Electronic Supplementary Information

For

Transition Metal-Free, Visible-Light Mediated Synthesis of 1,10-Phenanthroline Derived Ligand Systems

Alyn C. Edwards, Andreas Geist, Udo Müllich, Clint A. Sharrad, Robin G. Pritchard, Roger C. Whitehead and Laurence M. Harwood.

Table of Contents

Table of Contents		2
1	Experimental Procedures	2
1.1	General Procedures	3
1.2	Synthesis of Substrates for α -C-H Functionalisation	3
1.3	Procedures for Photoredox Mediated α -C-H Functionalisation	6
1.3.	1 Synthesis of CyMe ₄ -BTPhen Ligands	12
1.3.	1.1 Synthesis of 4,7-dimethyl-CyMe ₄ -BTPhen	12
1.3.	1.2 Synthesis of 4,7-di-(4'-t-Bu-Phenyl)-CyMe ₄ -BTPhen	14
2	Key ¹ H and ¹³ C NMR Spectra	17
3	Solvent Extraction Studies	36
3.1	General Procedure for Extraction Experiments	36
4	X-ray Crystallographic Structure of Eu(III) Complex	
Refe	erences	

1 Experimental Procedures

1.1 General Procedures

All reagents were purchased from Alfa-Aesar, Sigma-Aldrich or Fisher Scientific and used as received. Mass spectra were obtained using: a Waters SQD2 (ES), a Shimadzu Axima Confidence (MALDI), a Agilent 6120 Quadrupole LCMS (APCI), or a Thermo EXACTIVE Plus EMR Orbitrap (HRMS) apparatus. Reported mass values fall within \pm 10 ppm mass units for electrospray and high resolution mass spectrometry (HRMS). Infrared spectra were recorded on a Thermo Scientific Nicolet iS5 spectrometer. Absorption maxima (v_{max}) are recorded in wavenumbers (cm⁻¹) with use of the following abbreviations: w, weak; m, medium; s, strong; br, broad. Melting points were recorded on a Sanyo Gallenkamp MPD350 apparatus and readings are uncorrected. ¹H and ¹³C NMR spectra were recorded with B400 Bruker Avance III or B500 Bruker Avance II+ spectrometers. NMR assignments were supported by 2D, ¹H-¹H COSY and ¹³C-¹H HMQC experiments. Chemical shifts (δ_{H}) are quoted in parts per million (ppm) to the nearest 0.01 ppm, calibrated to the relevant residual solvent peaks. Coupling constants are reported in Hz. Signal multiplicity is described with the use of the abbreviations: [s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad]. X-Ray crystallography was performed at the University of Manchester by Dr Robin G. Pritchard.

1.2 Synthesis of Substrates for α -C-H Functionalisation

4,7-bis(4-(t-butyl)phenyl)-1,10-phenanthroline. A thoroughly degassed suspension of 4,7-dichloro-1,10-phenanthroline (1.00 g, 4.00 mmol), Cs_2CO_3 (4.43 g, 13.6 mmol), 4-*t*-butylphenylboronic acid (2.14 g, 12.0 mmol), $Pd_2(DBA)_3$ (0.18 g, 0.2 mmol, 5 mol %) and PCy_3 (0.13 g, 0.5 mmol, 12 mol %) in dioxane:H₂O (3:1, 30 mL) was heated at 100 °C for 3 h. The resulting suspension was cooled to ambient temperature and diluted with CHCl₃ (200 mL). The organics were washed with H₂O (1 x 200 mL), aqueous Na₂CO₃ (saturated solution) (2 x 200 mL), brine (1 x 150 mL), dried over MgSO₄ and concentrated *in vacuo* to afford a brown solid. This crude material was recrystallized from MeOH to provide compound **1i** as an orange crystalline solid (1.49 g, 84%). m.p. 109-113 °C; v_{max} / cm⁻¹ 2959, 2900, 1502m; δ_H (500 MHz; CDCl₃) 9.23 (2H, d, *J* 4.6, C(2)<u>H</u> and C(9)<u>H</u>), 7.92 (2H, s, C(5)<u>H</u> and C(6)<u>H</u>), 7.60 (2H, d, *J* 4.6, C(3)<u>H</u> and C(8)<u>H</u>), 7.56 (2H, d, *J* 8.4, 2 x Ar-<u>H</u>), 7.49 (2H, d, *J* 8.4, 2 x Ar-<u>H</u>), 1.42 (18H, s, 6 x C<u>H₃</u>); δ_C (125 MHz; CDCl₃) 151.6 (Ar-<u>C</u>), 149.7 (<u>C</u>(2) and <u>C</u>(9)), 148.4 (Ar-<u>C</u>), 146.9 (Ar-<u>C</u>), 135.0 (Ar-<u>C</u>), 129.4 (Ar-<u>C</u>H), 126.5 (Ar-<u>C</u>H), 126.5 (Ar-<u>C</u>H), 124.1 (<u>C</u>(3) and <u>C</u>(8) or <u>C</u>(5) and <u>C</u>(6)), 123.4 (<u>C</u>(3) and <u>C</u>(8) or <u>C</u>(5) and <u>C</u>(6)), 34.7 (<u>C</u>-(CH₃)₃), 31.4 (<u>C</u>H₃); *m/z* (+ES) 445 ([M+H]⁺, 70 %); HRMS (+ES) calculated for C₃₂H₃₃N₂ ([M+H]⁺): 445.2638, found: 445.2635.

