Supporting Information

Modified Biovectors for the Tuneable Activation of Anti-platelet Carbon Monoxide Release

Lucas Prieto^a, Jeremie Rossier^c, Katarzyna Derszniak^b, Jakub Dybas^b, René M. Oetterli^a,

Emmanuel Kottelat^c, Stefan Chlopicki^{b,d} *Felix Zelder^a, * Fabio Zobi^c*

^aUniversity of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. Fax: +41 44 635 6803; E-mail: felix.zelder@chem.uzh.ch, www.felix-zelder.net

^bJagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.

^cDepartment of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland. E-mail: fabio.zobi@unifr.ch

^dChair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland. E-mail: stefan.chlopicki@jcet.eu

Contents		
Materials and Methods S4		
Experimental procedures		
Figures		
-	Figure S1	S12
	¹ H-NMR spectrum and ESI-MS of 2	
-	Figure S2	S13
	¹ H-NMR spectrum and ESI-MS of 3	
-	Figure S3	S14
-	¹ H-NMR spectrum and ESI-MS of 4	
-	Figure S4	S15
	¹ H-NMR spectrum and ESI-MS of 5 .	
-	Figure S5	S16
	¹ H-NMR spectrum and ESI-MS of 6 .	
-	Figure S6	S17
	¹ H-NMR and ¹³ C spectra of 7	
	Figure S7	S18
	ESI-MS spectra of 7	
-	Figure S8	S19
	CV of 2 , 4 and 7	
-	Figure S9	S20
	IR spectra of 9, 10, 11, 12, 13 and 14.	
	Figure S10-S13	S21
	UV-Vis spectra of 2, 3, 6, 8, 9, 10, 13.	
	Figures S14-S18	S23
	HR-MS spectra of 9, 10, 11, 13 and 14.	
	Figure S19	S28
	UV-Vis spectrum change of B ₁₂ -ReCORM species in H ₂ O	
	Figure S20	S29
	Normalized shift of the 410 nm band of compounds $8-14$ in H ₂ O	
	Figure S21	S30
	Normalized shift of the 410 nm band of compounds 8-14 in DMSO	

Table S1	S31
Half-life $(t^{1/2})$ of stability of species 8-14 in DMSO	
Figure S22	S32
Deoxy-myoglobin assay	
Figure S23	S33
Formations of MbCO.	

References

S34

Materials and Methods

Materials: Chemicals were of reagent grade quality or better, obtained from commercial suppliers and used without further purification. Vitamin B_{12} was a generous gift from DSM Nutritional products AG (Basel/Switzerland) and Prof. B. Jaun (retired ETH Zurich). All solvents were of reagent, analytical, HPLC or LC-MS grade respectively and obtained from commercial suppliers. Bidistilled water was used in all reactions.

Analytical HPLC: Spectra were recorded on an Acquity Waters system equipped with a PDA detector and an autosampler using a Nucleosil C18 250/3 column from Macherey-Nagel. A gradient (0-5 min 25% A; 5-30 min 25-100% A) of methanol (solvent A) versus bidistilled water containing 0.1% trifluoroacetic acid (solvent B) was applied using a flow rate of 0.3 mL/min.

Preparative HPLC: Separations were conducted on a *VWR LaPrep* system equipped with a PDA detector and a Nucleosil C18 250/40 column from Macherey-Nagel. A gradient (0-3 min 5% C; 3-3.20 min 25% C; 3.20-30 min 25-33% C) of acetonitrile (solvent C) versus bidistilled water containing 0.1% trifluoroacetic acid (solvent B) was applied using a flow rate of 40 mL/min.

ESI-MS: Spectra were recorded on a Bruker Daltonics HTC ESI-MS operated in the positive or negative mode. Injection rate 3 μ L/min. Nebulizer P =10 psi, dry gas flow rate 5 L/min, gas T = 350 °C. All solvents used were of LCMS grade.

ICP/OES: Inductively coupled plasma/optical emission spectrometry (ICP/OES) measurements were performed on a Perkin Elmer Optima 7300 V HF ICP-OES Spectrometer.

HR-ESI-MS: Spectra were recorded on a Bruker maXis QTOF-MS instrument (Bruker Daltonics GmbH, Bremen, Germany). The samples were dissolved in MeOH and analyzed via continuous flow injection at 3 μ L/min. The mass spectrometer was operated in positive ion mode with a capillary voltage of 4 kV, an endplate offset of –500 V, nebulizer pressure of 5.8 psig, and a drying gas flow rate of 4 L/min at 180°C. The instrument was calibrated with a sodium formate solution (500 μ l H₂O: 500 μ l iPrOH: 20 μ l HCOOH: 20 μ l 0.1 M NaOH_{aq}). The

resolution was optimized at 30'000 FWHM in the active focus mode. The accuracy was better than 2 ppm in a mass range between m/z 118 and 1600.

