Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

Efficient conversion of N⁶-threonylcarbamoyladenosine (t⁶A) into tRNA native hydantoin cyclic form (ct⁶A) performed on nucleoside and oligoribonucleotide level

Michal Matuszewski, Katarzyna Debiec and Elzbieta Sochacka*

Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland E-mail: <u>elzbieta.sochacka@p.lodz.pl</u>

Table of Contents

I.	Pilot experiments of t ⁶ A cyclization using active esters on N ⁶ -threonylcarbamoyl residue	S2
II.	Synthesis of L-ct ⁶ A and D-allo-ct ⁶ A using EDC-P with HOBt addition	S3
III.	RP-HPLC monitoring of L-t ⁶ A and D-allo-t ⁶ A cyclization	S4
IV.	RP-HPLC coinjection analysis of L-ct ⁶ A, D-allo-ct ⁶ A, D-allo-t ⁶ A, L-t ⁶ A	S6
V.	¹ H, and ¹³ C and spectra of L-t ⁶ A, L-ct ⁶ A, D-allo-t ⁶ A, D-allo-ct ⁶ A	S 7
VI.	³¹ P NMR and ESI MS spectra of L-t ⁶ A, mnm ⁵ s ² U and ψ phosphoramidities	S12
VII.	Chemical synthesis of precursor oligoribonucleotides modified with t ⁶ A (I and II)	S15
VIII.	Purification and characterization of I (ASL of S. pombe tRNA ⁱ and II (ASL of E. coli tRNA ^{Lys})	S16
IX.	Post-synthetic transformation of I (ASL of S. pombe tRNA ⁱ) to ct ⁶ A containing cyclo-I	S18
Х.	Control of L-ct ⁶ A stability in phosphate buffer at pH 5.5, 6.5 and 7.4	S21
XI.	Post-synthetic transformation of II (ASL of <i>E. coli</i> tRNA ^{Lys}) to ct ⁶ A containing cyclo-II	S23

I. Pilot experiments of t⁶A cyclization using active esters (*in situ* formed on N⁶-threonylcarbamoyl residue)

General procedure

To a stirring solution of L-t⁶A (50 mg, 0.12 mmol) in H₂O or DMF (0.5 mL) the appropriate condensing agent was added (Table 1, entry 1-5). The progress of each reaction was monitored by TLC, using elution system consisting of *n*-butanol/H₂O (85:15, v/v; R_f of t⁶A=0.05; R_f of ct⁶A=0.30). After consumption of the starting nucleoside, the reaction mixture was evaporated to dryness, except the reactions of entry 1-3, where before evaporation, the EDC bounded to the polymer support was filtered off and washed with H₂O. In each case, the residual oily material was dissolved in MeOH and the solution was mixed with a small amount of silica gel, evaporated, applied on a silica gel column and then eluted with *n*-butanol/H₂O system (0-2% of H₂O) to obtain ct⁶A nucleoside.

ENTRY	Reagent	Solvent	AMOUNT OF REAGENT	TIME [min]	YIELD
1	EDC-P	H_2O	5 equiv	300	40%
2	EDC-P/HOBt	H_2O	5 equiv/5 equiv	50	90%
3	EDC-P/ HOSu	DMF	5 equiv/5 equiv	90	90%
4	BOP/DMAP	DMF	5 equiv/5 equiv	120	60%
5	HATU/ HOAt	DMF	5 equiv/5 equiv	20	70%

Table S1. Reagents tested for cyclization of L-threonine in t⁶A to L-ct⁶A.

Synthesis of cyclic L-N6-threonylcarbamoyladenosine (L-ct6A) using EDC-P/HOBt.