4,7-dimethoxy-1,10-phenanthroline. Anhydrous MeOH (60 mL) was purged with N₂ for 15 minutes before being treated with small portions of sodium metal (0.46 g, 20 mmol). The resulting suspension was left to stir at ambient temperature until complete dissolution was achieved. Compound **1a** (1.00 g, 4.01 mmol) was added and the suspension was heated at reflux for 24 h. Concentration of the resulting yellow solution *in vacuo* to ~15 mL, followed by the addition of H₂O (100 mL) resulted in the formation of a tan precipitate. The suspension was refrigerated overnight, filtered and the filtrate washed with H₂O (3 x 50 mL) and Et₂O (3 x 30 mL), to obtain 4,7-dimethoxy-1,10-phenanthroline **1j** as a white solid (0.86 g, 90 %). m.p. 208-211 °C [Lit.^[1] m.p. 209-210 °C]; $\delta_{\rm H}$ (500 MHz; CDCl₃) 9.01 (2H, d, *J* 5.4, C(2)<u>H</u> and C(9)<u>H</u>), 8.19 (2H, s, C(5)<u>H</u> and C(6)<u>H</u>), 7.00 (2H, d, *J* 5.4, C(3)<u>H</u> and C(8)<u>H</u>), 4.10 (6H, s, 2 x C<u>H₃</u>); $\delta_{\rm C}$ (125MHz; CDCl₃) 162.3 (Ar-<u>C</u>), 151.2 (<u>C</u>(2)H and <u>C</u>(9)H), 146.9 (Ar-<u>C</u>), 121.0 (Ar-<u>C</u>), 119.0 (<u>C</u>(5)H and <u>C</u>(6)H), 102.8 (<u>C</u>(3)H and <u>C</u>(8)H), 55.8 (O<u>C</u>H₃); *m*/*z* (+ES) 241 ([M+H]⁺, 100 %). Data consistent with that reported by Buchwald *et al*.^[1]

4,7-di(pyrrolidin-1-yl)-1,10-phenanthroline. A stirred suspension of **1a** (0.25 g, 1.0 mmol) in pyrrolidine (1.7 mL) was heated at 130 °C in a microwave reactor for 45 minutes. The reaction mixture was concentrated under *vacuo* and the brown residue washed with a saturated aqueous NaHCO₃ solution (3 x 5mL), H₂O (3 x 5mL) and dried under vacuum to afford **1k** as a bright yellow powder (0.30 g, 95 %). m.p. 142-144 °C; v_{max} / cm⁻¹ 2959w, 2949m, 2862w, 1665m, 1619m, 1567s, 1501s; δ_{H} (500 MHz; D₂O + DCl) 8.32 (2H, d, *J* 7.4 C(2)<u>H</u> and C(9)<u>H</u>), 8.29 (2H, s, C(5)<u>H</u> and C(6)<u>H</u>), 6.92 (2H, d, *J* 7.4 C(3)<u>H</u> and C(8)<u>H</u>), 3.97 (8H, ~br s, 4 x C<u>H</u>₂), 2.13 (8H, ~br s, 4 x C<u>H</u>₂); δ_{C} (100 MHz; D₂O + DCl) 155.5 (Ar-<u>C</u>), 139.2 (<u>C</u>(2) and (<u>C</u>(9)), 130.7 (Ar-<u>C</u>), 121.4 (<u>C</u>(5) and (<u>C</u>(6)), 118.6 (Ar-<u>C</u>), 104.5 (<u>C</u>(3) and <u>C</u>(8)), 54.0 (<u>C</u>H₂), 25.2 (<u>C</u>H₂); *m*/*z* (+ES) 319 ([M+H]⁺, 100 %). HRMS (+HESI) calculated for C₂₀H₂₃N₄ ([M+H]⁺): 319.1917, found: 319.1906. Data consistent with that reported by Ulven *et al.*^[2]

Procedures for Photoredox Mediated α -C-H Functionalisation

General Procedure:

A stirred mixture of the 1,10-phenanthroline derivative (0.10 g, 0.23 – 0.48 mmol, 1.0 eqv.), (NH₄)₂S₂O₈ (1.35 – 2.88 mmol, 6.0 eqv.), benzaldehyde (0.46 – 0.96 mmol, 2.0 eqv) and EtOAc: formamide (1:1) (5-10 mL) was placed in an oven dried, 20 mL Teflon sealed vial. The reaction mixture was thoroughly degassed, refilled with N₂, placed in a water bath at 30 °C and irradiated with 2 household compact fluorescent lamps (CFL) (23 W) at a distance of approximately 5 cm for the indicated time. After this period, the mixture was diluted with H₂O (5 mL), filtered and the precipitate washed with H₂O (2 x 5 mL), MeOH (2 x 10 mL) and Et₂O (2 x 10 mL) to afford the target compound.