Spectroscopy: UV-Vis spectra were recorded on a Varian Cary 50 using quartz cells with a path length of 1 cm. Citation of λ_{max} (log ε) in nm. For platelet studies, spectra were recorded on a Perkin Elmer double beam spectrophotometer Lambda 950 using quartz cells with a 1 cm path length. The kinetics of carbon monoxide release from CO donor compounds were studied by recording spectra at the Soret band region ($\lambda_{max} = 424$ nm) and observing the conversion from deoxyMb to MbCO at room temperature. Solutions of Mb (Myoglobin from equine heart, SIGMA) were prepared fresh by dissolving the protein in deionized water in such amount to obtain final concentrations 10 or 100 µM. Sodium dithionite (1 mg/ml, eq. 0.1%) was added just before measurements to convert myoglobin to deoxyMb. Before every experiment the reference spectra of deoxygenated protein were recorded. Solutions of CO donor compounds dissolved in DMSO:PBS (50:50) were added to the quartz cuvettes with deoxyMb in such amounts to give final concentrations of 10 or 100 µM. All solutions were always overlaid with mineral oil (0.5 cm³) to prevent CO escaping and myoglobin being oxygenated. ¹H- and ¹³C-NMR as well as 2D-NMR spectra were recorded on a 500 MHz Oxford NMR AS 500 using a QNP probe head and MestReNova 6.0.2 as evaluation tool. All spectra were recorded in D₂O at 300 K and TSP was used as a reference for all ¹³C-NMR experiments.

Cyclic voltammetry: Cyclic voltammograms were obtained on a Metrohm 757 VA Computrace System. Measurements were performed using a glassy carbon electrode (working electrode) and an Ag/AgCl electrode (reference electrode). Samples were dissolved in 2 mL of 0.1 M TRIS buffered at pH 8. Hexacyanoferrate (0.5 mM) was used as an internal reference. Samples were purged with N₂ (g) for 5 minutes prior to each measurement. The measurement was accepted if $E_{K3[Fe(CN)6]}$ was found between +179 and +186 mV.

Solid Phase Extraction: Chromafix C18ec columns were applied for solid phase extraction (SPE). The compounds were dissolved in water, transferred to the adsorbent, washed with water and eluted with MeOH.

Experimental procedures

Cyanocobalamin-c-lactone (2). The synthesis was performed according to a procedure reported by Bonnet et al.^{S1} Vitamin B₁₂ (100 mg 74 μmol, 1 equiv) was dissolved in 1 M HCl (10 mL) and H₂O (100 mL). Chloramin-T (25.2 mg, 110 μmol 1.5 equiv) was dissolved in H₂O (50 mL) and was added drop wise over a period of 60 minutes. The pink solution was desalted over Amberlite XAD-2. Purification by preparative HPLC and lyophilization afforded **2** in good yields (82 mg, 60.6 μmol, 82%) **UV-Vis** (c = $1.66 \cdot 10^{-5}$ M) λ/nm (log ε) = 278 (4.0), 289 (3.9), 306 (4.1), 359 (4.5), 409 (3.4), 523 (3.7), 551 (3.7). **HPLC** *t*_R = 14.9 min. **ESI-MS** (H₂O:MeOH 1:1) m/z = 677.9 [100%; M+2H]²⁺, 1354.5 [95%; M+H]⁺ (m/z_{calc} for C₆₃H₈₆BrCoN₁₃O₁₅P: 1354.5). **CV** (0.1 M TRIS pH 8, K₃[Fe(CN)₆]) E_{red} = -929 mV. ¹**H NMR** (D₂O; 500 MHz; 300K) δ/ppm = 7.32 (s, 1H), 7.12 (s, 1H), 6.44 (s, 1H), 6.37 (d, J = 3.2 Hz, 1H), 6.09 (s, 1H), 4.29 (m, 2H), 4.20 (dd, J = 8.9, 1.9 Hz, 1H), 4.09 (m, 2H), 3.93 (dd, J = 12.9, 2.4 Hz, 1H), 3.75 (dd, J = 12.9, 4.0 Hz, 1H), 3.61 (d, J = 14.4 Hz, 1H), 3.38 (d, J = 9.8 Hz, 1H), 3.30 – 3.26 (m, 1H), 2.99 – 2.92 (m, 2H), 2.85-1.15 (m, 35H), 2.61 (s, 3H), 2.57 (s, 3H), 2.29 (s, 3H), 2.27 (s, 3H), 1.93 (s, 3H), 1.49 (s, 3H), 1.42 (s, 3H), 1.38 (s, 3H), 1.26 (d, J = 6.3 Hz, 3H), 1.17 (s, 3H), 0.50 (s, 3H).