To L-N⁶-threonylocarbamoyladenosine (L-t⁶A) in carboxylic H⁺ form (0.5 g, 1.21 mmol) dissolved in Milli-Q[®] water (50 mL) the polymer-bounded EDC was added (5 equiv., 4.33 g, 6.06 mmol, EDC-P with ~1.4 mmol/g loading). The obtained suspension has been vigorously stirred at ambient temperature for 5 min, and then HOBt (5 equiv., 0.82 g 6.06 mmol) was added and the stirring was continued at room temperature. The progress of the reaction was monitored by TLC using elution system consisting of *n*-butanol/H₂O (85:15, v/v). Complete conversion of the substrate (R_f=0.05) to one product (R_f=0.30) was observed after 1 h of reaction time. Next, the resin with condensing agent was filtered off from the reaction mixture, washed carefully with H₂O (3 x 50mL), MeOH (2 x 50 mL) and the collected solvents were removed under reduced pressure. The fluffy residue was dissolved in MeOH and the solution mixed with silica gel, evaporated and applied on silica gel column. Elution was carried out initially with *n*- butanol (100 mL) and 1% H₂O in *n*-butanol (100 mL) to remove HOBt (R_f =0.60 for HOBt in *n*-butanol/H₂O (85:15 v/v) system) and then using 2% H₂O in *n*-butanol (150 mL) to obtain 0.45 g (1.14 mmol) of L-ct⁶A as a white solid (yield 90%).

Synthesis in a smaller scale (50 mg of L-t⁶A) was monitored by analytical RP-HPLC and the complete conversion to L-ct⁶A was observed after 1 h (ESI, Figure S1). The crude product was purified by preparative HPLC on Ascentis[®] C18 HPLC column (10 μ m, 21.2 x 250 mm) with linear gradient of acetonitrile (B) in 0.1% AcOH in water (A) as follows: 0-30 min from 2% B to 30% B, 30-35 min from 30% B to 50% B, 35-37 min from 50% B to 2% B, 37-40 min 2% B with a flow rate of 7 ml/min. The fraction containing L-ct⁶A (with retention time 10.11 min) was evaporated to dryness. The residue was lyophilized furnishing L-ct⁶A as a white solid (48 mg, 0.121 mmol, 95%).

Synthesis of cyclic D-allo-N⁶-threonylcarbamoyladenosine (D-allo-ct⁶A) using EDC-P/HOBt.

The synthesis of D-*allo* isomer of cyclic N⁶-threonylcarbamoyladenosine (D-*allo*-ct⁶A) was performed according to the procedure described for the L isomer, starting from D-*allo*-N⁶-threonylcarbamoyladenosine (D-*allo*-t⁶A) carboxylic H⁺ form (50 mg, 0.12 mmol). The progress of the reaction was monitored by TLC using *n*-butanol/H₂O (85:15, v/v) system as well as by HPLC (ESI Figure S2) and after 1 h of the reaction time complete consumption of the substrate occurred (TLC, R_f=0.04) to give one product (R_f=0.27). The crude product was purified by preparative HPLC (Ascentis[®] C18 HPLC Column, 10 µm, 21.2 x 250 mm) with linear gradient of acetonitrile (B) in 0.1% AcOH in water (A) as follows: 0-30 min from 2% B to 30% B, 30-35 min from 30% B to 50% B, 35-37 min from 50% B to 2% B, 37-40 min 2% B with a flow rate of 7 ml/min.; R_t=10.90 min of cyclic nucleoside) to obtain D-*allo*-ct⁶A as a white solid (43 mg, 0.11 mmol, yield 92%).

Figure S1. The HPLC monitoring of L-t⁶A cyclization to L-ct⁶A (Ascentis[®] C18 HPLC Column, 5 μ m, 4.6 x 250 mm with linear gradient of buffer A (0.1% AcOH in H₂O) and buffer B (ACN) with a flow of 1 mL/min as follows: 0-15 min from 2%B to 8%B, 15-30 min from 8%B to 25%B 30-35 min 2%B).

Figure S2. The HPLC monitoring of **D**-*allo*-t⁶A cyclization to **D**-*allo*-ct⁶A (Ascentis[®] C18 HPLC Column, 5 μ m, 4.6 x 250 mm with linear gradient of buffer A (0.1% AcOH in H₂O) and buffer B (ACN) with a flow of 1 mL/min as follows: 0-15 min from 2%B to 8%B, 15-30 min from 8%B to 25%B 30-35 min 2%B).

