Elongation of Magnetic Relaxation Times in a Single-Molecule Magnet through Intermetallic Interactions: Clamshell-Type Dinuclear Terbium(III)-Phthalocynaninato Quadruple-Decker Complex

Yoji Horii, ${ }^{a}$ Keiichi Katoh, ${ }^{a^{*}}$ Brian. K. Breedlove ${ }^{a}$ and Masahiro Yamashita ${ }^{a, b, c^{*}}$

${ }^{a}$ Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
${ }^{b}$ WPI Research Center, Advanced Institute for Materials Research, Tohoku Universi-ty, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
${ }^{c}$ School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

Figure S1. Changes in QTM possibility in the double-well potentials of isolated SMM and coupled SMMs. If the possibility for QTM in an isolated SMM is expressed as $P_{\text {QTM }}$, the QTM in the coupled SMMs is expressed as $P_{\text {QTM }}{ }^{2}$ because simultaneous two spin reversal is required in the latter case. Because $P_{\text {QTм }}{ }^{2}$ is smaller than $P_{\text {QTM }}$, QTM is effectively suppressed in coupled SMMs.

Synthesis

Reagents were purchased and used without further purification. 1,2,4-Trichlorobenzene were purchased from Aldrich. Other reagents and the solvents were purchased from Wako. Clamshell type phthalocyanine ${ }^{1}$, phenoxthiin hexachloroantimonate $\left(\mathrm{SbCl}_{6} \cdot \mathrm{Ox}\right)^{2}$ and $\mathrm{TbPc}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)^{3}$ were synthesized according to the literature methods.

Clamshell type quadruple-decker complex [Tb_{2}]

In an N_{2} atmosphere, clamshell $\mathrm{Pc}(74 \mathrm{mg}, 0.049 \mathrm{mmol}), \mathrm{TbPc}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(70 \mathrm{mg}, 0.096 \mathrm{mmol})$ were mixed with 3 mL of 1,2,4-trichlorobenzene, 1 mL of 1-hexanol and 0.5 mL of 1,8 -diazabicyclo[5.4.0]undec-7-ene (DBU). The mixture was refluxed for 2 h in an N_{2} atmosphere. Solvent was evaporated in the vacuum condition. The residue was purified by using chromatography on silica gel (Wakogel c-200) with CHCl_{3} as the eluent. The main green band was collected, and the solvent was evaporated. Further purification of that band by using chromatography on silica gel (Wakogel c-400HG) with CHCl_{3} as the eluent afforded pure [Tb_{2}]. $42 \mathrm{mg}(16 \%) \mathrm{CHN}$ elemental analysis calcd (\%) for $\mathrm{C}_{160} \mathrm{H}_{118} \mathrm{~N}_{32} \mathrm{O}_{2} \mathrm{~Tb}_{2}$: C 67.70, H 4.19, N 15.79; found: C 67.41, H 4.52, N 15.64. ESI-MS; $1419.37[\mathrm{M}]^{2+}(\operatorname{calcd} 1419.94)$

Cadmium(II)-inserted quadruple-decker complex [$\left.\mathbf{T b}_{2} \mathbf{C d}\right]$

[Tb_{2}] $(10 \mathrm{mg}, 3.5 \mu \mathrm{~mol})$ and $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}, 38 \mu \mathrm{~mol})$ were mixed in 1 mL of 1-hexanol and 0.5 mL of 1,2,4-TCB for 30 min in a N_{2} atmosphere. The solvent was removed in the reduced pressure, and the residue was purified by using chromatography over silica gel column chromatography (Wakogel c400 HG). The deep blue fraction was collected and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ via solvent
diffusion. CHN elemental analysis calcd (\%) for $\mathrm{C}_{160} \mathrm{H}_{118} \mathrm{~N}_{16} \mathrm{~Tb}_{2} \mathrm{Cd}$: C 65.21, H 4.03, N 15.19; found: C 64.97, H 4.05, N 15.14. ESI-MS; $1476.32[\mathrm{M}]^{2+}$ (calcd 1476.39)

Mononuclear terbium (III) complex [Tb]

