Electric Supplementary Information

Silver(I)-Induced Higher-Ordered Structure Based on Planar Chiral Tetrasubstituted [2.2]Paracyclophane

Masayuki Gon^a, Yasuhiro Morisaki^{a,b}, and Yoshiki Chujo*,^a

^a Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto 615-8510, Japan.

^b Present address: Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 Japan.

E-mail: chujo@chujo.synchem.kyoto-u.ac.jp

Contents:	page
General	S-2
Materials	S-3
Synthetic procedures and characterization	
Synthesis of N-H	S-4
Synthesis of N-Ph	S-6
Ag(I) Coordinate compounds	S-8
Preparation of N-H-Ag	S-8
Preparation of N-Ph-Ag	S-10
UV-vis absorption and PL spectra	S-12
PL lifetime decay curves of N-Ph and N-H	S-13
Predicted structures of N-Ph-Ag	S-14
Computational details	S-15
Ag(I) titration measurement	S-16
Single crystal X-ray structure analysis of rac-N-H	S-19
Single crystal X-ray structure analysis of rac-N-H-Ag	S–21
References	S-23

General

¹H and ¹³C NMR spectra were recorded on JEOL EX400 and AL400 instruments at 400 and 100 MHz, respectively. Samples were analyzed in and CD₂Cl₂. Analytical thin layer chromatography (TLC) was performed with silica gel 60 Merck F254 plates. Column chromatography was performed with Wakogel® C-300 silica gel and aluminium oxide 90 active basic (0.063-0.200 mm, pH = 8.5-10.5). High-resolution mass (HRMS) spectrometry was performed at the Technical Support Office (Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University), and the HRMS spectra were obtained on a Thermo Fisher Scientific EXACTIVE spectrometer for electrospray ionization (ESI). Recyclable preparative high-performance liquid chromatography (HPLC) was carried out on a Japan Analytical Industry Co. Ltd., Model LC918R (JAIGEL-1H and 2H columns) using CHCl₃ as an eluent. UV-vis spectra were recorded on a SHIMADZU UV-3600 spectrophotometer, and samples were analyzed in CH₂Cl₂ at room temperature. Fluorescence emission spectra were recorded on a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer, and samples were analyzed in CH₂Cl₂ at room temperature. Specific rotations ($[\alpha]_{D}^{t}$) were measured with a HORIBA SEPA-500 polarimeter. Circular dichroism (CD) spectra were recorded on a JASCO J-820 spectropolarimeter with CH₂Cl₂ as a solvent at room temperature. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-200S with CH₂Cl₂ as a solvent at room temperature. The PL lifetime measurement was performed on a Horiba FluoreCube spectrofluorometer system; excitation was carried out using a UV diode laser (NanoLED 375 nm). Elemental analyses were performed at the Microanalytical Center of Kyoto University.

Materials

Commercially available compounds used without purification:

2-Iodo-pyridine (1) (Tokyo Chemical Industry Co, Ltd.)

- Pd₂(dba)₃ (dba = dibenzylideneacetone) (Tokyo Chemical Industry Co, Ltd.)
- 1,1'-bis(diphenylphosphino)ferrocene (dppf) (Tokyo Chemical Industry Co, Ltd.)
- CuI (Wako Pure Chemical Industries, Ltd.)
- K₂CO₃ (Wako Pure Chemical Industries, Ltd.)
- AgOTf (Silver(I) trifluoromethanesulfonate) (Strem Chemicals Inc.)

Commercially available solvents:

CH₂Cl₂ (deoxidized grade, Wako Pure Chemical Industries, Ltd.) used without purification.

THF (Wako Pure Chemical Industries, Ltd.) and Et₃N (Kanto Chemical Co., Inc.) purified by passage through solvent purification columns under Ar pressure.¹

Compounds prepared as described in the literatures:

2-Bromo-6-(phenylethynyl)pyridine $(2)^2$

 (S_p) - and (R_p) -4,7,12,15-Tetraethynyl[2.2]paracyclophane $((S_p)$ - and (R_p) -**Cp**)³