Figure S3. Reference HPLC chromatogram of the mixture of L-ct⁶A, D-allo-ct⁶A, D-allo-t⁶A, L-t⁶A nucleosides. RP-HPLC on C18 column (Kinetex C18 HPLC Column, 5 μ m, 4.6 x 250 mm) with linear gradient of buffer A (0.1% AcOH in H₂O) and buffer B (ACN) with a flow of 1 mL/min as follows: 0-15 min from 2%B to 8%B, 15-30 min from 8%B to 25%B 30-40 min 2%B.

Figure S4. ¹H NMR (DMSO-d₆) spectrum of L-t⁶A (A) and L-ct⁶A (B).

Figure S5. ¹³C NMR (DMSO-d₆) spectrum of L-t⁶A (A) and L-ct⁶A (B).

6.030 6.022 6.022 6.022 6.022 6.4350 6.4350 4.4395 4.339 4.337 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3394 4.3494 4.34946 4.34946 4.34946 4.34946 4.34946 4.

Figure S6. ¹H NMR (DMSO-d₆) spectrum of **D**-allo-t⁶A (A) and **D**-allo -ct⁶A (B).

Figure S7. ¹³C NMR (DMSO-d₆) spectrum of **D**-allo-t⁶A (A) and **D**-allo-ct⁶A (B).

Detailed data for Figure S4

L-t⁶A - ¹H NMR: (700 MHz, DMSO-d6) δ : 12.56 (brs, 1H, COOH), 9.73 (s, 1H, NH-6), 9.70 (d, ³*J*_{HH}=4.9, NH-11), 8.67 (s, 1H, H-8), 8.55 (s, 1H, H-2), 6.00 (d, 1H, ³*J*_{HH}=4.9, H-1'), 5.52 (d, 1H, ³*J*_{HH}=6.3, 2'-OH), 5.20 (d, 1H, ³*J*_{HH}=4.9, 3'-OH), 5.10 (t, 1H, ³*J*_{HH}=5.6, OH-5'), 4.60 (dd, 1H, ³*J*_{HH}=5.6, ³*J*_{HH}=11.2, H-2'), 4.26-4.24 (m, 2H, H-12, H-14), 4.18 (dd, 1H, ³*J*_{HH}=4.2, ³*J*_{HH}=8.4, H-3'), 3.97 (dd, 1H, ³*J*_{HH}=3.5, ³*J*_{HH}=7.7, H-4'), 3.71-3.68 (m, 1H, H-5'), 3.59-3.56 (m, 1H, H-5''), 1.15 (d, 3H, ³*J*_{HH}=7.0, CH₃-15).

L-ct⁶A - ¹H NMR: (700 MHz, **DMSO-d**₆) δ : 9.00 (s, 1H, H-2), 8.91 (s, 1H, H-8), 8.72 (brs, 1H, NH-11), 6.10 (d, ${}^{3}J_{\text{HH}}$ =5.6, H-1'), 5.62 (d, 1H, ${}^{3}J_{\text{HH}}$ =6.3, 2'-OH), 5.26 (d, 1H, ${}^{3}J_{\text{HH}}$ =5.6, 3'-OH), 5.20 (d, 1H, ${}^{3}J_{\text{HH}}$ =6.3, C14-OH), 5.09 (t, 1H, ${}^{3}J_{\text{HH}}$ =5.6, 5'-OH), 4.69 (dd, 1H, ${}^{3}J_{\text{HH}}$ =5.6, ${}^{3}J_{\text{HH}}$ =10.5, H-2'), 4.32 (dd, 1H, ${}^{3}J_{\text{HH}}$ =0.7 , ${}^{3}J_{\text{HH}}$ =2.8, H-12), 4.22 (dd, 1H, ${}^{3}J_{\text{HH}}$ =4.9 , ${}^{3}J_{\text{HH}}$ =8.4, H-3'), 4.09-4.07 (m, 1H, H-14), 4.01 (dd, 1H, ${}^{3}J_{\text{HH}}$ =3.5 , ${}^{3}J_{\text{HH}}$ =7.7, H-4'), 3.72-3.69 (m, 1H, H-5'), 3.61-3.58 (m, 1H, H-5''), 1.26 (d, 3H, ${}^{3}J_{\text{HH}}$ =7.0, CH₃-15).