$\mathrm{H}_{2}(\mathrm{tertPc})(48 \mathrm{mg}, 0.065 \mathrm{mmol}), \mathrm{TbPc}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(48 \mathrm{mg}, 0.066 \mathrm{mmol})$ were mixed with 3 mL of $1,2,4-$ trichlorobenzene, 2 mL of 1-hexanol and 0.1 mL of DBU in an N_{2} atmosphere. The mixture was refluxed for 2 h in an N_{2} atmosphere. The solvent was evaporated in vacuo. Residue was purified by using chromatography over silica gel (Wakogel c-200) with CHCl_{3} as the eluent. The main green band was collected, and the solvent was evaporated. Further purification of that band by using chromatography on silica gel (Wakogel c-400HG) with CHCl_{3} as the eluent afforded pure [Tb]. $29 \mathrm{mg}(31 \%) \mathrm{CHN}$ elemental analysis calcd (\%) for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{~N}_{16} \mathrm{~Tb}$: C 68.22, H 4.58, N 15.91 ; found: C 68.18, H 4.82, N 15.68. ESI-MS; $1408.48[\mathrm{M}]^{+}$(calcd 1408.47)

Mononuclear yttrium (III) complex [Y]

$\mathrm{H}_{2}(\mathrm{tertPc})(150 \mathrm{mg}, 0.065 \mathrm{mmol}), \mathrm{YPc}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(150 \mathrm{mg}, 0.066 \mathrm{mmol})$ were mixed with 9 mL of $1,2,4-$ trichlorobenzene, 6 mL of 1-hexanol and 0.5 mL of DBU in an N_{2} atmosphere. The following procedure is same with that of [Tb]. $155 \mathrm{mg}(51 \%)$ CHN elemental analysis calcd (\%) for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{~N}_{16} \mathrm{Y}$: C 71.79, H 4.82, N 16.74; found: C 71.49, H 4.90, N 16.77.ESI-MS; 1338.47 [M] ${ }^{+}$(calcd 1338.46)

Preparation of magnetically diluted sample $\left[\mathbf{T b}_{2}\right]^{\mathbf{2 + *}}$

[Tb_{2}] ($5.27 \mathrm{mg}, 1.56 \mathrm{mmol}$), [Y] ($48.50 \mathrm{mg}, 35.90 \mathrm{mmol}$) were mixed in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by using ultrasonic for 1 h . Phenoxathiin hexachloroantimonate $\mathrm{SbCl}_{6} \cdot \mathrm{Ox} 31.22 \mathrm{mg}(58.38 \mathrm{mmol})$ were mixed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by using ultrasonication. Addition of an excess amount of hexane afforded a powder sample of diluted $\left[\mathrm{Tb}_{2}\right]^{2+}$. Completion of the oxidation reaction was confirmed via UV-Vis-NIR spectrum (Figure S25).

Preparation of magnetically diluted sample $[\mathbf{T b}]^{+*}$

[Tb] ($5.69 \mathrm{mg}, 4.04 \mathrm{mmol}$), [Y] ($49.54 \mathrm{mg}, 37.01 \mathrm{mmol}$) were mixed in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by using ultrasonication for 1 h . Phenoxathiin hexachloroantimonate $\mathrm{SbCl}_{6} \cdot \mathrm{Ox}(32.92 \mathrm{mg}, 61.56 \mathrm{mmol})$ were mixed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by using ultrasonication. Addition of an excess amount of hexane afforded a powder sample of diluted $[\mathrm{Tb}]^{+}$. Completion of the oxidation reaction was confirmed via UV-Vis-NIR spectrum (Figure S25).

Figure S2. Preparation of magnetically diluted samples. To avoid the intermolecular magnetic interactions and extract the effects of intramolecular $\mathrm{Tb}-\mathrm{Tb}$ interactions, we prepared magnetically diluted samples ([$\left.\mathrm{Tb}_{2}\right]^{*}$ and $[\mathrm{Tb}]^{*}$) by doping the Tb (III) complexes into excess amount of $[\mathrm{Y}]$. Because $\left[\mathrm{Tb}_{2}\right],[\mathrm{Tb}]$ and $[\mathrm{Y}]$ have π-radicals on the pthhalocynaninato ligands, and it is known that these π-radical induce the intermolecular magnetic interactions, ${ }^{4}$ oxidizer (phenoxathiin hexachloroantimonate: ${ }^{2} \mathrm{SbCl}_{6} \cdot \mathrm{Ox}$) was added to $\left[\mathrm{Tb}_{2}\right]^{*}$ and $[\mathrm{Tb}]^{*}$ to quench the radicals as well as the intermolecular magnetic interactions.