4,7-dichloro-1,10-phenanthroline-2,9-dicarboxamide. According to the general procedure, a mixture of 4,7dichloro-1,10-phenanthroline (0.10 g, 0.40 mmol), (NH₄)₂S₂O₈ (0.55 g, 2.40 mmol) and benzaldehyde (0.09 mL, 0.09 g, 0.80 mmol) in EtOAc: formamide (1:1) (10 mL) was irradiated for 16 h to afford **2a** as a pale tan solid (0.11 g, 82 %). $\delta_{\rm H}$ (500 MHz; DMSO-d₆) 9.00 (2H, br s, NH₂), 8.56 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 8.52 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 8.05 (2H, br s, NH₂); $\delta_{\rm C}$ (125 MHz; DMSO-d₆) 164.7 (CONH₂), 150.8 (Ar-C), 145.0 (Ar-C), 143.2 (Ar-C), 127.6 (Ar-C), 124.5 (C(5)H and C(6)H or C(3)H and C(8)H), 121.7 (C(5)H and C(6)H or C(3)H and C(8)H); *m/z* (MALDI-dithranol) 335 ([M{³⁵Cl₂}+H]⁺, 100 %), 337 ([M{³⁵Cl³⁷Cl}+H]⁺, 70 %), 339 ([M{³⁷Cl₂}+H]⁺, 20 %). Data consistent with that reported by Edwards *et al*.^[3]

7-chloro-1,10-phenanthroline-2,4,9-tricarboxamide. According to the general procedure, a mixture of 7-chloro-1,10-phenanthroline (0.10 g, 0.47 mmol), (NH₄)₂S₂O₈ (0.97 g, 4.23 mmol) and benzaldehyde (0.15 mL, 0.15 g, 1.41 mmol) in EtOAc: formamide (1:1) (10 mL) was irradiated for 48 h. In addition to the general procedure, the resulting yellow solid was further triturated with ice-cold MeOH (2 x 5 mL) to afford target **2b** (0.14 g, 88 %). m.p. 280 °C (decomposed); v_{max} / cm⁻¹ 3429br , 3170br, 1684s (C=O); δ_{H} (500 MHz; DMSO-d₆) 8.99 (2H, br s, NH₂), 8.54 (1H, s, C(3)H or C(8)H), 8.53 (1H, br s, NH), 8.52 (1H, d, J 9.5, C(5)H or C(6)H), 8.47 (1H, s, C(3)H or C(8)H), 8.45 (1H, d, J 9.5, C(5)H or C(6)H), 8.11 (1H, br s, NH), 8.01 (2H, br s, NH₂), δ_{C} (125 MHz; DMSO-d₆) 168.1 (CONH₂), 165.4 (CONH₂), 165.0 (CONH₂), 150.5 (Ar-C), 150.4 (Ar-C), 145.2 (Ar-C), 144.3 (Ar-C), 144.1 (Ar-C), 143.1 (Ar-C), 127.4 (Ar-C), 126.7 (Ar-CH), 126.5 (Ar-C), 123.6 (Ar-CH), 121.5 (Ar-CH), 119.1 (Ar-CH); *m/z* (+ESI) 366 ([M{³⁵Cl}+Na]⁺, 100 %), 368 ([M{³⁷Cl}+Na]⁺; HRMS (+HESI) calculated for C₁₅H₁₀N₅O₃Na ([M+Na]⁺): 366.0364, found: 366.0351.

4,7-dibromo-1,10-phenanthroline-2,9-dicarboxamide. According to the general procedure, a mixture of 4,7-dibromo-1,10-phenanthroline (0.10 g, 0.30 mmol), (NH₄)₂S₂O₈ (0.41 g, 1.78 mmol) and benzaldehyde (0.06 mL, 0.06 g, 0.60 mmol) in EtOAc: formamide (1:1) (6 mL) was irradiated for 16 h to afford **2c** as a pale tan solid (0.10 g, 78 %). m.p. >300 °C; v_{max} / cm⁻¹ 3438br, 3279br, 3214br, 1692 (C=O); $\delta_{\rm H}$ (500 MHz; DMSO-d₆) 8.97 (2H, br s, NH₂), 8.71 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 8.47 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 8.03 (2H, br s, NH₂); $\delta_{\rm C}$ (125 MHz; DMSO-d₆) 164.7 (CONH₂), 150.5 (Ar-C), 144.8 (Ar-C), 134.9 (Ar-C), 129.1 (Ar-C), 127.4 (C(5)H and C(6)H or C(3)H and C(8)H), 125.5 (C(5)H and C(6)H or C(3)H and C(8)H); *m/z* (MALDI-dithranol) 423 ([M{⁷⁹Br₂}+H]⁺, 50 %), 425 ([M{⁷⁹Br⁸¹Br}+H]⁺, 100 %), 427 ([M{⁸¹Br₂}+H]⁺, 50 %). HRMS (+HESI) calculated for C₁₄H₉N₄O₂Br₂ ([M+H]⁺): 422.9087, found: 422.9086.