Detailed data for Figure S5

L-t⁶A - ¹³C NMR (176.03 MHz, DMSO-d₆) δ: 172.33 (C-13), 153.67 (C-10), 150.81 (C-2), 150.32 (C-6), 150.25 (C-4), 142.17 (C-8), 120.42 (C-5), 87.66 (C-1'), 85.62 (C-4'), 73.78 (C-2'), 70.22 (C-3'), 66.17 (C-14), 61.21 (C-5'), 58.64 (C-12), 20.75 (C-15).

L-ct⁶A - ¹³C NMR (176.03 MHz, DMSO-d₆) δ: 171.63 (C-13), 155.14 (C-10), 153.84 (C-4), 152.48 (C-2), 146.57 (C-8), 144.45 (C-6), 130.69 (C-5), 88.35 (C-1'), 86.32 (C-4'), 74.16 (C-2'), 70.77 (C-3'), 65.95 (C-14), 63.74 (C-12), 61.66 (C-5'), 20.66 (C-15).

Detailed data for Figure S6

D-*allo*-t⁶**A** - ¹**H NMR:** (700 MHz, **DMSO**-d6) **δ**: 12.56 (brs, 1H, COOH), 9.88-9.86 (m, 2H, NH-6, NH-11), 8.70 (s, 1H, H-8), 8.60 (s, 1H, H-2), 6.03 (d, 1H, ${}^{3}J_{HH}$ =5.6, H-1'), 5.65-5.05 (m, 3H, 2'-OH, 3'-OH, 5'-OH), 4.63-4.31 (m, 1H, H-2'), 4.90 (dd, 1H, ${}^{3}J_{HH}$ =4.2, ${}^{3}J_{HH}$ =7.7, H-12), 4.22-4.20 (m, 1H, H-3'), 4.11-4.09 (m, 1H, H-14), 4.00 (dd, 1H, ${}^{3}J_{HH}$ =4.2, ${}^{3}J_{HH}$ =7.7, H-4'), 3.71 (dd, 1H, ${}^{3}J_{HH}$ =3.5, ${}^{3}J_{HH}$ =11.9, H-5'), 3.60 (dd, 1H, ${}^{3}J_{HH}$ =6.3, CH₃-15).

D-*allo*-**ct**⁶**A** - ¹**H NMR**: (700 MHz, **DMSO-d**₆) δ : 9.01 (s, 1H, H-2), 8.92 (s, 1H, H-8), 8.71 (s, 1H, NH-11), 6.09 (d, ${}^{3}J_{\text{HH}}$ =5.6, H-1'), 5.61-5.62 (m, 1H, 2'-OH), 5.34-5.35 (m, 1H, OH-3'), 5.25-5.26 (m, 1H, C14-OH), 5.08 (t, 1H, {}^{3}J_{\text{HH}}=4.9, OH-5'), 4.70-4.71 (m, 1H, H-2'), 4.46-4.45 (m, 1H, H-12), 4.22-4.23 (m, 1H, H-3'), 4.09-4.08 (m, 1H, H-14), 4.01 (dd, 1H, {}^{3}J_{\text{HH}}=4.2, ${}^{3}J_{\text{HH}}$ =7.7, H-4'), 3.72-3.69 (m, 1H, H-5'), 3.61-3.58 (m, 1H, H-5''), 1.24 (d, 3H, {}^{3}J_{\text{HH}}=6.3, CH₃-15).

Detailed data for Figure S7

D-*allo*-t⁶**A** - ¹³**C NMR** (176.03 MHz, DMSO-d₆) δ: 171.82 (C-13), 153.42 (C-10), 150.81 (C-2), 150.80 (C-6), 150.35 (C-4), 142.26 (C-8), 120.34 (C-5), 87.67 (C-1'), 85.65 (C-4'), 73.84 (C-2'), 70.25 (C-3'), 66.58 (C-14), 61.23 (C-5'), 59.18 (C-12), 19.18 (C-15).

