A fluorescence turn-on probe for human (bovine) serum album based

on the hydrolysis of dioxaborine group promoted by the proteins

Qian Sun,^a Weisi Wang,^b Zhaoyang Chen,^a Yuhua Yao,^a Weibing Zhang,^{*a} Liping Duan^{*b} and Junhong Qian^{*a}

^a Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.

^b National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200032,

China.

E-mail: junhongqian@ecust.edu.cn, weibingzhang@ecust.edu.cn, lipingduan@yahoo.com Tel: +86-021-64252331; Fax: +86-021-64233161

Supporting Information

Contents

Experimental2
NMR and ESI spectra of CBF and RC4
Normalized UV-vis and fluorescence spectra of CBF in various solvents7
Effect of viscosity on the spectral properties of CBF and RC8
The UPLC-MS of CBF-HSA system9
Normalized emission spectra of RC and CBF mixed with HSA10
pH effect on the stability of CBF11
Predicated binding poses of CBF and RC with HSA12
Competition of CBF with warfarin or ibuprofen13
Normalized UV-vis and fluorescence spectra of RC in various solvents
14
Time-dependent absorption and emission spectra of CBF mixed with BSA15
Effect of DTT on the fluorescence intensities of CBF mixed with HSA
16
Effects of mental ions on the spectra of CBF/RC17
Effect of SA concentration on the emission spectrum of CBF18
Photophysical properties of CBF in various solvents19

Experiment

1 Materials and Reagents

All chemicals were purchased from Aladdin Corporation and used without further purification. Ultra-pure water was prepared with a Sartorius Arium 611DI system.

2 Spectral measurements

Stock solution of the CBF (3.0×10^{-3} M in DMSO), bovine serum albumin (BSA, 36.0 mg/mL) and human serum albumin (HSA, 36.0 mg/mL) in PBS (20 mM, pH 7.4) were prepared in advance. The stock solution of CBF was diluted with corresponding solvents to acquire 5.0μ M dye solution. Absorption spectra were measured with an Evolution 220 UV-visible spectrophotometer (Thermo Scientific). Fluorescent spectra were carried out in a Lumina Fluorescence Spectrometer (Thermo Scientific). NMR spectra were performed with a Bruker AV-400 spectrometer (400M Hz). Mass spectra were recorded on a MA 1212 Instrument using standard condition (ESI, 70 ev).

3 Synthesis

Probe CBF was synthesized according to following procedures (Scheme 1).

Scheme S1 The synthesis procedures of CBF

The synthesis of RC: Acetyl acetone (2.00 g, 19.2 mmol) and boron trioxide (1.04 g, 14.9 mmol) were added into 5 mL ethyl acetate and stirred at 60 °C for 30 min under the protection of nitrogen. To the above solution, tributyl borate (4.60 g, 20.0 mmol, dissolved in 3 mL ethyl acetate) and 7-(diethylamino)-3-carbaldehyde-coumarine (2.45 g, 10.0 mmol, dissolved in 5 mL ethyl acetate) were dropped gradually, and the mixture was stirred for another 30 min at 80 °C. Then, *n*-butylamine (0.29 g, 0.40 mmol) dissolved in 1 mL ethyl acetate was added dropwise, and the reaction mixture was further stirred at 80 °C for 2.5 h followed by adding 20 mL HCl (1.0 mol/L) and stirred for another 30 min. Then the reaction solution was extracted with CH₂Cl₂ and the organic solvent was removed under reduced pressure. The residue was purified by column chromatography to give an orange solid (1.00 g, 35.6%). ¹H NMR (400 MHz, CDCl3) δ : 15.35 (s, 1H), 7.67 (s, 1H), 7.41 (d, J = 15.6 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H), 7.11 (d, J = 15.6 Hz, 1H), 6.60 (dd, J1 = 8.9 Hz, 12 = 2.5 Hz 1H), 6.49 (d, J = 2.4 Hz, 1H), 5.67 (s, 1H), 3.44 (q, J = 7.1 Hz, 4H), 2.16 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (400 MHz, CDCl3) δ : 197.8, 176.9, 159.7, 156.1, 151.6, 144.7, 135.0, 130.4, 122.3, 113.3, 109.8, 108.3, 101.2, 96.2, 44.3, 26.7, 12.3. HR-MS m/z: 328.1530 (M+H)⁺; calculated molecular weight of C₁₉H₂₁NO₄: 328.1549 for (M+H)⁺ (Fig. S2).

