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General

Solvents used in the experimental processes were purified, prior to use. All materials were directly purchased
through J & K Chemical Technology and used without farther purification. Analytical thin layer chromatography
(TLC) was performed on aluminum-backed sheets precoated with Al,O; 150 F254 adsorbent (0.25 mm thick;
Merck, Germany). Column chromatography was conducted using neutral Al,O; (200-300 mesh) from
Sinopharm Chemical Reagent Co. The 'H NMR spectra were recorded at 25°C on a Bruker spectrometer
operating at either 400, 500 or 80, 100 MHz for "H or 13C, respectively. Chemical shifts were reported in parts
per million (ppm) referenced to the residual solvent peak for 'H and solvent peak for '3C NMR, respectively.
Analytical characterization was performed on a Q-TOF mass spectrometer with an ESI probe which produced
by XEVO. Matrix-assisted laser desorption/ionization coupled with time-of-flight detector (MALDI TOF) mass
spectrometry was conducted on Bruker Microflex series spectrometer equipping nitrogen 337 nm laser. 1.0 yL
of 2,5-dihydroxybenzoic acid (DHB) matrix solution (10 mg/mL in CH3;CN) was first deposited on a MALDI
plate

and air-dried. Aliquots of sample solution (1 mg/mL in CHCI3) were then added onto the matrix spots for
characterization. UV-visible spectrophotometer and were corrected for the background spectrum of the solvent.

Transmission microscopy measurements were performed on a JEM-2100F TEM operating at 200 kV.

Synthesis of organic ligand:

1,3,5-tribromo-2,4,6-trimethylbenzene’,  4'-(4-boronatophenyl)[2,2":6',2"]terpyridine?  were  synthesized

according to the literatures.

L1 and L2 were prepared through a single-pot reaction: To a 3-necked round bottom flask, 1,3,5-tribromo-
2,4,6-trimethylbenzene (715 mg, 2 mmol), 4'-(4-boronatophenyl)-2,2":6',2"-terpyridine (2.12 g, 6 mmol),
Na,CO;3 (3.18 g, 30 mmol), and a solvent mixture of water (150 mL), toluene (150 mL), and Me3COH (50 mL)
were added. The system was freeze-pump-thaw (3x), back-filled with nitrogen; and then PdCI,(PPhs), (210
mg, 300 ymol) was added. The resultant suspension was refluxed for 48 h under nitrogen. After cooling to
25°C, the aqueous layer was extracted with CHCI; (3x80 mL). The combined organic phase was dried
(MgSQ,4), and concentrated in vacuo to give a brown residue, which was purified by flash column
chromatography (Al,O3), eluting with CHCI; to give L1 and L2 in turn, as white solid.

L1 (26%); m.p.= 268°C; 'H NMR (500 MHz, CDCl;) d: 8.82 (s, 2H, Tpy-H®%), 8.77-8.76 (d, J= 5Hz, 2H, Tpy-
HeS'), 8.73-8.72(d, J= 5Hz, 2H, Tpy-H®%"), 8.00-7.99(d, J= 5Hz, 2H, Ph-Hi), 7.94-7.90 (m, 2H, Tpy-H**), 7.41-

7.38 (m, 2H, Tpy-H55), 7.26-7.24 (d, J= 10Hz, 2H, Ph-H¥), 2.77 (s, 3H, CHy), 2.16 (s, 6H, CHa); *C NMR (101
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MHz, CDCl;) &: 156.21, 156.03, 149.98, 149.18, 142.30, 141.06, 137.59, 136.92, 135.41, 129.57, 127.78,
125.85, 123.90, 121.36, 118.97, 25.99, 22.80; MALDI-TOF MS (m/z): Calcd. For: 586.03134; Found For:
586.03259 [M+H]*.

L2 (44%)°.

L3 L4

L3 and L4 were prepared through a single-pot reaction: To a solution of 4'-(4-
boronatophenyl)[2,2":6',2"lterpyridine (1.4 g, 4 mmol) and 1,3-dibromo-2,5-dimethoxybenzene (592 mg, 2
mmol) in THF (150 mL), aqueous NaOH (480 mg, 12 mmol) (1 M) was added. The system was degassed for
10 minutes, then Pd(PPh3), (231 mg) was added. After refluxing for 2 days under N,, the solvent was removed
invacuo to give a residue that was dissolved in CHCI; and washed with water. The organic layer was dried
(anhydrous MgSOQ,), concentrated in vacuo to give a residue that was purified by flash column
chromatography (Al,O3) eluting with CHCI; to give L3 and L4 in turn, as white solid.