D-*allo*-ct⁶**A** - ¹³**C NMR** (176.03 MHz, DMSO-d₆) δ: 170.32 (C-13), 154.46 (C-10), 153.35 (C-4), 152.05 (C-2), 146.26 (C-8), 143.80 (C-6), 130.32 (C-5), 87.90 (C-1'), 85.83 (C-4'), 73.66 (C-2'), 70.28 (C-3'), 66.39 (C-14), 62.82 (C-12), 61.16 (C-5'), 17.21 (C-15).

Figure S8. ³¹P NMR (DMSO-d₆) spectrum of fully protected L-t⁶A phosphoramidite.

Figure S9. ESI⁺ TOF MS spectrum of fully protected L-t⁶A phosphoramidite; calculated monoisotopic mass is 1242.6166 [M]; measured m/z 1265.61 [M+Na]⁺].

Figure S10. ³¹P NMR (DMSO-d₆) spectrum of fully protected ψ phosphoramidite.

Figure S11. ESI⁺TOF MS spectrum of fully protected ψ phosphoramidite; calculated monoisotopic mass is 860.3945 [M]; measured m/z is 883.38 [M+Na]⁺.

Figure S12. ³¹P NMR (DMSO-d₆) spectrum of fully protected mnm⁵s²U phosphoramidite.

Figure S13. ESI⁺ TOF MS spectrum of fully protected mnm⁵s²U phosphoramidite; the calculated monoisotopic mass is 1015.4503 [M]; measured *m/z* is 1038.39 [M+Na]⁺.

Chemical synthesis of precursor oligoribonucleotides modified with t⁶A (I and II)

5'-ACGGGCUCAUt⁶AACCCGU-3' (t⁶A-ASL of *S. pombe* tRNA_i^{Met}), I

5'-GUUGACUmnm⁵s²UUUt⁶AAΨCAAC-3' (t⁶A-ASL of E. coli tRNA^{Lys}), II

t⁶A-containing precursor oligomers (**I**, **II**) were synthesized manually on 2.5 µmol scale using typical rUsuccinyl-CPG (Proligo) support. Commercially available monomeric units A, C, U and G protected with DMTr and TBDMS on the 5'- and 2'-hydroxy functions, respectively, and with 4-*tert*-butylphenoxyacetyl (tac) (Proligo) on exocyclic amine function of A, C, and G were used as 0.1 M solutions in anhydrous acetonitrile. Canonical A, U, C and G amidities were coupled once in 8 molar excess for 8 min in the presence of Activator 42 (0.25 M solution of 5-(3,5-bis(trifluoromethyl)phenyl)-1*H*-tetrazole in ACN), while modified units were coupled twice, each time using 8 molar excess of amidite and 20 min coupling time. Capping was performed with tac anhydride (Fast protection Cap A : Cap B 1:1.1 v/v) for 2 min. A 0.02 M iodine solution in THF-H₂O-pyridine (90.54:9.05:0.41 v/v/v; 8 equiv.) was used as an oxidizing agent for 2 min for each oxidation step. For oligomer **II** (t⁶A-ASL of *E. coli* tRNA^{Lys}), after incorporation of mnm⁵s²U unit, the oxidizing agent was changed for 0.25 M solution of *t*BuOOH in toluene and the oxidation step was carried out for 1.5 min. After the last coupling, the DMTr group was removed and the support was washed with acetonitrile, dried with argon and transferred to a screw cap glass vial.

Deprotection of t⁶A-modified oligoribonucleotides.