10-bromo-cyanocobalamin (3). The synthesis was performed by a modified procedure of Wagner.^{S2} Vitamin B₁₂ (100 mg, 74 µmol, 1 equiv) was dissolved in glacial AcOH (3 ml) and NBS (13 mg, 74 µmol, 1 equiv) was added in small portions (~0.5 mg) over a period of 3 h. The resulting dark purple solution was desalted with solid phase extraction (SPE) and the solvents were removed under reduced pressure. Purification by preparative HPLC and lyophilization afforded **3** in quantitative yields (105 mg, 73 µmol, 99 %) as a purple powder. **UV-vis** (c = $6.05 \cdot 10^{-5}$ M; H₂O) λ /nm (log ε) = 283 (3.9), 289 (3.9), 365 (4.3), 415 (3.3), 550 (3.7), 576 (3.7). **HPLC** t_R = 16.5 min. **ESI-MS** (H₂O:MeOH 1:1) m/z = 718.2 [100%; M+2H]²⁺, 1435.5 [70%; M+H]⁺ (m/z_{calc} for C₆₃H₈₈BrCoN₁₄O₁₄P: 1435.48); **HR-ESI-MS** (MeOH, NaI) m/z = 740.2279 [100%; M+2Na]²⁺ (m/z_{calc} for C₆₃H₈₇BrCoN₁₄O₁₄PNa₂: 740.2281). **CV** (0.1 M TRIS pH 8, K₃[Fe(CN)₆]) E_{red} = -798 mV. ¹**H NMR** (500 MHz, D₂O) δ /ppm = 7.31 (s, 1H), 7.13 (s, 1H), 6.52 (s, 1H), 6.37 (d, *J* = 3.1 Hz, 1H), 4.43 – 4.39 (m, 1H), 4.33 – 4.31 (m, 2H), 4.25 (d, *J* = 8.4 Hz, 1H), 4.07 (t, *J* = 8.6 Hz, 3H), 3.96 – 3.92 (m, 1H), 3.78 (dd, *J* = 12.9, 3.8 Hz, 2H), 3.69 – 3.56 (m, 3H), 3.40 (d, *J* = 8.8 Hz, 1H), 2.29 (dd, *J* = 14.4, 9.3 Hz, 1H), 2.80-1.10 ppm (m, 36H), 2.61 (s, 3H), 2.58 (s, 3H), 2.29 (s, 3H), 2.28 (s,

3H), 1.93 (s, 3H), 1.83 (s, 3H), 1.41 (s, 3H), 1.39 (s, 3H), 1.34 (s, 3H), 1.28 (d, *J* = 6.2 Hz, 3H), 0.39 (s, 3H).

