; H, 6.01; N, 7.47. HR-MS: m/z, 743.2914 (M+H⁺).

2.3 Synthesis of 1

Solvothermal reaction of Cd(NO₃)₂·6H₂O (30.8 mg, 0.1 mmol), L¹ (3.7 mg, 0.005 mmol) and L² (4 mg, 0.005 mmol) was performed in a mixture solvent of N,N-dimethylformamide and

methanol (DMF/CH₃OH, 3mL/1.5mL) in a 10 mL vial and heated at 60 °C for three days, then the reaction was cooled to room temperature at a rate of 5 °C/h. The product was isolated by decanting the mother liquor and washing with DMF. Yield: 16 mg (76 %). IR: 3770, 3480, 3400, 3114, 2943, 2385, 1671, 1602, 1536, 1410, 1097, 974, 859, 791, 723, 490. EA, calcd. for $C_{211}H_{200}Cd_5N_{22}Ni_2O_{31}$: C, 60.06; H, 4.78; N, 7.3; found: C, 59.77; H, 4.92; N, 7.12.

3. Catalytic Experiments

3.1 Asymmetric cyanosilylation of aldehydes

A mixture of catalyst **1** (1 mol%) and aldehyde (1 mmol) in 1 mL dichloromethane was stirred at room temperature for 0.5 h. Another mixture of TMSCN (1.2 mmol) and PPh₃O (1 mmol) was also stirred in 1mL dichloromethane at room temperature for 0.5 h. These two batches of mixtures were then combined at -20 °C and proceeded for 48 h. After completion of the reaction, the mixture was centrifuged for 5 min to remove the solid phrase and the filtrate was analyzed by GC-MS to determine the conversion.

After that, the filtrates were extracted with ethyl acetate ($3 \times 15 \text{ mL}$) and washed with water (20 mL), dried over anhydrous MgSO₄ and evaporated under vacuum to give the crude cyanohydrins. A mixture of crude cyanohydrins, pyridine (4 mmol) and acetic anhydride (3 mmol) was immersed in 2 mL dichloromethane and stirred at room temperature for 1 h. After that, the mixture was extracted by ethyl acetate (20 mL) and 1 M HCl (10 mL). Then, the organic layer was washed with water ($3 \times 20 \text{ mL}$), dried over anhydrous MgSO₄ and evaporated under vacuum to give the *o*-acetyl cyanohydirn. The ee value of the *o*-acetyl cyanohydirn was then determined by CHIRALCEL OD-H chiral column.

3.2 Recyclability tests

Upon completion of the reaction, the solid phrase was collected after centrifugation. After washing the catalysts with DMF three times, **1** was dried at 150 °C for 4 h under reduced pressure. Then it was ready for the next run.

MOFs	1
Empirical formula	$C_{211}H_{200}Cd_5N_{22}Ni_2O_3$
	1
Formula weight	4219.42
Т (К)	100(2)
Wavelength (Å)	1.54178
Crystal system	Triclinic
Space group	P1
a /Å	16.3993(4)
b/Å	17.3042(3)
c/Å	24.3278(10)
α/°	85.324(2)
β/°	78.917(3)
γ/°	89.496(2)
V/Å ³	6752.2(3)
Z	1
ρ/ g·cm⁻³)	1.038
µ/mm⁻¹	3.597
F(000)	2159
θ range data collection	2.56-66.47
Reflections collected	28338
Unique	28338
Data/restraints/parameter	20220/120/1020
S	20338/130/1938
GOF on F ²	1.119
$R_1, wR_2 [I > 2\sigma(I)]$	0.1026, 0.2682
R_1 , wR_2 (all data)	0.1289, 0.2951

4. Table 1. Crystallographic data and structure refinement for 1.

- 5. Additional X-ray crystallographic structures.
- 5.1 Fig. S1. The chiral induction of NiL¹ and Lewis acid activation of CdL² for cyanosilylation of aldehyde.

5.2 Fig. S2. The coordination environment of Cd-paddlewheel.

5.3 Fig. S3. The structure of Cd cation in L^2 .

5.4 Fig. S4. View of the framework of 1 along *a* axis.

6. Fig. S5. TGA curve of 1.

7. Fig. S6. PXRD patterns of 1.

8. Fig. S7. Solid state CD spectra of (R)-1 and (S)-1.

9. Fig. S8. CO₂ adsorption and desorption curves of 1 at 273 K.

10. Fig. S9. N_2 adsorption and desorption curves at 77 K and pore distribution curve.

BET plots :

BET Surface Area:	$1087.5918 \pm 24.1450 \ m^2/g$
Slope:	$0.004029 \pm 0.000088 \text{ g/cm}^3 \text{ STP}$
Y-Intercept:	-0.000027 ±0.000010 g/cm ³ STP
C:	-146.904832
Qm:	249.8730 cm ³ /g STP
Correlation Coefficient:	0.9995202
Molecular Cross-Sectional Area:	0.1620 nm ²

Relative Pressure	Quantity Adsorbed	1/[Q(P _o /P-1)]	
(P/Po)	(cm ³ /g STP)		
0.055937842	291.959	0.000203	
0.085523411	298.526893	0.000313	
0.12210618	302.818691	0.000459	
0.157826347	305.516041	0.000613	

12. Fig. S11. ¹HNMR and ¹³CNMR of L¹.

13. Fig. S12. HR-MS of NiL¹.

14. Fig. S13. HPLC of cyanosilylation products.

Cyano(phenyl)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar), $t_{major} = 7.791 \text{ min}, t_{minor} = 8.318 \text{ min}; ee = 63\%.$

#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.791	MM	0.1851	5535.64453	498.31860	81.5888
2	8.318	мм	0.1593	1249.16418	130.70985	18.4112

(4-Bromophenyl)(cyano)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar), $t_{major} = 8.247 \text{ min}, t_{minor} = 8.901 \text{ min}; ee = 68\%.$

Cyano(4-methyl)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar), $t_{major} = 7.337 \text{ min}$, $t_{minor} = 7.819 \text{ min}$; ee = 85%.

Cyano(4-methoxyphenyl)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar),

 t_{major} = 9.876 min, t_{minor} = 10.599 min; ee = 98%.

Catalyzed by NiL¹

Cyano(4-methoxyphenyl)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar),

Cyano(3-methoxyphenyl)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar),

 t_{major} = 8.623 min, t_{minor} = 9.958 min; ee = 55%.

Cyano(α -naphthyl)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar), t_{major} =

12.898 min, t_{minor} = 13.528 min; ee = 68%.

(9-Anthral)(cyano)methyl acetate: chiralcel OD-H column (hexane/i-PrOH = 92/8, 1.0 mL/min, 60 bar), t_{major} =

16.760 min, t_{minor} = 17.834 min; ee = 83%.

References

- 1. G. M. Sheldrick, Acta. Crystallogr. A., 2008, 64, 112.
- 2. A. L. Spek, PLATON, A multipurpose crystallographic tool, Utrecht University, The Netherlands, 2002.
- 3. R. F. Pasternack, L. Francesconi, D. Raff and E. Spiro, *Inorg. Chem.*, 1973, **12**, 2609.