Synthetic Procedures and Characterization

Synthesis of (S_p)-N-H

A mixture of (S_p)-**Cp** (20.0 mg, 0.0657 mmol), 2-iodopyridine (**1**) (59.3 mg, 0.289 mmol), Pd₂(dba)₃ (6.0 mg, 0.00657 mmol), dppf (7.3 mg, 0.0131 mmol), CuI (2.5 mg, 0.0131 mmol), THF (2 mL) and Et₃N (2 mL) was placed in a round-bottom flask equipped with magnetic stirring bar. After degassing the reaction mixture several times, the reaction was carried out at room temperature for 24 h. After the reaction, precipitates were removed by filtration, and the solvent was evaporated. The residue was semi-purified by flash column chromatography on basic (pH = 8.5-10.5) Al₂O₃ (EtOAc as an eluent) and recrystallization from CH₂Cl₂ and Hexane (good and poor solvent, respectively) to afford (S_p)-**N-H** (25.7 mg, 0.0419 mmol, 64%) as a colorless crystal.

 $R_{\rm f} = 0.23$ (EtOAc/CH₂Cl₂ = 1/1 v/v). ¹H NMR (CD₂Cl₂, 400 MHz) δ 3.16-3.24 (m, 4H), 3.61-3.69 (m, 4H), 7.25 (s, 4H), 7.31 (ddd, J = 1.4, 4.8, 7.6 Hz, 4H), 7.65 (td, J = 1.2, 7.8 Hz, 4H), 7.75 (dt, J = 1.8, 7.7 Hz, 4H), 8.67 (ddd, J = 0.96, 1.7, 4.8 Hz, 4H) ppm; ¹³C NMR (CD₂Cl₂, 100 MHz) δ 33.2, 88.5, 94.9, 123.4, 125.3, 128.0, 135.5, 136.6, 143.2, 143.9, 150.6 ppm. HRMS (ESI) calcd. for C₄₄H₂₉N₄ [M+H]⁺: 613.2387, found: 613.2364. Elemental analysis calcd. for C₄₄H₂₈N₄: C 86.25 H 4.61 N 9.14, found: C 86.22 H 4.57 N 9.09.

 (R_p) -N and was obtained by the same procedure in 86% isolated yield.

 (S_p) -N: $[\alpha]^{23}_D = -96.4$ (*c* 0.5, CH₂Cl₂). (*R*_p)-N: $[\alpha]^{23}_D = +97.7$ (*c* 0.5, CH₂Cl₂).

Figure S1. ¹H NMR spectrum of (S_p) -**N-H** in CD₂Cl₂.

Figure S2. ¹³C NMR spectrum of (S_p) -**N-H** in CD₂Cl₂.

Synthesis of (S_p)-N-Ph

A mixture of (S_p) -**Cp** (30.0 mg, 0.0986 mmol), 2-bromo-6-(phenylethynyl)pyridine (**2**) (127 mg, 0.493 mmol), Pd₂(dba)₃ (9.0 mg, 0.00986 mmol), dppf (10.9 mg, 0.0197 mmol), CuI (3.8 mg, 0.0197 mmol), THF (3 mL) and Et₃N (3 mL) was placed in a round-bottom flask equipped with magnetic stirring bar. After degassing the reaction mixture several times, the reaction was carried out at reflux condition for 24 h. After the reaction, precipitates were removed by filtration, and the solvent was evaporated. The residue was semi-purified by flash column chromatography on SiO₂ (CH₂Cl₂/EtOAc = 9/1 v/v as an eluent). Further purification was carried out by HPLC with CHCl₃ and flash column chromatography on basic (pH = 8.5-10.5) Al₂O₃ (CH₂Cl₂/EtOAc = 19/1 v/v as an eluent). The purified sample was collected by lyophilization with benzene to afford (S_p)-N-Ph (14.6 mg, 0.0144 mmol, 15%) as a colorless powder.