10-chloro-cyanocobalamin (4). To vitamin B_{12} (100 mg, 74 µmol, 1 equiv) dissolved in glacial AcOH (3 ml) NCS (10 mg, 73 µmol, 1.0 equiv) was added over a period of 3 h. The resulting dark purple solution was desalted with solid phase extraction (SPE) and the solvents were removed under vacuum. Purification by preparative HPLC and lyophilization afforded **4** (75 mg, 55 µmol, 75%) as a purple powder. **UV-vis** (c = 4.75 10^{-5} M; H₂O) λ /nm (log ε) = 282 (3.9), 289 (3.9), 364 (4.2), 408 (3.3), 551 (3.6), 574 (3.7); **HPLC** t_R = 16.0 min; **ESI-MS** (H₂O:MeOH 1:1) m/z = 695.3 [100%; M+2H]²⁺, 1389.5 [70%; M+H]⁺ (m/z_{calc} for C₆₃H₈₈ClCoN₁₄O₁₄P: 1389.53); **HR-ESI-MS** (MeOH, NaI) m/z = 717.2531 [100%; M+2Na]²⁺ (m/z_{calc} for C₆₃H₈₇ClCoN₁₄O₁₄PNa₂: 717.2534).). **CV** (0.1 M TRIS pH 8, K₃[Fe(CN)₆] E_{red} = -810 mV . ¹**H NMR** (500 MHz, D₂O) δ /ppm = 0.40 (s, 3H), 1.28 (d, *J* = 6.3 Hz, 3H), 1.36 (s, 3H), 1.39 (s, 3H), 1.42 (s, 3H), 1.79 (s, 3H), 1.93 (s, 3H), 2.27 (s, 3H), 2.29 (s, 3H), 2.58 (s, 3H), 2.61 (s, 3H), overlapped by 1.09-2.80 (m, 38H), 3.00 (dd, *J* = 14.4, 9.2 Hz, 1H), 3.39 (d, *J* = 9.1 Hz, 1H), 3.65 (d, *J* = 14.3 Hz, 1H), 3.79 (dd, *J* = 12.9, 3.7 Hz, 1H), 3.94 (d, *J* = 10.6 Hz, 1H), 4.06 - 4.11 (m, 2H), 4.24 (dd, *J* = 9.3, 5.9 Hz, 3H), 4.30 - 4.35 (m, 2H), 6.38 (d, *J* = 3.0 Hz, 1H), 6.51 (s, 1H), 7.11 (s, 1H), 7.32 (s, 1H).

10-chloro-cyanocobalamin-c-lactone (5). Vitamin B₁₂ (200 mg, 148 µmol, 1 equiv) was dissolved in glacial acetic acid (3 mL) and NCS (20 mg, 150 µmol, 1.0 equiv) was added over a period of 3 h. The resulting dark purple solution was purified with solid phase extraction (SPE) and preparative HPLC. Solvents were removed under vacuum. **5** (14 mg, 10 µmol, 7%) was obtained as a purple powder. **UV-vis** (c = $1.80 \cdot 10^{-5}$ M; H₂O) λ /nm (log ε) = 281 (3.2), 289 (3.2), 363 (4.6), 421 (3.4), 551 (3.6), 577 (3.6); **HPLC** $t_{\rm R} = 17.45$ min; **ESI-MS** (H₂O:MeOH 1:1) m/z = 694.7 [100%; M+2H]²⁺, 1388.2 [70%; M+H]⁺ (m/z_{calc} for C₆₃H₈₅CoN₁₃O₁₅PCI: 1388.50); **HR-ESI-MS** (MeOH NaI): m/z = 694.75596 [M+2H]²⁺ (m/z_{calc} for C₆₃H₈₅CoN₁₃O₁₅PCI: 694.75568) **CV** (0.1 M TRIS buffer at pH 8, K₃[Fe(CN)₆] E_{red}= -784 mV; ¹**H NMR** (500 MHz, CD₃OD, TMS) δ /ppm = 0.40 (s, 3H), 1.25 (d, 3H), 1.29 (s, 3H), 1.79 (s, 3H), 2.00 (s, 3H), 2.29 (s, 3H), 2.31 (s, 3H), 2.62 (s, 3H), 2.63 (s, 3H), overlapped by 1.79-2.87 (m, ~46H), 3.39 (d, *J* = 9.4, 1H), 3.67 (d, *J* = 14.0 Hz, 1H), 3.76-3.92 (m, 1H), 4.08 (m, 1H), 4.20 (m, 1H), 4.54 (m, 1H), 4.62 (m, 1H), 6.32 (d, *J* = 2.9 Hz, 1H), 6.46 (s, 1H), 7.14 (s, 1H), 7.34 (s, 1H).

c-(\alpha,\alpha-dibromo)-lactone-cyanocobalamin (6): The synthesis was performed according to recent literature procedures.^{S3}