1,10-phenanthroline-2,4,7,9-tetracarboxamide: According to the general procedure, a mixture of 1,10-phenanthroline (0.10 g, 0.55 mmol), (NH₄)₂S₂O₈ (1.52 g, 6.66 mmol) and benzaldehyde (0.22 mL, 0.24 g, 2.2 mmol) in EtOAc: formamide (1:1) (10 mL) was irradiated for 16 h. In addition to the general procedure, the resulting yellow solid was further triturated with ice-cold MeOH (2 x 5 mL) to afford target 2d (0.13 g, 68 %). m.p. >300 °C; v_{max} / cm⁻¹ 3450br, 3338br, 3289br, 3181w, 3068w, 1686 (C=O); 1678 (C=O); δ_{H} (500 MHz; DMSO-d₆ + DCl) 8.40 (1H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 8.34 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>); δ_{C} (125 MHz; DMSO-d₆ + DCl) 168.4 (<u>C</u>ONH₂), 165.9 (<u>C</u>ONH₂), 150.3 (Ar-<u>C</u>), 144.7 (Ar-<u>C</u>), 144.3 (Ar-<u>C</u>), 126.5 (<u>C</u>(5)H and <u>C</u>(6)H or <u>C</u>(3)H and <u>C</u>(8)H), 119.2 (Ar-<u>C</u>); *m/z* (+ESI) 353 ([M+H]⁺, 100 %). HRMS (+HESI) calculated for C₁₆H₁₂N₆O₄Na ([M+Na]⁺): 375.0812, found: 375.0797.

4,7-dimethyl-1,10-phenanthroline-2,9-dicarboxamide. According to the general procedure, a mixture of 4,7-dimethyl-1,10-phenanthroline (0.10 g, 0.48 mmol), (NH₄)₂S₂O₈ (0.66 g, 2.88 mmol) and benzaldehyde (0.10 mL, 0.10 g, 0.96 mmol) in EtOAc: formamide (1:1) (10 mL) was irradiated for 20 h to afford **2e** as an off white powder (0.11 g, 75 %). m.p. >300 °C; v_{max} / cm⁻¹ 3430br, 3295br, 1676s (C=O); δ_{H} (500 MHz; DMSO-d₆) 8.88 (2H, br s, NH₂), 8.32 (2H, s, (C(3)H and C(8)H or C(5)H and C(6)H)), 8.30 (2H, s, (C(3)H and C(8)H or C(5)H and C(6)H)), 7.80 (2H, br s, NH₂), 2.88 (6H, s, 2 x CH₃); δ_{C} (150 MHz; DMSO-d₆) 165.2 (CONH₂), 163.4 (Ar-C), 150.9 (Ar-C), 149.0 (Ar-C), 140.7 (Ar-C), 130.0 (Ar-C), 124.8 (C(3) and C(8) or C(5) and C(6)), 123.5 (C(3) and C(8) or C(5) and C(6)), 19.7 (CH₃); *m/z* (APCI) 295 ([M+H]⁺, 30 %); HRMS (APCI) calculated for C₁₆H₁₅N₄O₂ ([M+H]⁺): 295.1190, found: 295.1191.

3,4,7,8-tetramethyl-1,10-phenanthroline-2,9-dicarboxamide. According to the general procedure, a mixture of 3,4,7,8-tetramethyl-1,10-phenanthroline (0.10 g, 0.42 mmol), (NH₄)₂S₂O₈ (0.58 g, 2.54 mmol) and benzaldehyde (0.09 mL, 0.09 g, 0.85 mmol) in EtOAc: formamide (1:1) (10 mL) was irradiated for 48 h to afford **2f** as an off white powder (0.82 g, 62 %). m.p. >300 °C; v_{max} / cm⁻¹ 3353, 3188, 1657s (C=O); δ_{H} (500 MHz; DMSO-d₆) 8.22 (2H, s, (<u>C</u>(5)H and <u>C</u>(6)H), 8.22 (2H, br s, NH₂), 7.71 (2H, br s, NH₂), 2.71 (6H, s, 2 x CH₃), 2.59 (6H, s, 2 x CH₃); δ_{C} (125 MHz; DMSO-d₆) 169.9 (<u>CONH₂</u>), 153.0 (Ar-<u>C</u>), 143.7 (Ar-<u>C</u>), 142.2 (Ar-<u>C</u>), 128.5 (Ar-<u>C</u>), 127.1 (Ar-<u>C</u>), 123.2 (<u>C</u>(5)H and <u>C</u>(6)H), 15.5 (<u>C</u>H₃), 14.6 (<u>C</u>H₃); *m/z* (APCI) 323 ([M+H]⁺, 100 %); HRMS (APCI) calculated for C₁₈H₁₈N₄O₂ ([M+H]⁺): 323.1503, found: 323.1500.

4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxamide. According to the general procedure, a mixture of 4,7-diphenyl-1,10-phenanthroline (0.10 g, 0.30 mmol), (NH₄)₂S₂O₈ (0.41 g, 1.81 mmol) and benzaldehyde (0.06 mL, 0.06 g, 0.60 mmol) in EtOAc: formamide (1:1) (10 mL) was irradiated for 20 h to afford **2g** as an off white solid (0.09 g, 75 %). m.p. 215-217 °C; δ_{H} (500 MHz; DMSO-d₆) 9.05 (2H, br s, NH₂), 8.35 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 8.01 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 7.97 (2H, br s, NH₂), 7.64 (10H, m, Ar-H); δ_{C} (125 MHz; DMSO-d₆) 166.5 (CONH₂), 150.2 (Ar-C), 149.8 (Ar-C), 145.5 (Ar-C), 137.5 (Ar-C), 130.1 (Ar-CH), 129.5 (Ar-CH), 129.4 (Ar-CH), 127.9 (Ar-C), 125.7 (C(5)H and C(6)H or C(3)H and C(8)H)), 121.8 (C(5)H and C(6)H or C(3)H and C(8)H)); *m/z* (APCI) 441 ([M+Na]⁺, 15 %), 419 ([M+H]⁺, 100 %). Data consistent with that reported by Edwards *et al.*^[3]