 $R_{\rm f} = 0.23 \; (CH_2Cl_2). {}^{1}$ H NMR (CD₂Cl₂, 400 MHz) $\delta \; 3.21 - 3.29 \; (m, 4H), \; 3.66 - 3.74 \; (m, 4H), \; 7.32 \; (s, 4H),$ 7.39-7.44 (m, 12H), 7.51 (dd, J = 0.72, 7.6 Hz, 4H), 7.61-7.66 (m, 8H), 7.72 (dd, J = 0.72, 7.8 Hz, 4H), 7.78 (t, J = 7.8 Hz, 4H), ppm; 13 C NMR (CD₂Cl₂, 100 MHz) $\delta \; 33.0, \; 88.9, \; 88.9, \; 89.6, \; 94.6, \; 122.4, \; 125.4,$ 126.9, 127.4, 128.9, 129.6, 132.4, 135.8, 137.1, 143.2, 144.1, 144.2 ppm. HRMS (ESI) calcd. for C₇₆H₄₅N₄ [M+H]⁺: 1013.3639, found: 1013.3624. Elemental analysis calcd. for C₇₆H₄₄N₄: C 90.09 H 4.38 N 5.53, found: C 89.82 H 4.53 N 5.51.

 (R_p) -**N-Ph** and was obtained by the same procedure in 21% isolated yield.

 (S_p) -**N-Ph**: $[\alpha]^{23}_D = +16.8 (c \ 0.5, CH_2Cl_2). (R_p)$ -**N-Ph**: $[\alpha]^{23}_D = -16.5 (c \ 0.5, CH_2Cl_2).$

Figure S3. ¹H NMR spectrum of (S_p) -**N-Ph** in CD₂Cl₂.

Figure S4. ¹³C NMR spectrum of (S_p) -**N-Ph** in CD₂Cl₂.

Ag Coordinate Compounds

The preparation methods of the Ag(I) coordinate compounds, (S_p) -N-H-Ag and (S_p) -N-Ph-Ag are shown here. Ag(I) coordination was confirmed by ¹H and ¹³C NMR spectra. The difference of solubility between starting compounds and obtained compounds supports the Ag(I) coordination. Although Ag(I) coordination was also confirmed by HRMS spectra, *trans-N-N*-Ag(I) coordinate compounds having two coordination sites are usually detected as mono-coordinate compounds in HRMS spectra.

Preparation of (S_p)-N-H-Ag

A mixture of (S_p) -**N-H** (10.0 mg, 0.0163 mmol) and AgOTf (16.8 mg, 0.0652 mmol) was placed in a round-bottom flask equipped with magnetic stirring bar. After degassing the reaction mixture several times, CH₂Cl₂ (1.0 mL) were added to the mixture. The reaction was carried out at reflux temperature for 14 h. After the reaction, all CH₂Cl₂ were dried over in the same flask. The residue was dissolved in CH₂Cl₂ and filtered to remove excess AgOTf. After the solvent of filtrate was evaporated, the residue was dissolved in CH₃CN and filtered to remove unreacted (S_p)-**N-H**. After the solvent of filtrate was evaporated, the residue was dissolved in CH₃CN and filtered to remove unreacted (S_p)-**N-H**. After the solvent of filtrate was evaporated, repreticipation with CH₂Cl₂ and hexane (good and poor solvent, respectively) was carried out to afford (S_p)-**N-H-Ag** (16.1 mg, 0.0143 mmol, 88%) as a light yellow solid. (S_p)-**N-H** was not dissolved in CH₃CN, but (S_p)-**N-H-Ag** was dissolved in CH₃CN.

¹H NMR (CD₂Cl₂, 400 MHz) δ 3.05-3.14 (m, 4H), 3.49-3.57 (m, 4H), 7.30 (s, 4H), 7.60 (ddd, *J* = 7.6 5.5, 1.3 Hz, 4H), 7.82 (d, *J* = 7.6 Hz, 4H), 8.00 (dt, *J* = 7.8, 1.6 Hz, 4H), 9.07 (d, *J* = 4.7 Hz, 4H) ppm; ¹³C NMR (CD₂Cl₂, 100 MHz) δ 32.8, 91.9, 94.2, 121.1 (q, *J* = 320 Hz), 125.1, 125.4, 129.2, 135.4, 139.7, 143.5. 143.8, 153.8 ppm. HRMS (ESI) calcd. for C₄₄H₂₈N₄Ag [M-Ag(OTf)₂]⁺: 719.1359, found: 719.1346.

 (R_p) -**N-Ag** was obtained by the same procedure in isolated 91% yield.

 (S_p) -N-Ag: $[\alpha]^{23}_D = -33.4$ (*c* 0.5, CH₂Cl₂). (*R*_p)-N-Ag: $[\alpha]^{23}_D = +36.2$ (*c* 0.5, CH₂Cl₂).