c-(α,α -dichloro)-lactone-cvanocobalamin (7): To vitamin B₁₂ (100 mg, 74 µmol, 1 equiv) dissolved in glacial AcOH (3 ml), NCS (99 mg, 744 µmol, 10 equiv) was added in one portion. The dark red solution was stirred at rt for 1 h. The resulting dark violet solution was desalted with solid phase extraction (SPE) and the solvents were removed under vacuum. Purification by preparative HPLC and lyophilization afforded 3 (58 mg, 41 µmol, 55%) as a violet powder. UV-vis (c = $4.21^{-10.5}$ M; H₂O) λ /nm (log ε) = 279 (4.0), 288sh (3.9), 310 (3.8), 363 (4.2), 412 (3.3), 531 (3.7), 554 (3.7); HPLC (Method 1) $t_{\rm R} = 19.0$ min; ESI-MS $(H_2O:MeOH 1:1)$ m/z = 712.7 $[100\%; M+2H]^{2+}$, 1424.4 $[85\%; M+H]^+$ $(m/z_{calc}$ for $C_{63}H_{84}CoN_{13}O_{15}PCl_2$: 1424.4); HR-ESI-MS (MeOH, NaI): m/z = 711.73666 (m/z_{calc} for $C_{63}H_{85}CoN_{13}O_{15}PCl_2$; 711.73619) CV (0.1 M TRIS pH 8, K₃[Fe(CN)₆] E_{red}= -715 mV; ¹H-**NMR** (500 MHz, 300 K, D₂O) δ /ppm = 0.54 (s, 3H), 1.16 (s, 3H), 1.26 (d, $J_{H,H}$ = 6.5 Hz, 3H), 1.41 (s, 3H), 1.47 (s, 3H), 1.54 (s, 3H), 2.10 (s, 3H), 2.29 (s, 3H), 2.33 (s, 3H), 2.63 (s, 3H), 2.74 (s, 3H), overlapped by 1.21-2.80 (m, \sim 36H), 2.96-3.00 (m, 1H), 3.39 (t, $J_{H,H}$ = 5.5 Hz, 1H), 3.61 (d, $J_{H,H}$ = 14.5 Hz, 1H), 3.76 (dd, $J_{H,H}$ = 4.0 Hz, 13.0 Hz, 1H), 3.94 (dd, $J_{H,H}$ = 2.5 Hz, 13.0 Hz, 1H), 4.07-4.09 (m, 1H), 4.18 (d, $J_{H,H}$ = 8.5 Hz, 1H), 4.23 (d, $J_{H,H}$ = 9.5 Hz, 1H), 4.29-4.35 (m, 2H), 6.12 (s, 1H), 6.39 (d, $J_{H,H}$ = 4.5 Hz, 1H), 7.10 (s, 1H), 7.34 (s, 1H). ¹³C-NMR (126 MHz, 300 K, CD₃OD) δ/ppm= 182.2,181.0,180.0, 177.6, 177.4, 175.5, 175.3, 175.3, 174.5, 167.5, 166.6, 166.3, 158.6, 143.4, 132.2, 134.3, 131.6, 127.1, 116.8, 113.1, 110.8, 107.7, 93.3., 92.2, 88.2, 86.7, 84.9, 76.6, 75.2, 73.6, 70.5, 65.2, 62.3, 60.6, 57.6, 55.0, 50.3, 46.7, 43.0, 40.1, 40.1, 36.1, 35.3, 32.2, 31.9, 31.8, 31.6, 30.1, 29.7, 29.5, 27.5, 25.00, 24.00, 21.1, 20.6, 20.3, 20.1, 19.2, 17.6, 17.5, 16.7, 16.3.

Cyanocobalamin-µ-CN-[Re(CO)₂Br₂(CH₃OH)] (8). The synthesis was performed by modifications of a reported procedure.^{S4} Vitamin B₁₂ (100 mg, 74 µmol, 1 equiv) and **1** (114 mg, 164 µmol, 2.2 equiv) were stirred in MeOH (60 mL) at 50 °C for 90 minutes. The solvent was subsequently removed and the resulting red powder was washed several times with dichloromethane (20 mL) and acetone (20 mL). **8** (105.9 mg, 59 µmol, 80%) was obtained as a red microcrystalline powder. **UV-vis** (c = $1.81 \cdot 10^{-4}$ M; H₂O) λ /nm (log ε) = 276 (3.9), 323 (3.9), 361 (4.3), 407 (3.3), 518 (3.7), 547 (3.7); **ESI-MS** (H₂O:MeOH 1:1) m/z = 865.6 [100%; M+2H]²⁺, 1757.7 [70%; M+H]⁺ (m/z_{calc} for C₆₃H₈₈CoN₁₄O₁₄PReC₂O₂Br₂: 1755.35).

IR (solid state, KBr, cm⁻¹) $v_{C=N} = 2184$, $v_{C=O} = 1989$, 1839. **ICP/OES** measurements of Re content by relative weight: calcd 10.41; found 9.88 ± 0.05.