The synthesis of compound CBF: To a stirring solution of RC (500 mg, 1.53 mmol) dissolved in 150 mL dehydrated dichloromethane, boron trifluoride-diethyl etherate (433 mg, 3.05 mmol) was added dropwise at room temperature. After stirring for 3 h, the reaction mixture was washed with saturated brines (100 mL ×3). The organic solvent was removed under reduced pressure. The residue was purified by column chromatography to give a dark purple solid (340 mg, 59.3%). ¹H NMR (400 MHz, DMSO-d6) δ : 8.45 (s, 1H), 7.91 (d, J = 15.4 Hz, 1H), 7.50 (d, J = 9.0 Hz, 1H), 7.21 (d, J = 15.4 Hz, 1H), 6.84 (dd, J1 = 9.0 Hz, J2 = 1.4 Hz, 1H), 6.62 (s, 1H), 6.46 (s, 1H), 3.52 (q, J = 6.9 Hz, 4H), 2.33 (s, 3H), 1.56 (t, J = 6.9 Hz, 6H). ¹³C NMR (400 MHz, DMSO-d6) δ : 190.2, 180.0, 159.3, 157.0, 153.0, 149.0, 144.1, 131.6, 118.4, 112.2, 110.5, 108.8, 101.4, 96.3, 44.5, 23.8, 12.4. ¹⁹F NMR (400 MHz, DMSO-d6) δ : ¹⁰BF: -136.74, ¹¹BF: -136.81. ¹¹B NMR (400 MHz, DMSO-d6) δ : 1.04. HR-MS m/z: 375.1451 (M+H)⁺; calculated molecular weight of C₁₉H₂₀BF₂NO₄: 375.1453 for (M+H)⁺ (Fig. S1).

4 HSA/BSA Titrations

5.0 μ L of the dye stock solution were added to 3.0 mL of phosphate buffer solution (20 mM, pH 7.4) to keep [CBF] = 5.00 μ M. 0 ~ 100 μ L of 36.0 mg/mL HSA/BSA in PBS were added into the above solution to obtain appropriate concentrations of HSA/BSA. The absorption and emission spectra were recorded 10 min after the addition of HSA (or 30 min for BSA).

5 Competition experiment

HSA (0.50 mg/mL) was mixed with various concentrations of drug (warfarin or ibuprofen) in PBS (20 mM, pH 7.4) for 30 min. Then 5.0 μ L of the dye stock solution were added into above solution to keep [CBF] = 5 μ M.

HSA (0.50 mg/mL) was mixed with CBF (5.0 μ M) in PBS (20 mM, pH 7.4) for 30 min. Then, 0 – 40 μ L of warfarin/ibuprofen stock solution (15 mM in DMSO) were added into the above solution to obtain various concentrations of warfarin/ibuprofen. The emission spectra were recorded after mixed for 30 min.

6 Molecular docking

Docking simulations were carried out by using CDOCKER module (Discovery Studio, version 2.1, Accelrys, San Diego, CA, USA). The X-ray crystal structures of HSA complexed with phenylbutazone (PDB ID: 2BXP) or ibuprofen (PDB ID: 2BXG) were used for the docking calculation. After removing the ligands and solvent molecules, the CHARMm-force field was applied to the protein. The area around phenylbutazone and ibuprofen was defined as binding site I and site II, respectively, with a radius set as 7.5 Å. Random conformations of compounds CBF and RC were generated using CHARMm-based molecular dynamics (1000 steps), and then docked into the defined binding sites. The other parameters were set as default. The final binding conformations of compounds CBF and RC were determined based on the calculated CDOCKING energy and visual check. The most stable binding mode among the top 10 docking poses of each compound was presented in Fig. S8.