Figure S5. ¹H NMR spectrum of (S_p) -N-H-Ag in CD₂Cl₂.

Figure S6. ¹³C NMR spectrum of (S_p) -N-H-Ag in CD₂Cl₂.

Preparation of (S_p)-N-Ph-Ag

A mixture of (S_p) -**N-Ph** (10.0 mg, 0.00987 mmol) and AgOTf (25.4 mg, 0.0987 mmol) was placed in a round-bottom flask equipped with magnetic stirring bar. After degassing the reaction mixture several times, CH₂Cl₂ (1.0 mL) were added to the mixture. The reaction was carried out at reflux temperature for 20 h. After the reaction, all CH₂Cl₂ were dried over in the same flask. The residue was dissolved in CH₂Cl₂ and filtered to remove excess AgOTf. After the solvent of filtrate was evaporated, the residue was dissolved in MeOH and filtered to remove unreacted (S_p)-**N-Ph**. After the solvent of filtrate was evaporated, repreticipation with CH₂Cl₂ and hexane (good and poor solvent, respectively) was carried out to afford (S_p)-**N-Ph-Ag** (13.7 mg, 0.00897 mmol, 91%) as a light yellow solid. (S_p)-**N-Ph** was not dissolved in CH₃OH, but (S_p)-**N-Ph-Ag** was dissolved in CH₃OH.

¹H NMR (CD₂Cl₂, 400 MHz) δ 3.12-3.20 (m, 4H), 3.56-3.64 (m, 4H), 7.25-7.29 (m, 8H), 7.32-7.35 (m, 8H), 7.39-7.44 (m, 4H), 7.45 (s, 4H), 7.80 (dd, *J* = 7.8, 0.96 Hz, 4H), 7.90 (dd, *J* = 7.8, 0.96 Hz, 4H), 8.13 (t, *J* = 7.8 Hz, 4H) ppm; ¹³C NMR (CD₂Cl₂, 100 MHz) δ 33.0, 87.3, 93.0, 93.7, 95.6, 120.4, 124.9, 128.4, 128.5, 128.7, 130.6, 132.6, 135.8, 140.7, 143.9, 144.3, 145.1 ppm (quartet CF₃ peaks of trifluoromethanesulfonate are not detected). HRMS (ESI) calcd. for C₇₆H₄₄N₄Ag [M-Ag(OTf)₂]⁺: 1119.2611, found: 1119.2607.

 (R_p) -**N-Ph-Ag** was obtained by the same procedure in 93% isolated yield.

 (S_p) -N-Ph-Ag: $[\alpha]^{23}_D = +172.0 (c \ 0.5, CH_2Cl_2). (R_p)$ -N-Ph-Ag: $[\alpha]^{23}_D = -167.0 (c \ 0.5, CH_2Cl_2).$

Figure S7. ¹H NMR spectrum of (S_p) -**N-Ph-Ag** in CD₂Cl₂.

Figure S8. ¹³C NMR spectrum of (S_p) -N-Ph-Ag in CD₂Cl₂.

Figure S9. UV–vis absorption spectra of (A) N-H and N-H-Ag, (B) N-Ph and N-Ph-Ag in dilute CH_2Cl_2 (1.0×10^{-5} M).

Figure S10. PL spectra of (A) **N-H** and **N-H-Ag**, (B) **N-Ph** and **N-Ph-Ag** in dilute CH_2Cl_2 (1.0 × 10⁻⁵ M). Excitation was carried out at the peak top of UV–vis absorption spectra.

Figure S11. PL lifetime decay curves of **N-Ph** and **N-H** in CH_2Cl_2 (1.0×10^{-5} M) at room temperature, excited at 375 nm with LED laser. Estimated lifetimes were described in the figure. Monitored wavelengths were (A) and (E) 420 nm, (B) and (F) 530 nm, (C) and (G) 600 nm for **N-Ph** and **N-H**, respectively. (D), (H) Overwriting spectra of (A), (B), (C) and (E), (F), (G), respectively. In the case of **N-Ph**, the second and longer lifetime component was too weak to estimate the correct value. However, the difference depending on the monitoring wavelength was observed. In the case of **N-H**, the only single component was observed from various excited wavelengths.