Cyanocobalamin-c-lactone-µ-CN-[Re(CO)₂Br₂(CH₃OH)] (9). 2 (15.9 mg, 12 µmol, 1 equiv) and **1** (20 mg, 29 µmol, 2.4 equiv) were dissolved in methanol (10 mL) and stirred at 50°C for 90 minutes. The solvent was subsequently removed and the resulting red powder was washed several times with dichloromethane (20 mL) and acetone (20 mL). **9** was obtained as a red microcrystalline powder (16.5 mg, 9 µmol, 75%). **UV-vis** (c = $1.81 \cdot 10^{-4}$ M; H₂O) λ /nm (log ε) = 276 (4.0), 323 (3.7), 361 (4.3), 407 (3.4), 518 (3.6), 547 (3.6); **HR-ESI-MS** (H₂O:MeOH 1:1) m/z = 894.3 [100%; M+2H]²⁺, 1757.3235 [100%; M+H]⁺ (m/z_{calc} for C₆₃H₈₆CoN₁₃O₁₅PReC₂O₂Br₂: 1757.3236). **IR** (solid state, KBr, cm⁻¹) $v_{C=N}$ 2190, $v_{C=O}$ 1989, 1841, 1789 ($v_{C=O}$ lactone). **ICP/OES** measurements of Re content by relative weight: calcd 10.41; found 9.89 ± 0.32.

10-bromo-cyanocobalamin-µ-CN-[Re(CO)₂Br₂(CH₃OH)] (10). **3** (8 mg, 5.5 µmol, 1 equiv) and **1** (10 mg, 14 µmol, 2.5 equiv) were dissolved in methanol (7 ml) and stirred for 30 minutes at 50 °C. The solvent was subsequently removed and the resulting red powder was washed several times with dichloromethane (20 mL) and acetone (20 mL). **10** was obtained as a dark red microcrystalline powder (7.5 mg, 4 µmol, 66%). **UV-vis** (c = 1.89.10⁻⁴ M; H₂O) λ /nm (log ε) = 279 (3.9), 366 (4.3), 411 (3.3), 550 (3.6), 574 (3.6); **HR-ESI-MS** (H₂O:MeOH 1:1) m/z = 1836.2687 [100%; M+H]⁺ (m/z_{calc} for C₆₃H₈₈CoN₁₄O₁₄PReC₂O₂Br₃: 1836.2647). **IR** (solid state, KBr, cm-1) v _{C=N} = 2176, v _{C=O} = 1992, 1845. **ICP/OES** measurements of Re content by relative weight: calcd 9.96; found 9.33 ± 0.12.

10-chloro-cyanocobalamin-µ-CN-[Re(CO)₂Br₂(CH₃OH)] (11). 4 (20 mg, 14 µmol, 1equiv) and 1 (34 mg, 48 µmol, 3.5 equiv) were dissolved in methanol (12 mL) and stirred for 30 minutes at 50 °C. The solvent was subsequently removed and the resulting red powder was washed several times with dichloromethane (20 mL) and acetone (20 mL). 11 was obtained as a purple microcrystalline powder (10.5 mg, 6 μ mol, yield 85%). UV-vis (c = 1.84 10⁻⁴ M; H₂O) λ /nm (log ε) = 279 (3.9), 287 (3.9), 363 (4.2), 415 (2.3), 545 (3.6), 570 (3.6); **HR-ESI-**MS (H₂O:MeOH 1:1) m/z = 1792.3110 [100%; $M+H1^+$ (m/z_{calc}) for $C_{63}H_{88}CoN_{14}O_{14}PCIReC_2O_2Br_2$: 1792.3156). IR (solid state, KBr, cm⁻¹) $v_{C=N} = 2178$, $v_{C=O}$ =1973, 1841. **ICP/OES** measurements of Re content by relative weight: calcd 10.20; found 9.79 ± 0.23 .

10-chloro-cyanocobalamin-c-lactone-µ-CN-[Re(CO)₂Br₂(CH₃OH)] (12). 5 (6.5 mg, 5 µmol, 1 equiv) and **1** (8 mg, 11 µmol, 2.2 equiv) were dissolved in methanol (6 mL) and the mixture was stirred for 20 minutes at 50 °C. The solvent was subsequently removed and the resulting red powder was washed several times with dichloromethane (15 mL) and acetone (15 mL). **12** was obtained as a dark purple microcrystalline powder (7.9 mg, 4 µmol, 80%). **UV-vis** (c = $1.84 \cdot 10^{-4}$ M; H₂O) λ /nm (log ε) = 277 (3.2), 285 (3.2), 362 (4.2), 417 (3.4), 545 (3.6), 570 (3.6); **ESI-MS** (H₂O:MeOH 1:1) m/z = 895.3 [100%; M+2H]²⁺, 1790.6 [70%; M+H]⁺ (m/z_{calc} for C₆₃H₈₆ClCoN₁₃O₁₅PReC₂O₂Br₂: 1790.29). **IR** (solid state, KBr, cm⁻¹) $v_{C=N} = 2124$, $v_{C=O} = 1988$, 1840, 1783. **ICP/OES** measurements of Re content by relative weight: calcd 10.20; found 9.75 ± 0.36.