Generalized Debye model equations

For fitting ac magnetic susceptibilities, generalized Debye model equations were used.

$$
\begin{gather*}
\chi_{M}^{\prime}=\chi_{S}+\left(\chi_{T}-\chi_{S}\right) \frac{(2 \pi v \tau)^{1-\alpha} \sin \left(\frac{\pi \alpha}{2}\right)}{1+2(2 \pi v \tau)^{1-\alpha} \sin \left(\frac{\pi \alpha}{2}\right)+(2 \pi v \tau)^{2-2 \alpha}} \tag{a}\\
\chi_{M}{ }^{\prime \prime}=\left(\chi_{T}-\chi_{S}\right) \frac{(2 \pi v \tau)^{1-\alpha} \cos \left(\frac{\pi \alpha}{2}\right)}{1+2(2 \pi v \tau)^{1-\alpha} \sin \left(\frac{\pi \alpha}{2}\right)+(2 \pi v \tau)^{2-2 \alpha}} \tag{b}
\end{gather*}
$$

In these equations, χ_{s} and χ_{T} are adiabatic and isotherm magnetic susceptibility, respectively, v is ac frequency of magnetic field, τ is magnetic relaxation time, and α is deviation factor. Both real ($\chi_{\mathrm{M}}{ }^{\prime}$) and imaginary ($\chi_{\mathrm{M}}{ }^{\prime}$) parts of ac susceptibilities were fitted simultaneously to get τ.

Derivation of equation 1.

Activation energy for spin reversal in a TbPc_{2} unit is ca. $500 \mathrm{~cm}^{-1}$. Therefore, in the low temperature region, the ground states of the TbPc_{2} units are $\mid \pm 6>$. When two $\mid \pm 6>$ states are coupled together, ferromagnetic $\mid \pm 6, \pm 6>$ and antiferromagnetic $\mid \pm 6, \mp 6>$ states are generated. In the case of $\left[\mathrm{Tb}_{2}\right]^{2+*}$, it is expected that the $\mid \pm 6, \pm 6>$ states are more stable than the $\mid \pm 6, \mp 6>$ states are due to the increase in $\chi_{\mathrm{M}} T$ values in the low temperature regions. If the energy gap between the $\mid \pm 6, \pm 6>$ and $\mid \pm 6, \mp 6>$ states is $\Delta V_{\text {dip }}$, the axial component of $\chi_{\mathrm{M}} T$ is written as follows according to the Van Vleck equation.

$$
\chi_{M Z} T=N_{A} \frac{\frac{\left(2 g \mu_{B} J_{z}\right)^{2}}{k_{B}}}{\exp \left(-\frac{\Delta V_{d i p}}{k_{B} T}\right)+1}
$$

By subtracting the $\chi_{\mathrm{M}} T$ value at infinite temperature $\left(N_{\mathrm{A}}\left(2 g \mu_{\mathrm{B}} J_{\mathrm{z}}\right) / 2 k_{\mathrm{B}}\right), \Delta \chi_{\mathrm{Mz}} T$ was obtained.

$$
\Delta \chi_{M z} T=N_{A} \frac{\frac{\left(2 g \mu_{B} J_{z}\right)^{2}}{k_{B}}}{\exp \left(-\frac{\Delta V_{d i p}}{k_{B} T}\right)+1} N_{A} \frac{\left(2 g \mu_{B} J_{z}\right)^{2}}{2 k_{B}}
$$

Since equation does not contain the effects of ligand field splitting, we can estimate $\Delta V_{\text {dip }}$ without considering ligand field splitting. The increase in $\chi_{\mathrm{M}} T$ value at low temperature mainly originates from the axial component of $\Delta \chi_{\mathrm{M}} T$. Therefore, $\Delta \chi_{\mathrm{M}} T \approx \Delta \chi_{\mathrm{Mz}} T / 3$ is established.

$$
\Delta \chi_{M} T \cong \Delta \chi_{M z} T / 3=N_{A} \frac{\frac{\left(2 g \mu_{B} J_{z}\right)^{2}}{3 k_{B}}}{\exp \left(-\frac{\Delta V_{d i p}}{k_{B} T}\right)+1} N_{A} \frac{\left(2 g \mu_{B} J_{z}\right)^{2}}{6 k_{B}}
$$

Estimation of the $\mathbf{T b} \mathbf{- T b}$ distance from the magnitude of $\Delta V_{\text {dip }}$

Hamiltonian for magnetic dipole-dipole (MD) interactions between dipole_1 and dipole_2 is expressed as eq. S5.