2,9-diphenyl-1,10-phenanthroline-4,7-dicarboxamide. According to the general procedure, a mixture of 2,9-diphenyl-1,10-phenanthroline (0.10 g, 0.30 mmol), (NH₄)₂S₂O₈ (0.41 g, 1.80 mmol) and benzaldehyde (0.06 mL, 0.06 g, 0.60 mmol) in EtOAc: formamide (1:1) (8 mL) was irradiated for 24 h. In addition to the general procedure, the resulting solid was further triturated with ice-cold MeOH (2 x 5 mL) to afford target **2h** as a bright yellow solid (0.10 g, 81 %). m.p. 180-183 °C; v_{max} / cm⁻¹ 3311br (N-H), 3175br (N-H), 1663m (C=O), 1599m (C=C); δ_{H} (500 MHz; DMSO-d₆) 8.56 (4H, d, *J* 7.4, Ar-<u>H</u>), 8.45 (2H, br s, NH₂), 8.43 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 8.28 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 8.28 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 8.05 (2H, br s, NH₂), 7.67 (4H, d, *J* 7.4, Ar-<u>H</u>), 7.58 (2H, d, *J* 7.4, Ar-<u>H</u>); δ_{C} (125 MHz; DMSO-d₆) 168.6 (<u>C</u>ONH₂), 155.22 (Ar-<u>C</u>), 147.8 (Ar-<u>C</u>), 143.6 (Ar-<u>C</u>), 138.4 (Ar-<u>C</u>), 130.0 (Ar-<u>C</u>H), 129.1 (Ar-<u>C</u>H), 127.4 (Ar-<u>C</u>H), 123.9 (<u>C</u>(5)H and <u>C</u>(6)H or <u>C</u>(3)H and <u>C</u>(8)H); *m/z* (+ES) 419 ([M+H]⁺, 100 %); HRMS (+HESI) calculated for C₂₆H₁₉O₂N₄ ([M+H]⁺): 419.1503, found: 419.1494.

4,7-bis(4-(t-butyl)phenyl)-1,10-phenanthroline-2,9-dicarboxamide. According to the general procedure, a mixture of 4,7-bis(4-(tert-butyl)phenyl)-1,10-phenanthroline (0.10 g, 0.23 mmol), $(NH_4)_2S_2O_8$ (0.31 g, 1.35 mmol) and benzaldehyde (0.05 mL, 0.50 g, 0.46 mmol) in EtOAc: formamide (1:1) (5 mL) was irradiated for 48 h to afford **2i** as a white powder (0.08 g, 65 %). m.p. >300 °C; $v_{max} / cm^{-1} 3377$, 2958, 1686 (C=O); δ_H (500 MHz; CDCl₃) 8.58 (2H, s, (C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 8.57 (2H, d, *J* 4.3, NH₂), 8.09 (2H, s, (C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.60 (4H, d, *J* 8.3, 4 x Ar-C<u>H</u>), 7.53 (4H, d, *J* 8.3, 4 x Ar-C<u>H</u>), 5.83 (2H, d, *J* 4.3, NH₂), 1.44 (18H, s, 6 x CH₃); δ_C (125 MHz; CDCl₃) 166.8 (CONH₂), 152.2 (Ar-C), 150.5 (Ar-C), 148.7 (Ar-C), 134.2 (Ar-C), 129.5 (Ar-CH), 128.6 (Ar-C), 125.7 (Ar-CH), 125.6 (C(3) and C(8) or C(5) and C(6)), 125.1 (Ar-C), 122.0 (C(3) and C(8) or C(5) and C(6)), 34.8 (C-(CH₃)₃), 31.3 (CH₃); m/z (APCI) 531 ([M+H]⁺, 100 %); HRMS (APCI) calculated for C₃₄H₃₅N₄O₂ ([M+H]⁺): 531.2755, found: 531.2753.

4,7-dimethoxy-1,10-phenanthroline-2,9-dicarboxamide. According to the general procedure, a mixture of 4,7-dimethoxy-1,10-phenanthroline (0.10 g, 0.42 mmol), (NH₄)₂S₂O₈ (0.57 g, 2.50 mmol) and benzaldehyde (0.08 mL, 0.08 g, 0.83 mmol) in EtOAc: formamide (1:1) (10 mL) was irradiated for 48 h to afford **2j** as a white powder (0.07 g, 53 %). $\delta_{\rm H}$ (500 MHz; DMSO-d₆) 8.88 (2H, br s, NH₂), 8.25 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 7.94 (2H, s, C(3)H and C(8)H or C(5)H and C(6)H), 7.82 (2H, br s, NH₂), 4.19 (6H, s, 2 x OCH₃); $\delta_{\rm C}$ (125 MHz; DMSO-d₆) 166.1 (CONH₂), 163.0 (Ar-C), 151.7 (Ar-C), 144.8 (Ar-C), 121.6 (C(5)H and C(6)H or C(3)H and C(8)H), 120.1 (C(5)H and C(6)H or C(3)H and C(8)H), 101.1 (Ar-C), 56.6 (COCH₃); *m/z* (APCI) 328 ([M+H]⁺, 100 %). Data consistent with that reported by Edwards *et al.*^[3]