L3 (28%); m.p.= 214°C; 'H NMR (500 MHz, CDCl,) & 8.84 (s, 2H, Tpy-H?®%), 8.79-8.78 (d, J= 5Hz, 2H, Tpy-
He6"), 8.73-8.72 (d, J= 5Hz, 2H, Tpy-H3%), 8.01-7.99 (d, J= 10Hz, 2H, Ph-Hi), 7.95-7.92 (m, 2H, Tpy-H**),
7.67-7.65 (d, J= 10Hz, 2H, Ph-H¥), 7.59 (s, 1H, Ph-HP), 7.42-7.39 (m, 2H, Tpy-H55), 6.63 (s, 1H, Ph-H?), 4.00
(s, 3H, OCHj3), 3.89 (s, 3H, OCHjs). *C NMR (126 MHz, CDClz) & 156.99, 156.26, 156.12, 150.03, 148.94,
137.97, 137.14, 136.80, 134.34, 129.89, 127.07, 124.01, 123.87, 121.52, 118.94, 102.47, 97.27, 56.60, 56.09;
MALDI-TOF MS (m/z): Calcd. For: 526.09522; Found For: 526.09564 [M+H]*

L4 (54%).

Synthesis of terpyridine-mono-Rul adduct:

5: L1 (176 mg, 300 pmol) and RuCl;-3H,0 (86 mg, 330 umol) were added into EtOH (50 mL), the mixture was
refluxed for 18h. Then it was filtered to give a solid which was washed by MeOH to afford 5, as a brown solid:

191.2 mg (Yield: 80.3%), m.p.>300°C. It was used directly without further purification.
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6: L3 (210 mg, 400 pymol) and RuCl3-3H,0 (115 mg, 440 ymol) were added into EtOH (60 mL), the mixture
was refluxed for 18h. Then it was filtered to give a solid which was washed by MeOH to afford 6, as a brown

solid: 244.7 mg (Yield: 83.6%), m.p.>300°C. It was used directly without further purification.

7: L4 (150.6 mg, 200 pmol) and RuCl;-3H,0 (115 mg, 440 ymol) were added into EtOH (80 mL), the mixture
was refluxed for 18h. Then it was filtered to give a solid which was washed by MeOH to afford 7, as a brown

solid: 193 mg (Yield: 73%), m.p.>300°C. It was used directly without further purification.

Synthesis of LA:

LA: A suspension of L4 (188 mg, 0.25 mmol) and 7 (116.7 mg, 0.1 mmol) in CHCI;:CH30H=1:1 (160 mL), N-
ethylmorpholine (4 drops) was added, the mixture was heated for 24 h. After the reaction mixture was cooled,
the resulting deep red solution was filtered through Celite. Solvent and volatiles were removed in vacuo, the
residue was column-chromatographed (Al,O5) eluting with an CH,Cl,/CH3;0H solution to afford a red solid: 137
mg (Yield: 45%), m.p.>300°C. 'H NMR (500 MHz, CD;0D) & 9.38 (s, 4H, ATpy-H®5), 9.37 (s, 4H, BTpy-H®'%),
8.97-8.94 (m, 8H, ABTpy-H3%"), 8.80 (s, 4H, Tpy-H®®), 8.77-8.74 (m, 8H, CTpy-H®8'33"), 8.43-8.41 (d, J= 10Hz,
4H, APh-H)), 8.39-8.37 (d, J= 10Hz, 4H, BPh-Hi), 8.11-8.05 (m, 16H, CPh-Hj, ABCTpy-H*#"), 8.03-7.98 (m, 8H,
ABPh-Hk), 7.85-7.84 (d, J= 5Hz, 4H, °Ph-Hk), 7.64-7.62 (m, 8H, ABTpy-H®¢"), 7.58-7.56 (m, 6H, Ph-HaP, CTpy-
H>%"), 7.34-7.31 (m, 8H, ABTpy-H5%"), 7.04 (s, 2H, Ph-H¢), 6.99 (s, 2H, Ph-H°), 4.08 (s, 6H, OCH3), 4.06 (s, 6H,
OCHjs), 4.03 (s, 6H, OCH,3). '*C NMR (126 MHz, CD;0D) & 158.49, 157.98, 155.87, 155.59, 155.55, 151.96,
148.69, 138.04, 130.38, 130.36, 130.04, 127.56, 127.14, 127.05, 126.39, 124.59, 124.23, 121.73, 121.11,
118.31, 96.51, 72.26, 70.17, 70.14, 70.00, 69.98, 60.83, 55.18, 55.13. ESI-TOF-MS (m/z): +4 (m/z= 615.11)
(Calcd. : m/z= 615.17), +3 (m/z= 832.13) (Calcd. : m/z= 832.22), +2 (m/z= 1265.67) (Calcd. : m/z= 1266.31).
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Synthesis of LB:

L8: A suspension of 5 (200 mg, 0.252 mmol) and L2 (262.6 mg, 0.252 mmol) in CHCI3:CH;O0H=1:1 (160 mL),
N-ethylmorpholine (4 drops) was added, the mixture was heated for 16 h. The resulting red solution was
allowed to cool down and evaporated under reducing pressure, then the residue was purified by flash column
chromatography (Al,O3) (CH,CI,/CH;0H=100/2) to give a red solid (217.4 mg, 47%). m.p. > 300°C. 'H NMR
(500 MHz, CD;0D) & 9.24 (s, 2H, CTpy-H®5), 9.23 (s, 2H, ATpy-H?®'5), 8.87-8.83 (m, 4H, ACTpy-H33), 8.75 (s,
4H, BTpy-H®?%), 8.72-8.71(d, J= 5Hz, 4H, BTpy-H5F"), 8.69-8.67(d, J= 10Hz, 4H, BTpy-H>?), 8.36-8.34(m, 4H,
ACPh-H)), 8.09-8.08 (d, J= 10Hz, 4H, BPh-Hi), 8.02-8.00 (m, 4H, ACTpy-H*#"), 7.99-7.97 (d, J= 10Hz, 4H, BTpy-
H*4"), 7.70-7.68 (d, J= 10Hz, 2H, SPh-HX), 7.52-7.46 (m, 14H, ABPh-HX, ACTpy-H8S', BTpy-H55"), 7.34-7.31 (m,
4H, ACTpy-H5%"), 2.77 (s, 3H, CHj3), 2.20(s, 6H, CH3), 1.91(s, 6H, CH3), 1.89(s, 3H, CH3;). *C NMR (126 MHz,
CD;0D) & 158.26, 155.61, 155.57, 155.47, 151.87, 150.37, 148.51, 143.31, 139.55, 138.33, 137.96, 136.54,
135.03, 132.70, 130.78, 130.31, 130.22, 129.54, 128.12, 127.97, 127.81, 127.33, 125.63, 124.85, 124.53,
124.34, 123.83, 122.00, 121.51, 118.84, 34.60, 32.99, 31.71, 31.15, 30.71, 29.64, 29.39, 29.11, 29.01, 26.84,
25.54, 22.40, 22.06, 20.28, 18.89. ESI-TOF-MS (m/z): +2 (m/z= 864.06) (Calcd. : m/z= 864.18), +1 (m/z=
1763.09) (Calcd. : m/z= 1763.33).

L9: A suspension of 6 (123 mg, 0.168 mmol) and L8 (144 mg, 0.080 mmol) in CHCIl;:CH;0H=1:2 (150 mL), N-
ethylmorpholine (4 drops) was added, the mixture was heated for 48 h. The resulting red solution was allowed