Figure S12. Predicted structures of (S_p) -N-Ph-Ag.

Computational details

The Gaussian 09 program package⁴ was used for computation. We optimized the structures of the $[(S_p)-N-Ph-Ag]^{2+}$ in the ground S₀ states and calculated their structure energy. The density functional theory (DFT) was applied for the optimization of the structures in the S₀ states at the M06-2X/6-31g(d,p) for C, H, N and LANL2DZ for Ag levels. We calculated the structure energy in the ground S₀ states by DFT at the M06-2X/6-31g(d,p) for C, H, N and LANL2DZ for Ag levels.

Figure S13. (A) Zigzag conformation and (B) double helical conformation of (S_p) -**Cp-N-Ph-Ag** by DFT with M06-2X/6-31G(d) for C, H, N and LANL2DZ for Ag//M06-2X/6-31G(d) for C, H, N and LANL2DZ for Ag levels.

Ag(I) titration measurement

Titration of AgOTf to (S_p) and (R_p)-**N-H** and **N-Ph** was carried out in dilute mixed CH₂Cl₂/DMF = 95:5 v/v solution (1.0×10^{-5} M). DMF was used for the preparation of AgOTf solution because CH₂Cl₂ is not good solvent for AgOTf. At first, (S_p)-**N-H**, **N-Ph** and AgOTf in dilute mixed CH₂Cl₂/DMF = 95:5 v/v solution (5.0×10^{-4} M) were prepared, respectively. Then, the AgOTf solution (from 0 mL to 0.50 mL) was titrated to the (S_p) and (R_p)-**N**, **N-Ph**, **N-Py** solution (0.10 mL) and made the total volume 5.0 mL (1.0×10^{-5} M) by pure CH₂Cl₂/DMF = 95:5 v/v solution. The titration spectra were shown here.

Figure S14. (A) CD (top) (g_{abs}) and UV–vis absorption (bottom) spectra and (B) CPL (top) (g_{lum}) and PL (bottom) spectra of AgOTf titration of (S_p)-**N-H** in dilute CH₂Cl₂/DMF = 95/5 v/v solution (1.0×10^{-5} M). Excitation wavelength was 300 nm.

Figure S15. (A) CD (top) (g_{abs}) and UV–vis absorption (bottom) spectra and (B) CPL (top) (g_{lum}) and PL (bottom) spectra of AgOTf titration of (S_p)-**N-Ph** in dilute CH₂Cl₂/DMF = 95/5 v/v solution (1.0×10^{-5} M). Excitation wavelength was 300 nm.

Figure S16. (A) CD (top) (g_{abs}) and UV–vis absorption (bottom) spectra and (B) CPL (top) (g_{lum}) and PL (bottom) spectra of AgOTf titration of (R_p)-**N-H** in dilute CH₂Cl₂/DMF = 95/5 v/v solution (1.0 × 10⁻⁵ M).

Figure S17. (A) CD (top) (g_{abs}) and UV–vis absorption (bottom) spectra and (B) CPL (top) (g_{lum}) and PL (bottom) spectra of AgOTf titration of (R_p)-**N-Ph** in dilute CH₂Cl₂/DMF = 95/5 v/v solution (1.0×10^{-5} M).

Figure S18. Expanded views of (A) CD and (B) CPL spectra of N-H and N-H-Ag, (C) CD and (D) CPL spectra of N-Ph and N-Ph-Ag in the dilute CH_2Cl_2 (1.0×10^{-5} M). Excitation wavelength was 300 nm.

Figure S19. The values of g_{abs} during AgOTf titration to the (A) (S_p)-**N-H** and (B) (S_p)-**N-Ph** in dilute CH₂Cl₂/DMF = 95/5 v/v solution (1.0 × 10⁻⁵ M). Maximum (blue line) and minimum (red line) *g* values from 320 to 400 nm were monitored, respectively.