$$
V_{d i p}=\frac{\mu_{0}\left(g \mu_{B}\right)^{2}}{4 \pi R^{3}}\left\{J^{(1)} \cdot J^{(2)}-3\left(J^{(1)} \cdot e\right)\left(J^{(2)} \cdot e\right)\right\}
$$

where μ_{0} is magnetic permeability, μ_{B} is Bohr magnetron, g is Lande g-factor, $\boldsymbol{J}^{(1)}$ and $\boldsymbol{J}^{(2)}$ are angular momentums, R is the distance between $\boldsymbol{J}^{(1)}$ and $\boldsymbol{J}^{(2)}$, and \boldsymbol{e} is the unit vector which connect $\boldsymbol{J}^{(1)}$ and $\boldsymbol{J}^{(2)}$. If the magnetic easy axes of the TbPc_{2} units are on the same line, eq. S 5 becomes simpler due to the absence of perpendicular component of MD interactions:

$$
V_{d i p}=\frac{\mu_{0}\left(g \mu_{B}\right)^{2}}{4 \pi R^{3}}\left\{\frac{1}{2}\left(J_{+}^{(1)} \cdot J_{-}^{(2)}+J_{-}^{(1)} \cdot J_{+}^{(2)}\right)-2 J_{z}^{(1)} \cdot J_{z}^{(2)}\right\}
$$

where $J_{ \pm}$and J_{z} are lift operators and z component of \boldsymbol{J}. When considering the $I \pm 6, \pm 6>$ and $\mid \pm 6, \mp 6>$ states as the ground states, matrix elements can be derived from eq. S5 as follows:

	$\mid \pm 6, \pm 6>$	$\mid \pm 6, \mp 6>$
$< \pm 6, \pm 6 \mid$	$\frac{-18 \mu_{0}\left(g \mu_{B}\right)^{2}}{\pi R^{3}}$	
$< \pm 6, \mp 6 \mid$		$\frac{18 \mu_{0}\left(g \mu_{B}\right)^{2}}{\pi R^{3}}$

Therefore, the energy gap between the $\mid \pm 6, \pm 6>$ and $\mid \pm 6, \mp 6>$ states $\left(\Delta V_{\text {dip }}\right)$ is as follows:

$$
\Delta V_{d i p}=\frac{36 \mu_{0}\left(g \mu_{B}\right)^{2}}{\pi R^{3}}
$$

By using eq. S7 and $\Delta V_{\text {dip }}=0.646 \mathrm{~cm}^{-1}, R$ was estimated to be $6.01 \AA$.

Figure S3. Experimental (below) and calculated (above) ESI mass spectra for [Tb_{2}].

Figure S4. Experimental (below) and calculated (above) ESI mass spectra for [Tb].

Figure S5. Experimental (below) and calculated (above) isotope pattern for [Y] shown in ESI mass spectrum.

Figure S6. Experimental (below) and calculated (above) ESI mass spectra for [$\mathrm{Tb}_{2} \mathrm{Cd}$].

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra for $\left[\mathrm{Tb}_{2}\right]$ and $[\mathrm{Tb}]$ dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Paramagnetic behaviors and low molecular symmetries of $\left[\mathrm{Tb}_{2}\right]$ and [Tb] make it difficult to obtain sharp NMR spectra. It is especially difficult to assign the spectra for $\left[\mathrm{Tb}_{2}\right]$. In contrast, the ${ }^{1} \mathrm{H}$ NMR spectra for [Tb] are relatively sharper. The signal at -37.36 ppm originates from tertiary butyl group in [Tb].

Figure S8. UV-Vis-NIR spectrum of $\left[\mathrm{Tb}_{2}\right]$ and $[\mathrm{Tb}]$.

Figure S9. UV-Vis-NIR spectrum of $\left[\mathrm{Tb}_{2}\right]$ and $\left[\mathrm{Tb}_{2} \mathrm{Cd}\right]$. Absence of the broad NIR band indicates the absence of a π-radical in $\left[\mathrm{Tb}_{2} \mathrm{Cd}\right]$.

Figure S10. Cyclic voltammogram (CV) of [$\left.\mathrm{Tb}_{2}\right],[\mathrm{Tb}]$ and $[\mathrm{Y}]$.

Table S1. Redox potentials obtained from the DPV measurements ($\mathrm{V} \mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}$). Ox2 corresponds to the potentials for $\mathrm{LnPc}_{2} / \mathrm{LnPc}_{2}{ }^{+}$

	Red3	Red2	Red1	Ox1	Ox2	Ox3
$\left[\mathrm{Tb}_{2}\right]$	-2.225	-1.960	-1.654	-0.206	-0.477	
$[\mathrm{~Tb}]$	-2.226	-1.970	-1.658	-0.484	-0.047	1.081
$[\mathrm{Y}]$	-2.197	-1.940	-1.647	-0.499	-0.061	1.094

Figure S11. Differential plus voltammetry (DPV) of [Tb_{2}], [Tb] and [Y].