to cool down and evaporated under reducing pressure, then the residue was purified by flash column
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chromatography (Al,O3) (CH,Cl,/CH3;0H=100/2) to give a red solid (224.3 mg, 84%). m.p. > 300°C. '"H NMR
(400 MHz, CD;0D) & 9.44 (s, 6H, ATpy-H®5), 9.39 (s, 2H, CTpy-H®'5), 9.36 (s, 4H, BTpy-H%5), 9.00-8.94 (m,
12H, ABCTpy-H33"), 8.56-8.55 (d, J= 4Hz, 6H, APh-Hi), 8.48-8.46 (d, J= 8Hz, 2H, °Ph-Hi), 8.37-8.35 (d, J= 8Hz,
4H, BPh-Hi), 8.09-8.05 (m, 12H, ABCTpy-H*#"), 7.89-7.87 (d, J= 8Hz, 4H, BPh-HX), 7.77-7.75 (d, J= 8Hz, 6H,
APh-HX), 7.64-7.63 (m, 14H, ABCTpy-HS&, Ph-HP), 7.56-7.54 (d, J= 8Hz, 2H, CPh-H¥), 7.35-7.32 (m, 12H,
ABCTpy-H55"), 6.90 (s, 2H, Ph-H?), 4.03 (s, 6H, OCH3), 3.98 (s, 6H, OCHj3), 2.81 (s, 3H, CHj3), 2.26(s, 6H, CHj3),
2.06 (s, 9H, CHj3); °C NMR (101 MHz, CD;CN) & 157.80, 157.56, 157.26, 157.17, 157.09, 156.17, 155.96,
155.55, 154.36, 154.31, 154.18, 152.09, 151.12, 150.76, 150.66, 150.62, 147.32, 136.82, 136.70, 134.15,
132.24, 129.31, 129.28, 128.86, 126.82, 126.75, 126.27, 126.23, 125.79, 125.77, 123.38, 123.34, 123.27,
120.15, 120.10, 120.09, 119.81, 115.59, 95.94, 95.91, 95.90, 54.25, 53.85, 52.01, 20.40, 20.33, 17.20. ESI-
TOF-MS (m/z): +6 (m/z= 496.69) (Calcd. : m/z= 496.72), +5 (m/z= 603.02) (Calcd. : m/z= 603.06).

LB: K,CO3 (26 mg, 0.19 mmol) was added to a solution of L9 (50 mg, 15.7 umol) and (4-([2,2".6',2"-
terpyridine]4'-yl)-phenyl boronic acid (134 mg, 397 uymol) in 60 ml CH3;CN, following the addition of catalyst
tetrakistriphenylphosphine palladium (28 mg), the mixture was then refluxed at 85 °C for 96 h under N,. After
cooling to the room temperature, the solvent was evaporated under reducing pressure and the residue was
purified by flash column chromatography (Al,O3) (CH,Cl,/CH3OH=100/2.5) to give a red solid (36.4 mg, 53%).
m.p. > 300°C. "H NMR (400 MHz, CD;0D) & 9.42 (s, 6H, ATpy-H®5), 9.39 (s, 2H, CTpy-H®'5), 9.37 (s, 4H,
BTpy-H®%), 8.98-8.94 (m, 12H, ABCTpy-H33"), 8.82 (s, 4H, ETpy-H®'%), 8.80 (s, 4H, PTpy-H®'%), 8.76-8.73 (m,
16H, DETpy-HBE', DETpy-H3"), 8.55-8.53 (d, J=8Hz, 6H, APh-Hi), 8.48-8.46 (d, J= 8Hz, 2H, °Ph-Hi), 8.39-8.37
(d, J= 8Hz, 4H, BPh-Hi), 8.16-8.14 (d, J= 8Hz, 4H, EPh-H), 8.10-8.05 (m, 24H, PPh-Hi, ABCPETpy-H*4"), 8.00-
7.98 (d, J= 8Hz, 4H, BPh-H¥), 7.85-7.83 (m, 6H, PPh-H%, Ph-H®), 7.77-7.75 (d, J= 8Hz, 6H, APh-Hk), 7.71-7.69
(d, J= 8Hz, 2H, ¢Ph-H¥), 7.65-7.62 (m, 12H, ABCTpy-H®*®"), 7.56-7.53 (m, 12H, PETpy-H>%, EPh-HY), 7.35-7.32
(m, 12H, ABCTpy-H55"), 6.99 (s, 2H, Ph-H?), 4.05 (s, 6H, OCHs3), 4.03 (s, 6H, OCHs), 2.06 (s, 9H, CHs), 1.96 (s,
6H, CHj;), 1.93(s, 3H, CHj3). 3C NMR (126 MHz, CD;0D) d 158.24, 157.83, 157.58, 156.06, 156.03, 155.96,
155.91, 155.54, 155.43, 151.83, 150.24, 149.08, 148.75, 144.56, 141.01, 139.59, 139.40, 138.43, 137.60,
136.21, 134.23, 133.02, 132.77, 132.26, 130.81, 130.57, 130.21, 130.10, 129.60, 128.20, 127.89, 127.35,
127.21, 126.64, 125.03, 124.89, 124.21, 122.67, 121.94, 121.54, 121.23, 118.73, 118.57, 96.56, 55.54, 31.71,
29.52, 29.39, 29.30, 29.02, 26.88, 25.57, 22.42, 19.09, 19.01- ESI-TOF-MS (m/z): +6 (m/z= 649.01) (Calcd. :
m/z= 649.02), +5 (m/z= 785.80) (Calcd. : m/z= 785.82), +4 (m/z= 991.24) (Calcd. : m/z= 991.27). LB as PFg
salt: ESI-TOF-MS (m/z): +6 (m/z= 648.96) (Calcd. : m/z= 649.02), +5 (m/z= 807.74) (Calcd. : m/z= 807.82), +4