Single crystal X-ray structure analysis of rac-N-H

Intensity data were collected on a Rigaku R-AXIS RAPID imaging plate area detector with graphite monochromated MoK α radiation ($\lambda = 0.71069$ Å). The structures were solved and refined by full-matrix least-squares procedures based on F^2 (SHELX-2014).⁵

Empirical formula	$C_{44}H_{28}N_4$	~ ~
Formula weight	612.70	
Temperature (K)	93(2)	
Wavelength (Å)	0.71075	N N
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	a=9.6882(6)	CCDC # 1548564
	b=13.1119(9)	
	c=13.3082(8)	
	<i>α</i> =108.885(8)	
	β=94.201(7)	
	$\gamma = 99.040(7)$	
Volume (Å ³)	1565.68(19)	
Z, calculated density (Mg m^{-3})	2, 1.300	
Absorption coefficient	0.077	
F(000)	640	
Crystal size (mm)	$0.80 \times 0.80 \times 0.40$	
θ range for data collection	3.103-27.484	
Limiting indices	-11≤h≤12, -17≤k≤16, -16≤l≤17	
Reflections collected (unique)	15348/7136 [<i>R</i> (int)=0.0352]	
Completeness to theta	0.994	
Max. and min. transmission	1.000, 0.3626	
Goodness-of-fit on F^2	1.039	
Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0550, wR_2 = 0.1321$	
R indices (all data)	$R_1 = 0.0783, wR_2 = 0.1473$	
	$(\mathbf{n}^2 + \mathbf{n}^2) = \frac{1}{2} (\mathbf{n}^2 + \mathbf{n}^2) = \frac{1}{2} $	

Table S2.Crystallographic data of *rac*-N-H

[a] $R_1 = \Sigma(|F_0| - |F_c|) / \Sigma |F_0|$. w $R_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. w = $1/[\sigma^2 (F_0^2) + [(ap)^2 + bp]]$, where p = $[\max(F_0^2, 0) + {}^2F_c^2] / 3$.

Figure S20. (A) ORTEP drawings of *rac*-**N-H** and (B) the packing diagram. Thermal ellipsoids are scaled to the 50% probability level.

(B)

Single crystal X-ray structure analysis of rac-N-H-Ag

Empirical formula	$C_{47}H_{30}N_4O_6F_6S_2Cl_2Ag_2$	
Formula weight	1121.5	
Temperature (K)	93(2) N	
Wavelength (Å)	0.71075	
Crystal system, space group	Monoclinic, P2 ₁ /a	
Unit cell dimensions	a=14.8841(7) CCDC # 1548569	
	b=14.9687(7)	
	c=21.4518(10)	
	a=90	
	$\beta = 102.663(7)$	
	<i>γ</i> =90	
Volume (Å ³)	4663.1(4)	
Z, calculated density (Mg m^{-3})	4, 1.726	
Absorption coefficient	1.122	
F(000)	2408.0	
Crystal size (mm)	$0.10 \times 0.10 \times 0.10$	
θ range for data collection	3.062-27.450	
Limiting indices	<i>−</i> 17 <i>≤h≤</i> 19, <i>−</i> 19 <i>≤k≤</i> 19, <i>−</i> 27 <i>≤l≤</i> 27	
Reflections collected (unique)	42967/10611 [<i>R</i> (int)=0.1672]	
Completeness to theta	0.995	
Max. and min. transmission	1.0000 and 0.3621	
Goodness-of-fit on F^2	1.065	
Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0889, wR_2 = 0.1291$	
R indices (all data)	$R_1 = 0.1674, wR_2 = 0.1516$	

Table S2. Crystallographic data of rac-N-H-Ag

[a] $R_1 = \Sigma(|F_0| - |F_c|) / \Sigma |F_0|$. $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. $w = 1/[\sigma^2 (F_0^2) + [(ap)^2 + bp]]$, where $p = [max(F_0^2, 0) + {}^2F_c^2]/3$.

Figure S21. (A) ORTEP drawings of *rac*-**N-H-Ag** with CH₂Cl₂ and (B) the packing diagram. Thermal ellipsoids are scaled to the 50% probability level.

References

 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics* 1996, 15, 1518–1520.

2. Q. Li, F. Huang, Y. Fan, Y. Wang, J. Li, Y. He and H. Jiang, Eur. J. Inorg. Chem. 2014, 20, 3235–3244.

3. Y. Morisaki, M. Gon, T. Sasamori, N. Tokitoh and Y. Chujo, J. Am. Chem. Soc. 2014, 136, 3350-3353.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. S. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.