1.3.1 Synthesis of CyMe₄-BTPhen Ligands

1.3.1.1 Synthesis of 4,7-dimethyl-CyMe₄-BTPhen

4,7-dimethyl-1,10-phenanthroline-2,9-dicarbonitrile. To DMF (14 mL) under a N₂ atmosphere was added oxalyl chloride (0.38 mL, 0.56 g, 4.44 mmol) at 0 °C with stirring. A white precipitate formed immediately which was accompanied by gas evolution. Once gas evolution had stopped, a suspension of bis-amide **2e** (0.45 g, 1.53 mmol) in DMF (10 mL) was added. The resulting mixture was left to stir for 5 h at 0 °C. Pyridine (0.55 mL, 0.55 g, 6.90 mmol) was added and the mixture left to stir for a further 30 min before being neutralised with a saturated solution of aqueous K₂CO₃ (12 mL), forming a precipitate. Precipitation was further encouraged through the addition of H₂O (25 mL). The precipitate was filtered, washed with H₂O (3 x 15 mL) and Et₂O (3 x 15 mL). The solid was dried *in vacuo* over silica to yield **3a** as a light tan powder (0.30 g, 77 %). m.p. >300 °C; v_{max} / cm⁻¹ 3037m, 2232w (C=N), 1614m, 1565s, 1548s; δ_H (500 MHz; DMSO-d₆) 8.35 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 2.85 (6H, s, 2 x C<u>H₃</u>); δ_c (125 MHz; DMSO-d₆) 148.0 (Ar-C), 132.5 (Ar-C), 129.6 (Ar-C), 127.9 (<u>C</u>(5)H and <u>C</u>(6)H) or <u>C</u>(4)H and <u>C</u>(8)H), 125.2 (<u>C</u>(5)H and <u>C</u>(6)H) or <u>C</u>(4)H and <u>C</u>(8)H), 117.7 (<u>C</u>=N), 18.5 (<u>C</u>H₃); *m/z* (APCI) 259 ([M+H]⁺, 100 %); HRMS (+ES) calculated for C₁₆H₁₁N₄ ([M+H]⁺): 259.0965, found: 259.0968.

(2Z,9Z)-4,7-dimethyl-1,10-phenanthroline-2,9-bis(carbohydrazonamide). A suspension of **3a** (0.20 g, 0.78 mmol) in EtOH (8.5 mL) was treated with hydrazine hydrate (6.5 mL, 50-60 %). The suspension was left to stir for 72 h at ambient temperature, before being concentrated *in vacuo*. The precipitate was washed with H₂O (2 x 10 mL), Et₂O (3 x 40 mL) and dried *in vacuo* to yield compound **4a** as a bright yellow solid (0.18 g, 72 %). m.p. 250 °C (decomposed); v_{max} / cm⁻¹ 3324br (N-H), 3189br (N-H), 1617s, 1576s, 1543s; δ_{H} (500 MHz; DMSO-d₆) 8.14 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 8.09 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 6.07 (4H, br s, 2 x NH₂), 5.59 (4H, br s, 2 x NH₂), 2.76 (6H, s, 2 x CH₃); δ_{C} (125 MHz; DMSO) 150.7 (<u>C</u>=NNH₂), 144.8 (Ar-<u>C</u>), 143.7 (Ar-<u>C</u>), 143.5 (Ar-<u>C</u>), 127.4 (Ar-<u>C</u>), 121.9 (<u>C</u>(5)H and <u>C</u>(6)H or <u>C</u>(3)H and <u>C</u>(8)H), 119.3 (<u>C</u>(5)H and <u>C</u>(6)H or <u>C</u>(3)H and <u>C</u>(8)H), 18.9 (<u>C</u>H₃); *m/z* (+ES) 323 ([M+H]⁺, 100 %); HRMS (APCI) calculated for C₁₆H₁₉N₈ ([M+H]⁺): 323.1727, found: 323.1712.

4,7-dimethyl-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[e][1,2,4]triazin-3-yl)-1,10-phenanthroline. A stirred suspension of **4a** (0.15 g, 0.47 mmol) and 3,3,6,6-tetramethylcyclohexane-1,2-dione **5a** (0.174 g, 1.02 mmol) in EtOH (6.0 mL) was heated at reflux for 5 h. After this time, the yellow suspension was allowed to cool to ambient temperature and taken to dryness *in vacuo*. The resulting yellow solid was triturated with cold Et₂O (3 x 20 mL) to give the desired bis-triazinyl-1,10-phenanthroline **6a** (0.20 g, 71 %) as a bright yellow solid. m.p. 185-188 °C; v_{max} / cm^{-1} 3517br (N-H), 2960s, 2928s, 2862s, 1622m, 1577m; δ_H (500 MHz; CDCl₃) 8.73 (2H, s, C(3)<u>H</u> and C(8)<u>H</u>), 8.19 (2H, s, C(5)<u>H</u> and C(6)<u>H</u>), 2.95 (6H, s, 2 x CH₃), 1.91 (8H, s, 4 x CH₂), 1.60 (12H, s, 4 x CH₃), 1.56 (12H, s, 4 x CH₃); δ_C (125 MHz; CDCl₃) 164.9 (Ar-<u>C</u>), 163.0 (Ar-<u>C</u>), 161.7 (Ar-<u>C</u>), 153.3 (Ar-<u>C</u>), 146.6 (Ar-<u>C</u>), 145.4 (Ar-<u>C</u>), 128.9 (Ar-<u>C</u>), 124.2 (<u>C</u>(3)H and <u>C</u>(8)H), 123.1 (<u>C</u>(5)H and <u>C</u>(6)H), 37.5 (quat <u>C</u>), 36.5 (quat <u>C</u>), 33.7 (<u>C</u>H₂), 29.8 (<u>C</u>H₃), 29.3 (<u>C</u>H₃), 19.5 (<u>C</u>H₃); *m/z* (+ES) 587 ([M+H]⁺, 100 %); HRMS (APCI) calculated for C₃₆H₄₃N₈ ([M+H]⁺): 587.3605, found: 587.3582.