WB-SQ-22 20160359-1	WB-SQ-22 20160359-1 811 (13.530) Cm (811-(14+71)) 100										
%	0182	115.0538 400.0000		198.0553210.0	904 228.068	7 270 1000	312	2.0908	359 332.1	.1257 012	75.1451
0-40 40	60 80	100 120 140	1/5.14/9	180 200	220 240	260 280	1.1/11/11/1 300	320	340	360	380
Minimum: Maximum:	3.00 100.00		5.0	10.0	-1.5 50.0						
Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula			
332.1012	5.43	312.0947 312.0958 332.1009 332.1020 332.1031 332.0980	-3.9 -5.0 0.3 -0.8 -1.9 3.2	-12.5 -16.0 0.9 -2.4 -5.7 9.6	15.0 11.0 14.0 10.0 10.0 14.0	389.0 382.4 2773316.5 2773312.5 2773075.0 2773308.0	C19 C16 C19 C16 C17 C18	H12 H13 H13 H14 H15 H11	10B 10B 10B 10B 11B 10B	N 03 N 04 N 03 N 04 04 F 11B	F F F2 2 N 02
359.1257	24.46	359.1255	0.2	0.6	10.5	2.2	F2 C18	H17	10B	N 04	F2
360.1217 361.1257	100.00 19.94	360.1219 361.1297	-0.2 -4.0	-0.6 -11.1	10.5 10.0	0.9 64.3	C18 C18	H17 H18	11B 11B	N 04	F2 F2
374.1481	12.85	361.1208 374.1490 375.1453	4.9 -0.9 -0.2	13.6 -2.4 -0.5	13.5 10.0	951.9	C19 F C19	H15 H20	10B	11B N 04	N 04 F2
376.1481	9.40		-0.2	-0.5	10.0	5,4	C19	H20	11B	N O4	F2

Fig. S1 The ¹H-NMR, ¹³C-NMR, ¹⁹F-NMR and ¹¹B-NMR and HR-MS spectra of CBF.

Fig. S2 The ¹H-NMR, ¹³C-NMR and HR-MS spectra of RC.

Fig. S3 Normalized absorption (a) and emission (b) spectra of CBF in various solvents, and the correlation of absorption (c) and emission (d) wavenumber of CBF with solvent polarity. Recorded 5 min after the addition of the probe.

Fig. S4 Normalized absorption (a, c) and emission (b, d) spectra of RC (a-b) and CBF (c-d) in solvents with different viscosities. Recorded 5 min after the addition of the probe.

Fig. S5 (a) The UPLC of RC (green), CBF (red) and the solution of CBF with HSA (blue) in PBS; (b) The total ion chromatogram of the mixture of CBF and HSA in PBS after 5 min. [CBF] = [RC] = 5.0μ M, [HSA] = 1.0 mg/mL, 20 mM PBS (pH 7.4), detection wavelength = 460 nm.

Fig. S6 Normalized emission spectra of RC (black) and CBF (red) mixed with HSA for 15 min in PBS. [RC] = [CBF] = 5.0 μ M, [HSA] = 1.0 mg/mL, 20 mM PBS (pH 7.4), λ_{ex} = 495 nm.

Fig. S7 Time-dependent absorption (a, c, e) and emission (b, d, f) spectra of CBF in mixed solution of PBS: MeCN (v/v = 2:1) with different pHs. (a-b) pH 5.0; (c-d) pH 7.4; (e-f) pH 9.0. [CBF] = 5.0 μ M, 20 mM, λ_{ex} = 495 nm.