(m/z= 1045.92) (Calcd. : m/z= 1046.02).
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Self-Assembly:

35 +
33" A
44" |
55" @
66" @

Hexagon A

Hexagon A: Zn(NO;),*6H,0(0.298 mg, 1 pmol) was added to a solution of LA (2.6 mg, 1 pmol) in
CH3CIl/CH30H=1/1(6 ml). The mixture was stirred at 25°C for 2 h, then excess KPFs was added, generating a
red precipitate which was washed with water and then MeOH to give the desired product (2.81 mg, 97%).'H
NMR (500 MHz, CD3CN) 6 9.12 (m, 16H, ABTpy-H®%), 9.09(s, 8H, CTpy-H°®%), 8.80-8.79(d, J= 5Hz, 8H, CTpy-
H33), 8.73-8.72(m, 16H, ABTpy-H3%), 8.36-8.32(m, 24H, ABCPh-Hi), 8.06-7.99(m, 48H, ABCPh-HX, ABCTpy-
H*4), 7.91-7.90(d, J= 5Hz, 8H, CTpy-H®F"), 7.71-7.68(m, 6H, Ph-H4P), 7.51-7.46(m, 24H, ABTpy-HE', CTpy-
H®%"), 7.25-7.23(m, 16H, ABTpy-H>%"), 7.03-7.02(m, 6H, Ph-He2), 4.08(m, 36H, OCHj,), the signals of CH; were
incorporated into the signals of CD3CN. ESI-MS (m/z): 12+ (m/z= 421.03) (Calcd. : m/z= 421.04), 11+ (m/z=
472.48) (Calcd. : m/z= 472.47), 10+ (m/z= 534.22) (Calcd. : m/z= 534.21). 9+ (m/z= 609.59) (Calcd. : m/z=
609.70), 8+ (m/z= 704.10) (Calcd. : m/z= 704.01), 7+ (m/z= 825.30) (Calcd. : m/z= 825.29), 6+ (m/z= 987.02)
(Calcd. : m/z= 987.00).
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Honeycomb fractal H

Honeycomb fractal H: The synthesis process is the same as Hexagon A which gave a red solid (3.91 mg,
98%). 'H NMR (500 MHz, CD;CN) & 9.16 (m, 48H, PETpy-H®'S), 9.13 (m, 36H, ATpy-H?5), 9.09 (m, 36H,
BCTpy-H3'5), 8.81-8.79 (m, 36H, BCTpy-HB3'), 8.75-8.74 (m, 84H, APE Tpy-H33), 8.47-8.45 (m, 48H, DEPh-H)),
8.34-8.31 (m, 72H, ABCPh-H)), 8.24-8.22 (m, 36H, BCTpy-H**"), 8.06-8.05 (m, 72H, ABCPh-HK), 8.02-8.01 (m,
84H, ADE Tpy-H*4"), 7.91-7.90 (m, 36H, BCTpy-H®"), 7.77-7.75 (m, 48H, PEPh-HK), 7.70 (s, 12H, Ph-HP), 7.52-
7.51 (m, 84H, ADE Tpy-H6S'), 7.47-7.45 (m, 36H, BCTpy-H55"), 7.25-7.24 (m, 84H, ADE Tpy-H55"), 7.02 (s, 12H,
Ph-H?), 4.09-4.05 (m, 72H, OCHj3), the signals of CHj3 were incorporated into the signals of CD3;CN. ESI-MS
(m/z): 30+ (m/z= 949.71) (Calcd. [M-30PF13%*: m/z= 949.80), 29+ (m/z= 990.41) (Calcd. [M+2CH;CN-29PF¢
129*: m/z= 990.40), 28+ (m/z= 1033.76) (Calcd. [M+4CH;CN-28PF4128*: m/z= 1033.85), 27+ (m/z= 1074.57)
(Calcd. [M+2CH;CN-27PFg12"*: m/z= 1074.48), 26+ (m/z= 1121.32) (Calcd. [M+2CH;CN-26PFs1%%*: m/z=
1121.38), 25+ (m/z= 1172.07) (Calcd. [M+2CH;CN-25PF¢1%5*: m/z= 1172.03), 24+ (m/z= 1223.53) (Calcd. [M-
24PFg 124 m/z= 1223.49), 23+ (m/z= 1283.04) (Calcd. [M-23PF¢]3*: m/z= 1282.99), 22+ (m/z= 1347.95)
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(Calcd. [M-22PF¢]22*: m/z= 1347.90), 21+ (m/z= 1419.03) (Calcd. [M-21PFs2'™*: m/z= 1418.98), 20+ (m/z=

1497.24) (Calcd. [M-20PFg 2% m/z= 1497.18).