1.3.1.2 Synthesis of 4,7-di-(4'-t-Bu-Phenyl)-CyMe₄-BTPhen

4,7-bis(4-(tert-butyl)phenyl)-1,10-phenanthroline-2,9-dicarbonitrile. To DMF (11 mL) under a N₂ atmosphere was added oxalyl chloride (0.24 mL, 0.35 g, 1.36 mmol) at 0 °C with stirring. A white precipitate formed immediately which was accompanied by gas evolution. Once evolution of gas had stopped, a suspension of bisamide **2i** (0.5 g, 0.94 mmol) in DMF (6 mL) was added. The resulting mixture was left to stir for 6 h at 0 °C. Pyridine (0.34 mL, 0.35 g, 4.24 mmol) was added and the mixture left to stir for a further 30 min before being neutralised with a saturated solution of aqueous K₂CO₃ (15 mL), forming a precipitate. Precipitation was further encouraged through the addition of H₂O (30 mL). The precipitate was filtered and washed with H₂O (3 x 20 mL). The solid was dried *in vacuo* to yield **3b** as a pink powder (0.39 g, 85 %). m.p. >300 °C; v_{max} / cm⁻¹ 2960m, 2902w, 2865w, 1611m (C≡N); δ_{H} (500 MHz; CDCl₃) 8.10 (2H, s, (C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.99 (2H, s, (C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.99 (2H, s, (C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.91 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.92 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.99 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.91 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.92 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.93 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>)), 7.94 (Ar-<u>C</u>), 128.4 (Ar-<u>C</u>), 127.5 (<u>C</u>(3) and <u>C</u>(6) or <u>C</u>(5) and <u>C</u>(6)), 126.5 (<u>C</u>(3) and <u>C</u>(8) or <u>C</u>(5) and <u>C</u>(6)), 126.1 (Ar-<u>C</u>), 117.3 (<u>C</u>=N), 34.9 (<u>C</u>-(CH₃)₃), 31.3 (<u>C</u>H₃); *m/z* (+ES) 495 ([M+H]⁺, 100 %); HRMS (APCI) calculated for C₃₄H₃₁N₄ ([M+H]⁺): 495.2543, found: 495.2550.

(22,92)-4,7-bis(4-(t-butyl)phenyl)-1,10-phenanthroline-2,9-bis(carbohydrazonamide). A suspension of **3b** (0.20 g, 0.40 mmol) in EtOH (3.5 mL) was treated with hydrazine hydrate (3.5 mL, 50-60 %). The suspension was left to stir for 72 h at ambient temperature, before being concentrated *in vacuo*. The yellow precipitate was washed with H₂O (2 x 30 mL), Et₂O (2 x 10 mL) and dried *in vacuo* to yield compound **4b** as a bright yellow solid (0.21 g, 95 %). m.p. 260 °C (decomposed); v_{max} / cm^{-1} 3339br (N-H), 3181br (N-H), 2955m, 2901w, 2866w, 1680m, 1613m, 1540s; δ_H (500 MHz; CDCl₃) 8.34 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 7.91 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 7.53 (4H, d, *J* 7.8, 4 x Ar-C<u>H</u>), 7.49 (4H, d, *J* 7.8, 4 x Ar-C<u>H</u>), 5.70 (4H, br s, 2 x N<u>H</u>₂), 4.76 (4H, br s, 2 x N<u>H</u>₂), 1.40 (18H, s, 6 x C<u>H</u>₃); δ_C (125 MHz; CDCl₃) 151.6 (<u>C</u>=NNH₂), 149.9 (Ar-<u>C</u>), 148.9 (Ar-<u>C</u>), 145.0 (Ar-<u>C</u>), 135.0 (Ar-<u>C</u>), 129.5 (Ar-<u>C</u>H), 127.1 (Ar-<u>C</u>), 125.4 (Ar-<u>C</u>H), 124.2 (<u>C</u>(5)H and <u>C</u>(6)H or <u>C</u>(3)H and <u>C</u>(8)H), 119.7 (<u>C</u>(5)H and <u>C</u>(6)H or <u>C</u>(3)H and <u>C</u>(8)H), 34.7 (<u>C</u>-(CH₃)₃), 31.3 (<u>C</u>H₃); *m/z* (+HESI) 559 ([M+H]⁺, 100 %); HRMS (+HESI) calculated for C₃₄H₃₉N₈ ([M+H]⁺): 559.3292, found: 559.3292.