Table S2. Redox potentials obtained from the DPV measurements (Vvs Fc/Fc ${ }^{+}$). Ox2 correspond to the potentials for $\mathrm{LnPc}_{2} / \mathrm{LnPC}_{2}{ }^{+}$

	Red3	Red2	Red1	Ox1	Ox2	Ox3	Ox4
$\left[\mathrm{Tb}_{2}\right]$	-2.212	-1.948	-1.652	-0.464	-0.204	1.136	1.180
$[\mathrm{~Tb}]$	-2.216	-1.964	-1.656	-0.484	-0.048	1.072	1.240
$[\mathrm{Y}]$	-2.200	-1.944	-1.648	-0.500	-0.068	1.084	1.268

Figure S12. Changes in the UV-Vis-NIR spectrum upon the addition of $\mathrm{SbCl}_{6} \cdot \mathrm{Ox}$ solution (0.319 mM) to $\left[\mathrm{Tb}_{2}\right.$] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Observation of isosbestic points indicate no decomposition of [Tb_{2}] during the oxidation reactions.

Figure S13. Changes in molar absorption coefficient $\varepsilon\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ of [Tb] during oxidative titration. ε became constant above $2.5[\mathrm{Ox}] /[\mathrm{M}]$, meaning that 2.5 equivalent of $\mathrm{SbCl}_{6} \cdot \mathrm{Ox}$ is required for complete conversion of $\left[\mathrm{Tb}_{2}\right]$ into $\left[\mathrm{Tb}_{2}\right]^{2+}$.

Figure S14. Changes in UV-Vis-NIR spectrum upon addition of $\mathrm{SbCl}_{6} \cdot$ Ox solution (0.319 mM) to [Tb] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Observation of the isosbestic points indicate no decomposition of [Tb] during the oxidation reactions.

Figure S15. Changes in molar absorption coefficient $\varepsilon\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ of [Tb] during oxidative titration. ε became constant above $1.25[\mathrm{Ox}] /[\mathrm{M}]$, meaning that 1.25 equivalent of $\mathrm{SbCl}_{6} \cdot \mathrm{Ox}$ is required for complete conversion of [Tb] into [Tb] ${ }^{+}$.

Figure S16. UV-Vis-NIR spectrum of $\left[\mathrm{Tb}_{2}\right]^{2+}$ and $[\mathrm{Tb}]^{+}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Figure S17. Changes in UV-Vis-NIR spectrum before and after oxidation of [Tb $\left.{ }_{2}\right]^{*}$ and [Tb]* in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S18. $\chi_{\mathrm{M}} T$ vs T and $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots for $\left[\mathrm{Tb}_{2}\right]$ in a 1000 Oe dc magnetic field. Solid line on the $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots was fitted using the Curie equation for $T>150 \mathrm{~K}$

Figure S19. MH curves for $\left[\mathrm{Tb}_{2}\right]$ at a field sweep rate of $15 \mathrm{Oe} / \mathrm{s}$.

Figure S20. MH curves for $\left[\mathrm{Tb}_{2}\right]$ at a field sweep rate of $15 \mathrm{Oe} / \mathrm{s}$.

Figure S21. MH curves for $\left[\mathrm{Tb}_{2}\right]$ at a field sweep rate of $200 \mathrm{Oe} / \mathrm{s}$.

Figure S22. (a) $\chi_{\mathrm{M}}{ }^{\prime}$ vs v and $\chi_{\mathrm{M}}{ }^{\prime \prime}$ vs v plots (b) Cole-Cole plots for [$\left.\mathrm{Tb}_{2}\right]$ without an applied dc magnetic field. Solid lines were fitted using the Debye model.

Table S3. Fitting parameter obtained from Figure S22.