TH NMR spectra
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Figure S1. '"H NMR spectrum of L1.
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13C NMR spectra
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Figure S$10. '3C NMR spectrum of L1.
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Figure $12. '3C NMR spectrum of L8.
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Figure S15. '3C NMR spectrum of LB.

S16



2D COSY NMR spectra
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Figure $16. COSY NMR spectrum of L8. Cross peaks between Ph-kand Ph-j are denoted as dotted line; all the other

cross peaks are illustrated as solid lines.
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Figure $17. COSY NMR spectrum of L9. Because signals of Tpy-A, Tpy-B, Tpy-C merged into one broad peak,
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cross peaks of these three kinds tpys were colored with black. Cross peaks between Ph-kand Ph-j are denoted as

dotted line; all the other cross peaks are illustrated as solid lines.
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Figure S18. COSY NMR spectrum of LA. Cross peaks between Ph-kand Ph-j are denoted as dotted line; all the

other cross peaks are illustrated as solid lines.
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Figure $19. COSY NMR spectrum of LB. Because signals of Tpy-D, Tpy-E merged into one broad peak, cross

peaks of these two kinds tpys were colored with green. Cross peaks between Ph-kand Ph-j are denoted as dotted
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line; all the other cross peaks are illustrated as solid lines.
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Figure S20. COSY NMR spectrum of Hexagon A. Because signals of Ph-k and Ph-j for Tpy-A, Tpy-B, Tpy-B merged
into one broad peak, cross peaks of these three kinds protons were colored with black. Cross peaks between Ph-k

and Ph-j are denoted as dotted line; all the other cross peaks are illustrated as solid lines.
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Figure S21. COSY NMR spectrum of Honey comb fractal H. All of cross peaks were labeled in one figure: Tpy-A
(red), Tpy-B (purple), TpyC (orange), TpyD (blue), TpyE (green). Because signals of Tpy-A, Tpy-D, Tpy-E merged

into one broad peak, cross peaks of these three kinds tpys were colored with black. Cross peaks between Ph-kand
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Ph-j are denoted as dotted line; all the other cross peaks are illustrated as solid lines.

2D ROESY NMR spectra
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Figure S22. ROESY NMR spectrum of L9. Cross peaks between Ph-kand Ph-j are denoted as dotted line; all the

other cross peaks are illustrated as solid lines.
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Figure S23. ROESY NMR spectrum of LB. Cross peaks between Ph-kand Ph-j are denoted as dotted line; all the

other cross peaks are illustrated as solid lines.
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Figure S24. ROESY NMR spectrum of Honey comb fractal H. Cross peaks were labeled in three figures: Tpy-A (red),
Tpy-E (blue) were labeled in the figure-A; Tpy-B (purple), Tpy-E (green) were labeled in the right figure-B; Tpy-C
(orange) was labeled in the right figure-C. Cross peaks between Ph-j and Ph-k are denoted as dotted line; all the

other cross peaks are illustrated as solid lines.
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MS spectrum and isotope patterns
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Figure $25. MALDI-TOF-MS spectrum of L1.
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Figure S26. MALDI-TOF-MS spectrum of L3.
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Figure S27. ESI-MS spectrum of L8.
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Figure S28. ESI-MS spectrum of L9.
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Figure S29. ESI-MS spectrum of LA.
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Figure S30. ESI-MS spectrum of LB.
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Figure S31. ESI-MS spectrum of LB as PFg salt.
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Figure S32. The experimental and theoretical isotope patterns for each charge states of hexagon A.
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Figure S33. ESI-MS spectrum clearly confirmed the encapsulation of CH;CN in the large cavities or surface of

honeycomb fractal H.
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Molecular modeling

Figure S35. Energy-minimized structure of honeycomb fractal H.
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2D DOSY NMR
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Figure S36. 2D DOSY NMR spectra of hexagong A.
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