4,7-bis(4-(t-butyl)phenyl)-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo-[e][1,2,4]triazin-3-yl)-1,10phenanthroline. A stirred suspension of **4b** (0.40 g, 0.72 mmol) and 3,3,6,6-tetramethylcyclohexane-1,2-dione **5a** (0.266 g, 1.58 mmol) in EtOH (9.0 mL) was heated at reflux for 5 h. After this time, the yellow suspension was allowed to cool to ambient temperature and taken to dryness *in vacuo*. The resulting yellow solid was triturated with cold MeOH (3 x 25 mL) to give the desired BTPhen **6b** (0.40 g, 68 %) as a bright yellow solid. m.p. >300 °C; v_{max} / cm⁻¹ 3621br (N-H), 2956m, 2932m, 2866w, 1521s; δ_{H} (500 MHz; CDCl₃) 8.79 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 8.05 (2H, s, C(3)<u>H</u> and C(8)<u>H</u> or C(5)<u>H</u> and C(6)<u>H</u>), 7.59 (8H, s, 8 x Ar-C<u>H</u>), 1.91 (8H, s, 4 x C<u>H₂), 1.58 (12H, s, 4 x C<u>H₃), 1.55 (12H, s, 4 x CH₃), 1.43 (18H, s, 6 x CH₃); δ_{C} (125 MHz; CDCl₃) 164.8 (Ar-<u>C</u>), 163.0 (Ar-<u>C</u>), 161.8 (Ar-<u>C</u>), 153.3 (Ar-<u>C</u>), 151.8 (Ar-<u>C</u>), 149.6 (Ar-<u>C</u>), 147.3 (Ar-<u>C</u>), 135.0 (Ar-<u>C</u>), 129.6 (Ar-<u>C</u>H), 127.6 (Ar-<u>C</u>), 125.6 (Ar-<u>C</u>H), 125.1 (<u>C</u>(3)H and <u>C</u>(8)H or <u>C</u>(5)H and <u>C</u>(6)H)), 123.8 (<u>C</u>(3)H and <u>C</u>(8)H or <u>C</u>(5)H and <u>C</u>(6)H), 37.5 (quat <u>C</u>), 36.6 (quat <u>C</u>), 34.8 (<u>C</u>-(CH₃)₃), 33.8 (<u>C</u>H₂), 33.7 (<u>C</u>H₂), 31.4 (<u>C</u>H₃), 29.8 (<u>C</u>H₃), 29.3 (<u>C</u>H₃); *m/z* (MALDIdithranol) 845 ([M+Na]⁺, 100 %); HRMS (+HESI) calculated for C₅₄H₆₃N₈ ([M+H]⁺): 823.5170, found: 823.5176.</u></u>

2 Key ¹H and ¹³C NMR Spectra

¹H and ¹³C NMR Spectrum of 1i

¹H NMR and ¹³C NMR Spectrum of 1j

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectrum of 1k

¹H and ¹³C NMR Spectrum of 2a

¹H and ¹³C NMR Spectrum of 2b

¹H and ¹³C NMR Spectrum of 2c

¹H and ¹³C NMR Spectrum of 2d

¹H and ¹³C NMR Spectrum of 2e

¹H and ¹³C NMR Spectrum of 2f

¹H and ¹³C NMR Spectrum of 2g

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectrum of 2h

¹H and ¹³C NMR Spectrum of 2i

¹H and ¹³C NMR Spectrum of 2j

¹H and ¹³C NMR Spectrum of 3a

¹H and ¹³C NMR Spectrum of 4a

¹H and ¹³C NMR Spectrum of 6a

¹H and ¹³C NMR Spectrum of 3b

¹H and ¹³C NMR Spectrum of 4b

¹H and ¹³C NMR Spectrum of 6b

3 Solvent Extraction Studies

3.1 General Procedure for Extraction Experiments

A 500 μ L aliquot of **6a** (2 mM) and **6b** (2 mM) in 1-octanol was contacted with a 500 μ L aliquot of 0.1M – 3M HNO₃ in a 2 mL glass vial. The aqueous phase was spiked with ²⁴¹Am(III) and ¹⁵²Eu(III) (1 kBq/mL). The resulting biphasic system was shaken at *T* = 20 ± 1 °C on an orbital shaker at 2500/min for 120 hours.⁺ The phases were centrifugally separated and 300 μ L of each phase was analysed using a Packard Cobra Auto Gamma 5003 spectrometer.

²⁴¹Am(III) and ¹⁵²Eu(III) distribution ratios, $D_{Am(III)}$ and $D_{Eu(III)}$, were calculated from the ratio of organic to aqueous phase metal ion concentrations which are proportional to the respective gamma count rates per volume: $D_{M(III)} = [M(III)_{org}]/[M(III)_{aq}].$

⁺ To ensure that equilibrium was attained.

4 X-ray Crystallographic Structure of Eu(III) Complex

Fig. S1. X-ray crystallographic structure of 4,7-Me-CyMe₄-BTPhen–Eu(NO₃)₃ complex (*c*-*c* conformer). Thermal ellipsoids are shown at 50 % probability. Additional solvent molecules are omitted for clarity.

References

- [1] R. A. Altman, S. L. Buchwald, *Org. Lett.* **2006**, *8*, 2779–2782.
- [2] J. Engel-Andreasen, B. Shimpukade, T. Ulven, *Green Chem.* **2013**, *15*, 336.
- [3] A. C. Edwards, C. Wagner, A. Geist, N. A. Burton, C. A. Sharrad, R. W. Adams, R. G. Pritchard, P. J. Panak, R. C. Whitehead, L. M. Harwood, *Dalt. Trans.* **2016**.