T (K)		$\chi_{s}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{s}\right)$	$\chi_{\mathrm{T}}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{\mathrm{T}}\right)$	$\tau(\mathrm{s})$	$\operatorname{dev}(\tau)$	α	$\operatorname{dev}(\alpha)$
	10	0.02019	$6.91593 \mathrm{E}-4$	2.33528	0.0066	0.13105	0.00126	0.50433	$9.33467 \mathrm{E}-4$
	13	0.01853	6.98687E-4	1.76282	0.00523	0.09327	$9.32524 \mathrm{E}-4$	0.49629	0.00113
	15	0.01813	6.46928E-4	1.52469	0.00426	0.0776	7.23471E-4	0.49106	0.00115
	20	0.01213	$7.30915 \mathrm{E}-4$	1.15344	0.00377	0.05496	5.94595E-4	0.48877	0.00152
	25	0.00982	$8.02018 \mathrm{E}-4$	0.93583	0.00338	0.04101	4.86197E-4	0.48548	0.00188
	30	0.01021	$9.10486 \mathrm{E}-4$	0.79926	0.0033	0.03277	$4.40508 \mathrm{E}-4$	0.481	0.00234
	35	0.01623	0.00169	0.69043	0.00488	0.02313	5.08648E-4	0.44705	0.00483
	40	0.03191	0.00292	0.56649	0.00426	0.00814	$1.91181 \mathrm{E}-4$	0.30743	0.00915
	42.5	0.03588	0.00275	0.52707	0.00262	0.00374	6.71167E-5	0.23513	0.00815
	45	0.03872	0.00259	0.48341	0.00158	0.00154	$2.21418 \mathrm{E}-5$	0.18155	0.00701
	47.5	0.04271	0.00226	0.45743	8.39632E-4	6.16728E-4	6.54056E-6	0.14148	0.00516
	50	0.04719	0.00269	0.37366	5.11067E-4	$2.47702 \mathrm{E}-4$	$3.32544 \mathrm{E}-6$	0.11524	0.00552
	52.5	0.06116	0.00441	0.41058	3.64938E-4	$1.1256 \mathrm{E}-4$	$2.06112 \mathrm{E}-6$	0.07098	0.00556
	55	0.08339	0.00819	0.33929	$2.53869 \mathrm{E}-4$	5.84189E-5	$2.55548 \mathrm{E}-6$	0.04643	0.00858
	60	0	0.17342	0.31033	$2.26556 \mathrm{E}-4$	$1.0729 \mathrm{E}-5$	7.01628E-6	0.02784	0.03063

Figure S23. $\chi_{\mathrm{M}} T$ vs T and $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots for $\left[\mathrm{Tb}_{2}\right]$ in the frozen solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 1000 Oe dc magnetic field. Measurements were performed below a melting point of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (175.7 K) Solid line in the $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots were fitted using the Curie equation for $T>100 \mathrm{~K}$.

Figure S24. MH curves for $\left[\mathrm{Tb}_{2}\right]$ at a field sweep rate of $15 \mathrm{Oe} / \mathrm{s}$.

Figure S25. $\chi_{\mathrm{M}} T$ vs T and $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots for $\left[\mathrm{Tb}_{2} \mathrm{Cd}\right]$ in a 1000 Oe dc magnetic field. Solid line in the $\chi_{M}{ }^{-1}$ vs T plots were fitted using the Curie equation for $T>150 \mathrm{~K}$.

Figure S26. MH curves for $\left[\mathrm{Tb}_{2} \mathrm{Cd}\right]$ at 2 K and a field sweep rate of $15 \mathrm{Oe} / \mathrm{s}$.

Figure S27. (a) $\chi_{M}{ }^{\prime}$ vs v and $\chi_{M}{ }^{\prime \prime}$ vs v plots (b) Cole-Cole plots for $\left[\mathrm{Tb}_{2} \mathrm{Cd}\right]$ without an applied dc magnetic field. Solid lines were fitted using the Debye model.

Table S4. Fitting parameter obtained from Figure S27.

T (K)		$\chi_{s}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{s}\right)$	$\chi_{\top}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{\mathrm{T}}\right)$	$\tau(s)$	$\operatorname{dev}(\tau)$	α	$\operatorname{dev}(\alpha)$
	2	0	0.05021	13.04052	0.04724	0.00454	$6.40361 \mathrm{E}-5$	0.51428	0.0037
	3	0	0.02197	8.21106	0.01645	0.00314	$2.8152 \mathrm{E}-5$	0.49091	0.00241
	4	0.07001	0.0179	5.92308	0.01152	0.00246	$2.39922 \mathrm{E}-5$	0.46049	0.0027
	5	0.13532	0.01223	4.61359	0.0071	0.00208	$1.73672 \mathrm{E}-5$	0.43046	0.0024
	6	0.1384	0.01402	3.77231	0.00735	0.00177	$2.00092 \mathrm{E}-5$	0.40686	0.00335
	7	0.14458	0.01102	3.19303	0.00531	0.00154	$1.57497 \mathrm{E}-5$	0.38739	0.00309
	8	0.16004	0.01306	2.7632	0.00585	0.00136	$1.8733 \mathrm{E}-5$	0.36696	0.00426
	9	0.16705	0.01286	2.43967	0.0053	0.00119	$1.79543 \mathrm{E}-5$	0.35402	0.00468
	10	0.14961	0.01424	2.18284	0.00537	0.00104	$1.8853 \mathrm{E}-5$	0.34367	0.0056
	11	0.15962	0.01618	1.97271	0.00569	$9.25571 \mathrm{E}-4$	$2.08657 \mathrm{E}-5$	0.33062	0.00699
	12	0.15033	0.02024	1.79454	0.00652	8.11613E-4	$2.46299 \mathrm{E}-5$	0.32102	0.00932
	15	0.12545	0.02854	1.42054	0.0071	$5.51366 \mathrm{E}-4$	$2.85613 \mathrm{E}-5$	0.30874	0.01478
	18	0.10059	0.03167	1.19084	0.00576	$3.81884 \mathrm{E}-4$	$2.62947 \mathrm{E}-5$	0.31994	0.0164
	21	0.04126	0.06326	1.0226	0.00744	$2.31028 \mathrm{E}-4$	$3.72848 \mathrm{E}-5$	0.35591	0.02795