c-(*α*,*α*-dibromo)-lactone-cyanocobalamin-μ-CN-[Re(CO)₂Br₂(CH₃OH)] (13). 6 (10.5 mg, 7 μmol, 1equiv) and 1 (12 mg, 17 μmol, 2.4 equiv) were dissolved in methanol (5 ml) and stirred for 30 minutes at 50 °C. The solvent was subsequently removed and the resulting red powder was washed several times with dichloromethane (20 mL) and acetone (20 mL).13 was obtained as a dark purple microcrystalline powder (10 mg, 5.2 μmol, 75%). **UV-vis** (c = $1.63 \cdot 10^{-4}$ M; H₂O) λ /nm (log ε) = 278 (4.1), 311 (3.9), 363 (4.2), 413 (3.7), 529 (3.6), 558 (3.6); **HR-ESI-MS** (H₂O:MeOH 1:1) m/z = 1915.1439 [100%; M+H]⁺ (m/z_{calc} for $C_{63}H_{84}Br_2CoN_{13}O_{15}PReC_2O_2Br_2$: 1915.1426). **IR** (solid state, KBr, cm⁻¹) $v_{C=N} = 2181$, $v_{C=O}$ = 1987, 1841, 1794. **ICP/OES** measurements of Re content by relative weight: calcd 9.56; found 9.14 ± 0.05.

c-(*α*,*α*-dichloro)-lactone-cyanocobalamin-μ-CN-[Re(CO)₂Br₂(CH₃OH)] (14). 7 (10 mg, 7 μmol, 1equiv) and 1 (12 mg, 17 μmol, 2.4 equiv) were dissolved in methanol (7 ml) and stirred for 25 minutes at 50 °C. The solvent was subsequently removed and the resulting red powder was washed several times with dichloromethane (20 mL) and acetone (20 mL).14 was obtained as a dark purple microcrystalline powder (10 mg, 5.2 μmol, 77%). UV-vis (c = $1.81 \cdot 10^{-4}$ M; H₂O) λ /nm (log ε) = 278 (3.6), 288 (3.5), 310 (3.4), 362 (4.2), 413 (3.1), 527 (3.6), 553 (3.6); HR-ESI-MS (H₂O:MeOH 1:1) m/z = 1825.2319 [100%; M+H]⁺ (m/z_{calc} for C₆₃H₈₄Cl₂CoN₁₃O₁₅PReC₂O₂Br₂: 1825.2445). IR (solid state, KBr, cm⁻¹) $v_{C=N} = 2185$, $v_{C=O} =$

1988, 1838, 1808. **ICP/OES** measurements of Re content by relative weight: calcd 10.02; found 9.67 ± 0.10 .

Figure S1. Top: ¹H-NMR spectrum of cyanocobalamin-c-lactone (2) recorded in D_2O [500 MHz]. Bottom: measured (*top row*) and calculated (*bottom row*) ESI-MS spectra of 2.

Figure S2. Top: ¹H-NMR spectrum of 10-bromo-cyanocobalamin (**3**) recorded in D_2O [500 MHz]. Region of missing H10 signal is assigned. Bottom: measured (*top row*) and calculated (*bottom row*) ESI-MS spectra of **3**.

Figure S3. Top: ¹H-NMR spectrum of 10-chloro-cyanocobalamin (4) recorded in D_2O [500 MHz]. Region of missing H10 signal is assigned. Bottom: measured (*top row*) and calculated (*bottom row*) ESI-MS spectra of 4.

Sample name: 10-CILAC {C63H85CICoN13O15P} / Solvent: CD3OD (TMS)

Figure S4. Top: ¹H-NMR spectrum of 10-chloro-lactone cyanocobalamin (**5**) recorded in CD₃OD/TMS [500 MHz]. Region of missing H10 signal is assigned. Bottom: measured (*top row*) and calculated (*bottom row*) ESI-MS spectra of **5**.

Figure S5. Top: ¹H-NMR spectrum of c-(α , α -dibromo)-lactone-cyanocobalamin (6) recorded in D₂O//TMS [500 MHz]. H10 signal is assigned. Bottom: measured (*top row*) and calculated (*bottom row*) ESI-MS spectra of 6.