Fig. S8 Predicted binding poses of CBF and RC with HSA. Stereoviews of docking conformations of CBF and RC in the binding site I (A) and site II (B) of HSA. Binding modes of CBF with contacting residues in the binding site I (C) and site II (D) of HSA. Binding modes of RC with contacting residues in the binding site I (E) and site II (F) of HSA. Backbone color code: CBF in yellow; RC in cyan; amino acid residues in grey. H-bonds are displayed as green dashes. Cation- π interaction is displayed as orange solid line.

Fig. S9 The fluorescence spectra of CBF in the presence of HSA pretreated with different concentrations of warfarin (a), the fluorescence intensity of CBF in the presence of HSA pretreated with 50 μ M of warfarin or ibuprofen (b); effect of drug concentration on the fluorescence intensity ratio I/I₀ of CBF- HSA mixture (c). 20 mM PBS (pH 7.4), [CBF] = 5.0 μ M, [HSA] = 0.50 mg/mL, $\lambda_{ex} = 495$ nm, $\lambda_{em} = 540$ nm.

Fig. S10 Normalized absorption (a) and emission (b) spectra of RC in various solvents, and the correlation of absorption (c) and emission (d) wavenumber of RC with solvent polarity. Recorded 5 min after the addition of the probe.

Fig. S11 Time-dependent absorption (a) and emission (b) spectra of CBF mixed with BSA in PBS. $[CBF] = 5.0 \ \mu\text{M}, [BSA] = 1.0 \ \text{mg/mL}, 20 \ \text{mM} \ \text{PBS} \ (\text{pH } 7.4), \ \lambda_{ex} = 495 \ \text{nm}.$

Fig. S12 The fluorescence intensity at 540 nm of CBF as a function of time in the presence of BSA without (black) and with (red) pretreated with DTT in PBS. [CBF] = $5.0 \,\mu$ M, [BSA] = $1.0 \,\text{mg/mL}$, 20 mM PBS (pH 7.4), $\lambda_{ex} = 495 \,\text{nm}$, $\lambda_{em} = 540 \,\text{nm}$.

Fig. S13 Effects of metal ions on the absorption (a, c) and emission (b, d) spectra of CBF (a-b) in PBS/MeCN (2:1) and RC (c-d) in PBS. [CBF] = [RC] = 5.0 μ M, [metal ion] = 100 μ M, [HSA] = 0.50 mg/mL, 20 mM PBS (pH 7.4), λ_{ex} = 490 nm for CBF and 460 nm for RC. Recorded 30 min after each addition.

Fig S14 (a-b) Effect of SA concentration on the emission spectrum of CBF in PBS; (c) the fluorescence intensity at 540 nm vs. SA concentration. [CBF] = 5.0 μ M, 20 mM PBS (pH 7.4), λ_{ex} = 495 nm, λ_{em} = 540 nm, recorded 30 min after each addition.

Compound	Solvent	λ_{ab}/nm	λ_{em}/nm	Stokes shift / nm	Φ_{fl}
	toluene	512	554	42	0.268
	ethylacetate	512	582	70	0.219
	dichloromethane	526	597	71	0.178
CDE	acetone	520	613	93	0.103
CBF	acetonitrile	524	626	104	0.020
	Methanol	516	621	105	0.021
	DMSO	538	635	97	0.046
	PBS ^b	514	/	/	/
	toluene	446	490	44	0.735
	ethylacetate	448	517	69	0.621
	dichloromethane	458	525	67	0.510
DC	acetone	454	535	81	0.484
ĸĊ	acetonitrile	458	543	85	0.387
	Methanol	458	561	103	0.346
	DMSO	470	554	84	0.497
	PBS ^b	470	589	119	0.023

Table S1. The photophysical properties of CBF and RC in various solvents.

Coumarin 153 ($\phi_f = 0.380$ in ethanol) was used as the reference; ^b containing 1% DMSO.