Figure S28. (a) Comparison of $M H$ curves for $\left[\mathrm{Tb}_{2}\right]^{2+*}$ and $[\mathrm{Tb}]^{+*}$ at 10 K . (b) Enlarged view. There are no obvious differences between the plots.

Figure S29. (a) Comparison of MH curves for $\left[\mathrm{Tb}_{2}\right]^{2+*}$ and $[\mathrm{Tb}]^{+*}$ at 20 K . (b) Enlarged view. There are no obvious differences between the two plots.

Figure S30. $\chi_{\mathrm{M}} T$ vs T and $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots for $\left[\mathrm{Tb}_{2}\right]^{2+*}$ in a 1000 Oe dc magnetic field. Solid lines in the $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots were fitted using the Curie equation for $T>200 \mathrm{~K}$. The Curie constant is smaller than the expected value ($C=23.262 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for 2 mole of $\mathrm{Tb}(\mathrm{III})$) due to the magnetic dilution.

Figure S31 MH curves for $\left[\mathrm{Tb}_{2}\right]^{2+*}$ at 2 K and a field sweep rate of $15 \mathrm{Oe} / \mathrm{s}$.

Figure S32. MH curves for $\left[\mathrm{Tb}_{2}\right]^{2+*}$ at 2 K and a field sweep rate of $15 \mathrm{Oe} / \mathrm{s}$.

Figure S33. (a) $\chi_{M}{ }^{\prime}$ vs v and $\chi_{M}{ }^{\prime \prime}$ vs v plots (b) Cole-Cole plots for $\left[\mathrm{Tb}_{2}\right]^{2+*}$ without an applied dc magnetic field. Solid lines were fitted using the Debye model.

Table S5. Fitting parameter obtained from Figure S33.

T (K)		$\chi_{\mathrm{s}}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{s}\right)$	$\chi_{\top}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{\mathrm{T}}\right)$	$\tau(s)$	$\operatorname{dev}(\tau)$	α	$\operatorname{dev}(\alpha)$
	10	0.0012	1.45717	0.13374	1.93183	0.39556	0.39845	0.00833	0.0012
	13	$9.17289 \mathrm{E}-4$	1.10031	0.08819	0.99292	0.18559	0.38309	0.00974	9.17289E-4
	15	$9.583 \mathrm{E}-4$	1.11591	0.1054	1.02503	0.2407	0.40691	0.01115	$9.583 \mathrm{E}-4$
	20	0.00236	0.90043	0.06741	0.59982	0.11646	0.42617	0.01351	0.00236
	25	0.00208	0.92199	0.10643	0.56892	0.17081	0.43945	0.0158	0.00208
	30	0.00243	0.59656	0.01433	0.14924	0.0096	0.40167	0.01078	0.00243
	35	0.00351	0.43937	0.00405	0.03981	$9.42218 \mathrm{E}-4$	0.295	0.01358	0.00351
	37.5	0.00277	0.40193	0.00462	0.02201	$3.4703 \mathrm{E}-4$	0.19776	0.01303	0.00277
	40	0.00468	0.35794	0.00178	0.00889	$2.39482 \mathrm{E}-4$	0.13818	0.01055	0.00468
	42.5	0.004	0.34057	0.00166	0.00321	$6.94596 \mathrm{E}-5$	0.12252	0.00959	0.004
	45	0.00657	0.31595	0.00125	$9.69328 \mathrm{E}-4$	$3.93095 \mathrm{E}-5$	0.12435	0.01421	0.00657
	47.5	0.00434	0.30029	$4.49195 \mathrm{E}-4$	$4.62052 \mathrm{E}-4$	$1.45272 \mathrm{E}-5$	0.08991	0.01551	0.00434
	52.5	0.04613	0.26931	$7.60788 \mathrm{E}-4$	8.95634E-5	$2.33285 \mathrm{E}-5$	0	0.03641	0.04613

Figure S34. Arrhenius plots for $\left[\mathrm{Tb}_{2}\right]^{2+*}$. Solid line was fitted by using the Arrhenius equation: τ $=\tau_{0} \exp \left(\Delta E / k_{B} T\right)$. Fitting the plots by using eq. 1 was unsuccessful due to a large deviation in τ in the low-T region.