To each of support-linked precursor oligoribonucleotides I and II, TEA/ACN mixture (3.3 mL, 1:1 v/v) was added. The suspension was stirred for 20 min in screw cap glass vial, and then the volatile components were removed on Speed-Vac. Next, the resin was washed with ACN (3 x 2.5 mL), dried in vacuo for 30 min. and the t⁶A-RNA oligonucleotides (I, II) were deprotected and cleaved from the solid support by treatment with 8 M ethanolic ammonia (4.5 mL) for 16 h at 37 °C. The supernatant was removed and the support was washed with ethanol (3 x 4 mL). The combined solutions were evaporated on a Speed-Vac concentrator and the solid residue was treated with 1M TBAF in THF (1.8 mL) for 24 h at rt. The reaction was quenched by addition of phosphate buffer (0.2 M, 5mL, pH 7) and desalted on Sephadex column (G-25) using 20% EtOH_{aq} as eluent. Each of the fully deprotected modified RNA oligomer was purified by anion-exchange (AEX) HPLC (Source 15Q 4.6/100PE) at constant flow rate of 1 mL/min. The column was eluted with linear gradient 50 mM to 600 mM NaBr in 20 mM Na₂HPO₄-NaH₂PO₄ buffer solution pH 7.5, containing 50 µM EDTA and 10% ACN. For precursor oligomer I (t⁶A-ASL of S. pombe tRNA;^{Met}) fractions at $R_t = 34.198$ min, while for oligomer II (t⁶A-ASL of *E. coli* tRNA^{Lys}) at $R_t = 42.154$ min were collected and shortly evaporated on Speed-Vac concentrator to remove acetonitrile. The solutions containing oligonucleotides were diluted with 100 mM AcONa (up to ~ 6 mL) and loaded slowly onto Sep-Pak C18 cartridge (Waters) equilibrated with 100 mM AcONa (pH 6.5, 10 mL). The sample was desalted by slowly passing H₂O miliQ (4 x 6 mL) through the packing bed. Next, the cartridge was flushed with elution solution (MeOH/ACN/H₂O, 4:4:3, v/v) and collected elutes containing the desalted oligonucleotides were evaporated to dryness and lyophilized to give 102 OD₂₆₀ units of I and 85 OD₂₆₀ units of **II**. The obtained products **I** and **II** were analyzed by MALDI-TOF mass spectrometry.

Figure S14. AEX-HPLC of crude I (t⁶A-ASL of *S. pombe* tRNA_i^{Met})(A); and analysis after purification (B).

Figure S15. MALDI-TOF mass spectrum of I; calculated monoisotopic mass is 5530.2; measured m/z is 5525.8.

Figure S16. AEX-HPLC of crude II (t⁶A-ASL of *E. coli* tRNA^{Lys})(A) and analysis after purification (B).

Figure S17. MALDI-TOF mass spectrum of II; calculated monoisotopic mass is 5538.4, measured m/z is 5537.3.

IX. Post-synthetic transformation of I (ASL of S.pombe tRNAⁱ) to ct⁶A containing oligomer cyclo-I (5'-ACGGGCUCAUt⁶AACCCGU-3' (I) →5'-ACGGGCUCAUct⁶AACCCGU-3'(cyclo-I)).

To the lyophilized substrate 5'-ACGGGCUCAUt⁶AACCCGU-3' (I) (2 OD, n= 1·10⁻⁵ mmole, m=0.08 mg) solution of EDC·HCl (5 equiv, n=5·10⁻⁵ mmole, m=0,0096 mg, V=2.8 µL from stock solution containing 3.5 mg (EDC·HCl) in 1mL H₂O) and solution of HOBt of (5 equiv, n=5·10⁻⁵ mmole, m=0.075 mg, V=3.2 µL from stock solution containing 2.2 mg (HOBt) in 1mL DMF). The resultant solution was incubated at 25 °C. After 1 hour HPLC analysis of reaction mixture revealed one main product (R_t=11.813 min) and the crude oligonucleotide was purified by RP-HPLC on C18 column (Kinetex, 4.6 x 250 mm, 5 µm) with linear gradient of buffer A (0.1 M CH₃COONH₄, pH 6.0) and buffer B (40% ACN in 0.1 M CH₃COONH₄, pH 6.0) with a flow 1 mL/min as follows: 0-20 min from 2%B to 25%B, 20-25 min 2%B. The fraction (R_t=11.813 min) with cyclic oligonucleotide was shortly evaporated on Speed-Vac concentrator to remove acetonitrile and the concentrated solution was diluted with 100 mM AcONa (pH 6.0, up to 3 mL) and applied slowly on Sep-Pak C18 column (Waters) equilibrated previously with 100 mM AcONa (pH 6.0, 3 x 5 mL). Next, the cartridge was flushed with 100 mM AcONa (pH 6.0, 5 mL) and the sample of oligonucleotide retained on Sep-Pak was desalted by slowly passing of H₂O miliQ (4 x 6 mL) through the packing bed. Desalted oligonucleotide was washed out from the Sep-Pak with elution solution (MeOH/ACN/H₂O, 4:4:3, v/v) and the collected elute was evaporated to dryness to afford 1.64 OD₂₆₀ units of 5'-ACGGGCUCAUct⁶AACCCGU-3' (cyclo-I), (82 % yield). Obtained (cyclo-I) oligonucleotide was analyzed by MALDI-TOF mass spectrometry (m/z calcd 5512, found 5509) and its homogeneity was confirmed by RP-HPLC on C18 column (Figure 18C; Kinetex, 4.6 x 250 mm, 5 µm) with linear gradient of buffer A (0.1 M CH₃COONH₄, pH 6.0) and buffer B (40% ACN in 0.1 M CH₃COONH₄, pH 6.0) with a flow 1 mL/min as follows: 0-20 min from 2%B to 25%B, 20-25 min 2%B.