Figure S6. Top: ¹H-NMR spectrum of *c*-(α , α -dichloro)-lactone-cyanocobalamin (7) recorded in D₂O//TMS [500 MHz]. H10 signal is assigned. Bottom: ¹³C-NMR spectrum of 7 recorded in CD₃OD [126 MHz].

Figure S7. Measured (top row) and calculated (bottom row) ESI-MS spectra of 7.

Figure S8. Cyclovoltammograms of (from top to bottom) **2**, **4** and **7**.*Red/solid arrow:* reduction potential of $\text{Co}^{\text{III}} > \text{Co}^{\text{I}}$.

Figure S9. IR spectra of 9, 10, 11, 12, 13 and 14.

Figure S10. UV-visible spectra of an unbuffered aqueous solution of B_{12} (black line) and **8** (red line).

Figure S11. UV-visible spectra of an unbuffered aqueous solution of 2 (black line) and 9 (red line).

Figure S12. UV-visible spectra of an unbuffered aqueous solution of 3 (black line) and 10 (red line).

Figure S13. UV-visible spectra of an unbuffered aqueous solution of 6 (black line) and 13 (red line).

Figure S14. HR-ESI-MS (H₂O:MeOH 1:1) spectrum of 9.

Figure S15. HR-ESI-MS (H₂O:MeOH 1:1) spectrum of 10.

/Data/DATA_2015/UNI_FR/BFI T9474_FSI/1/odata/1_FTMS USFR_Fri Jan 29 09:41:09 2016

Figure S16. HR-ESI-MS (H₂O:MeOH 1:1) spectrum of 11.

Figure S17. HR-ESI-MS (H₂O:MeOH 1:1) spectrum of 13.

Figure S18. HR-ESI-MS (H₂O:MeOH 1:1) spectrum of 14.

Figure S19. Changes in the UV-visible spectrum of an unbuffered aqueous solution of selected B12-ReCORM species. Spectra were recorded at fixed time intervals at 25 °C.

Figure S20. Normalized exponential hypochromic shift of 410 nm band in the UV-Vis spectrum of compounds 8-14 in H_2O .

Normalized 410 nm absorbance in the UV-Vis spectrum of B12-ReCORM species in H₂O (■) and DMSO (●)

Figure S21. Normalized exponential hypochromic shift of 410 nm band in the UV-Vis spectrum of compounds 8-14 in DMSO.

Compound	$t_{1/2}$ hypochromic shift of 410 nm band in DMSO ^a	
8	2.3 ± 0.3	
9	1.6 ± 0.6	
10	0.99 ± 0.2	
11	> 3	
12	n. d.	
13	1.9 ± 0.4	
14	> 3	
a A second in the function of the second in the second		

Table S1. Half-life $(t\frac{1}{2})$ of stability of species 8-14 in DMSO.

^a Assuming a first order exponential decay (hours).

Mb assay of B12-ReCORM species

Figure S22. Spectrum changes (5 min intervals) of a solution of deoxy-myoglobin (Mb, 20 μ M, phosphate buffer, pH = 7.4) solution after addition of 1 equivalent of species **8-14**.

Figure S23. The formation of MbCO in sixth (A-C) and fifteenth (D-F) minutes of B_{12} -ReCORM complexes **8-14** incubation with Mb (mean and standard deviation of N = 4-5) normalized to MbCO formation for B_{12} -ReCORM.

S1. Bonnett, R.; Cannon, J.; Johnson, A.; Todd, A., 226. Chemistry of the vitamin B 12 group. Part IV. The isolation of crystalline nucleotide-free degradation products. *J. Chem. Soc.* **1957**, 1148-1158.

S2. Wagner, F., Vitamin B and Related Compounds. *Ann. Rev. Biochem.* **1966**, *35* (1), 405-434.

S3. Oetterli, R. M.; Prieto, L.; Spingler, B.; Zelder, F., Synthesis of a B Ring Opened 7,8-seco-Vitamin B12 Derivative with Grob Fragmentation. *Org. Lett.* **2013**, *15* (18), 4630-4633.

S4. Zobi, F.; Blacque, O.; Jacobs, R. A.; Schaub, M. C.; Bogdanova, A. Y., 17 e– rhenium dicarbonyl CO-releasing molecules on a cobalamin scaffold for biological application. *Dalton Trans.* **2012**, *41* (2), 370-378.