Figure S35. $\chi_{\mathrm{M}} T$ vs T and $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots for $[\mathrm{Tb}]^{+*}$ in a 1000 Oe dc magnetic field. Solid lines in the $\chi_{\mathrm{M}}{ }^{-1}$ vs T plots were fitted using the Curie equation for $T>200 \mathrm{~K}$. The Curie constant is smaller than expected value ($C=11.813 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for 1 mole of $\mathrm{Tb}(I I I)$) due to the deviation which originate from magnetic dilution.

Figure S36. MH curves for $[\mathrm{Tb}]^{+*}$ at 2 K and a field sweep rate of $15 \mathrm{Oe} / \mathrm{s}$.

Figure S37. (a) $\chi_{M}{ }^{\prime}$ vs v and $\chi_{M}{ }^{\prime \prime}$ vs v plots (b) Cole-Cole plots for [Tb] ${ }^{+*}$ without an applied dc magnetic field. Solid lines were fitted using the Debye model.

Table S6. Fitting parameter obtained from Figure S37.

$T(\mathrm{~K})$		$\chi_{s}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{s}\right)$	$\chi_{\top}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\operatorname{dev}\left(\chi_{\top}\right)$	$\tau(\mathrm{s})$	$\operatorname{dev}(\tau)$	α	$\operatorname{dev}(\alpha)$
10	0	0.00187	0.12244	0.06613	0.31329	0.21377	0	0.13866	
13	0	0.00237	0.16259	0.08353	0.32683	0.24793	0.09349	0.13048	
15	0	0.00311	0.32655	0.33381	0.88807	1.67925	0.26693	0.13418	
20	0	0.00253	0.20894	0.06757	0.28218	0.15431	0.16642	0.09191	
25	0	0.0054	0.34864	0.24717	0.57052	0.95772	0.37135	0.12909	
30	0	0.00329	0.2383	0.04662	0.17302	0.07053	0.26662	0.07229	
35	0	0.00283	0.20426	0.01545	0.06735	0.00994	0.20987	0.04771	
37.5	0	0.00461	0.21295	0.01673	0.03626	0.00675	0.29616	0.05736	
40	0	0.00359	0.19139	0.00669	0.01355	0.0012	0.2378	0.03809	
42.5	0	0.00281	0.17436	0.00296	0.00459	$2.38127 \mathrm{E}-4$	0.17355	0.02597	
45	0	0.00337	0.16227	0.00212	0.00154	$7.75421 \mathrm{E}-5$	0.14336	0.02612	
47.5	0	0.00236	0.1517	$9.32205 \mathrm{E}-4$	$6.01633 \mathrm{E}-4$	$1.69583 \mathrm{E}-5$	0.08185	0.01556	
52.5	0	0.016	0.13623	0.0011	$9.36351 \mathrm{E}-5$	$1.58134 \mathrm{E}-5$	0.06821	0.04719	

Figure S38. Arrhenius plot for $\left[\mathrm{Tb}_{2}\right]^{+*}$. Solid line was fitted by using the Arrhenius equation: $\tau=$ $\tau_{0} \exp \left(\Delta E / k_{B} T\right)$. Fitting the plots by using eq. 1 was unsuccessful due to a large deviation in τ in the low-T region.

References

1
A. Y. Tolbin, V. E. Pushkarev, L. G. Tomilova and N. S. Zefirov, Mendeleev Commun. 2009, 19, 78-80.

2 G. A. Spyroulias, C. P. Raptopoulou, D. de Montauzon, A. Mari, R. Poilblanc, A. Terzis and A. G. Coutsolelos, Inorg. Chem. 1999, 38, 1683-1696.

3 A. Y. Tolbin, V. Pushkarev, L. Tomilova and N. Zefirov, Russ. Chem. Bull. 2006, 55, 1155-1158.
4 L. Malavolti, M. Mannini, P.-E. Car, G. Campo, F. Pineider and R. Sessoli, J. Mater. Chem. C 2013, 1, 2935-2942.