Figure S18. RP-HPLC of **I** (A); reaction mixture after 1h, containing crude **cyclo-I** (B); purified **cyclo-I** (C); HPLC coinjection analysis of **I** and **cyclo-I** (D).

Enzymatic digestion of 5'-ACGGGGCUCAUct⁶AACCCGU-3' (cyclo-I).

The nucleoside composition of oligoribonucleotide was confirmed by neutral one-step enzymatic digestion (*Nat. Chem Biol.* 2013, 9(2), 105-111) of the final 5'-ACGGGCUCAUct⁶AACCCGU-3' (**cyclo-I**) with nuclease P₁ and alkaline phosphatase in 20 mM TEA·HCl (pH 7). The resulting mixture of nucleosides was analyzed by RP-HPLC on C18 column (Kinetex, 4.6 x 250 mm, 5 μ m) with linear gradient of buffer A (0.1% AcOH in H₂O) and buffer B (ACN) with a flow 1 mL/min as follows: 0-15 min from 2%B to 8%B, 15-30 min from 8%B to 25%B 30-35 min 2%B. The retention time (R_t) of the ct⁶A was compared to the R_t of the reference sample in a separate control experiment.

Figure S19. RNA enzymatic digestion of cyclo–I oligonucleotide. RP-HPLC analysis of nucleoside composition of ct⁶A-ASL tRNA^{Met}_i *S. pombe* (A); RP-HPLC of the references of L-ct⁶A (B) and D-allo-ct⁶A (C) nucleosides.

X. Control of L-ct⁶A stability under conditions used for NMR structural studies.

Oligonucleotide **cyclo-I** (0.1 OD) was dissolved in 50 μ L of 10 mM phosphate buffer (at pH 7.4, 6.5 and 5.5). and resultant solutions were incubated at 25 °C. The stability of L-ct⁶A was monitored by RP-HPLC on C18 column (Kinetex, 4.6 x 250 mm, 5 μ m) with linear gradient of buffer A (0.1 M CH₃COONH₄, pH 6.0) and buffer B (40% ACN in 0.1 M CH₃COONH₄, pH 6.0) with a flow 1 mL/min as follows: 0-20 min from 2%B to 25%B, 20-25 min 2%B.

Figure S20. HPLC analysis of **cyclo-I** (A) stability at pH 7.4 after incubation for 96 (A) and 145 (B) hours at 25 °C.

Figure S21. HPLC analysis of **cyclo-I** (A) stability at pH 6.5 after incubation for 96 (A) and 145 (B) hours at 25 °C.

Figure S22. HPLC analysis of **cyclo-I** (A) stability at pH 5.5 after incubation for 96 (A) and 145 (B) hours at 25 °C.

XI. Post-synthetic transformation of II (ASL of *E.coli* tRNA^{Lys}) to ct⁶A oligomer cyclo-II

5'-GUUGACUmnm⁵s²UUUt⁶AA Ψ CAAC-3' (II) \rightarrow 5'-GUUGACUmnm⁵s²UUUct⁶AA Ψ CAAC-3' (cyclo-II).

To the lyophilized substrate 5'-GUUGACUmnm⁵s²UUUt⁶AA Ψ CAAC-3' (II) (2 OD, n= 1.10⁻⁵ mmole, m=0.08 mg) solution of EDC·HCl (5 equiv, n=5·10⁻⁵ mmole, m=0,0096 mg, V=2.8 µL from stock solution containing 3.5 mg (EDC·HCl) in 1mL miliQ H₂O) and solution of HOBt (5 equiv, n=5·10⁻⁵ mmole, m=0.075 mg, V=3.2 µL from stock solution containing 2.2 mg (HOBt) in 1mL DMF) were added. The resultant solution was incubated at 25 °C. After 1 hour HPLC analysis of reaction mixture revealed one main product (Rt=13.021 min) and crude oligonucleotide was purified by RP-HPLC on C18 column (Kinetex, 4.6 x 250 mm, 5 µm) with linear gradient of buffer A (0.1 M CH₃COONH₄, pH 6.0) and buffer B (40% ACN in 0.1 M CH₃COONH₄, pH 6.0) with a flow 1 mL/min as follows: 0-20 min from 2%B to 25%B, 20-25 min 2%B. The fraction (R_t=13.021 min) with collected oligonucleotide was shortly evaporated on Speed-Vac concentrator to remove acetonitrile and the concentrated solution was diluted with 100 mM AcONa (pH 6.5, up to 3 mL) and applied on Sep-Pak C18 column (Waters) equilibrated with 100 mM AcONa (pH 6.0, 3 x 5 mL). The cartridge was flushed with 100 mM AcONa (pH 6.0, 5 mL) and the sample of oligonucleotide retained on Sep-Pak was desalted by slowly passing of H₂O miliQ (4 x 6 mL) through the packing bed. Desalted oligonucleotide was washed out with elution solution (MeOH/ACN/H₂O, 4:4:3, v/v)

the collected elute evaporated to dryness to afford and was 1.6 OD_{260} units of 5'-GUUGACUmnm⁵s²UUUct⁶AA\U004CAAC-3' (cyclo-II), (80\% yield). The obtained product was analyzed by MALDI-TOF mass spectrometry (m/z calcd 5520.1, found 5520.3) and its homogeneity was confirmed by RP-HPLC on C18 column (Kinetex, 4.6 x 250 mm, 5 µm) with linear gradient of buffer A (0.1 M CH₃COONH₄, pH 6.0) and buffer B (40% ACN in 0.1 M CH₃COONH₄, pH 6.0) with a flow 1 mL/min as follows: 0-20 min from 2%B to 25%B, 20-25 min 2%B.

HPLC monitoring:

Figure S23. RP-HPLC analysis of **II** (A); reaction mixture after 1h, containing crude product **cyclo-II** (B); purified **cyclo-II** (C); HPLC coinjection analysis of **II** and **cyclo-II** (D).

Enzymatic digestion of 5'-GUUGACUmnm⁵s²UUUct⁶AAΨCAAC-3' (cyclo-II).

The nucleoside composition of oligoribonucleotide was confirmed by neutral one-step enzymatic digestion (*Nat. Chem Biol.* 2013, 9(2), 105-111) of the final 5'-GUUGACUmnm⁵s²UUUct⁶AA Ψ CAAC-3' (cyclo-II) with nuclease P₁ and alkaline phosphatase in 20 mM TEA·HCl (pH 7). The resulting mixture of nucleosides was analyzed by RP-HPLC on C18 column (Kinetex, 4.6 x 250 mm, 5 μ m) with linear gradient of buffer A (0.1% AcOH in H₂O) and buffer B (ACN) with a flow 1 mL/min as follows: 0-15 min from 2%B to 8%B, 15-30 min from 8%B to 25%B 30-35 min 2%B. The retention time (R_t) of the ct⁶A was compared to the R_t of the reference sample in a separate control experiment.

Figure S24. RNA enzymatic digestion of **cyclo-II** (**A**) RP-HPLC analysis of nucleoside composition of $ct^{6}A$ -ASL of *E. coli* tRNA^{Lys}. RP-HPLC of the references of **L-ct**⁶A nucleoside (B), **D-allo-ct**⁶A nucleoside (C), 5-methylaminomethyl-2-thiouridine (**mnm**⁵s²U, D), pseudouridine (**Ψ**, E).