Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

NHC-Stabilized 1-Hydrosilaimine: Synthesis, Structure and Reactivity

Debabrata Dhara,^a Thangavel Vijayakanth,^b Milan Kr. Barman,^a Khevath Praveen Kumar Naik,^a Nicolas Chrysochos,^c Cem B. Yildiz,^{*d} R. Boomishankar,^{*b} Carola Schulzke,^{*c} Vadapalli Chandrasekhar^{*e,f} and Anukul Jana^{*a}

1.	Content	S1
2.	Experimental Details	S2
3.	NMR Spectra	S5
4.	UV/Vis Spectra	S11
5.	Crystallographic Details	S14
6.	Computational Calculation	S17
7.	References	S44

^aTata Institute of Fundamental Research Centre for Interdisciplinary Sciences, 21, Brundavan Colony, Narsingi, Hyderabad-500075, India; E-mail: ajana@tifrh.res.in

^bDepartment of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India; E-mail: boomi@iiserpune.ac.in

^cInstitut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487

Greifswald, Germany; E-mail: carola.schulzke@uni-greifswald.de

^dDepartment of Medicinal and Aromatic Plants, University of Aksaray, Aksaray, Turkey; E-mail:

cemburakyildiz@aksaray.edu.tr

^eNational Institute of Science Education and Research, Bhubaneswar, Bhimpur-Padanpur-752050, India; E-mail: vc@niser.ac.in

^fDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India. E-mail: vc@iitk.ac.in

Experimental section

All experiments were carried out under argon atmosphere using standard Schlenk techniques or in a PL-HE-2GB Innovative Technology GloveBox. *n*-Hexane, diethyl ether, THF, toluene were dried by A131 Innovative Technology solvent purification system. Benzene was refluxed over sodium/benzophenone, then distilled and stored under argon. Starting compounds TerSiHCl₂,^{S1} NHC^{Me4, S2} and DipNHLi^{S3} were prepared according to known literature procedures. Benzene-d6 was dried and distilled over potassium under argon. NMR spectra were recorded with Bruker NanoBay 300 MHz NMR machine. ¹H and ¹³C{¹H} NMR spectra were referenced to the peaks of residual protons of the deuterated solvent (¹H) or the deuterated solvent itself (¹³C). ²⁹Si and ²⁹Si{¹H} NMR spectra were referenced to external SiMe₄. UV/Vis spectra were acquired using a Jasco V-670 spectrometer using quartz cells with a path length of 0.1 cm. IR spectra were recorded on a Bruker–Alpha spectrometer. Melting points were determined in closed NMR tubes under argon atmosphere and are uncorrected. Elemental analyses were performed on an Elemental Analyzer from Elementar (Vario Micro Cube).

Synthesis of 1: In a dried 100 mL Schlenk flask, 2.85 g (4.9 mmol) of TerSiHCl₂ and 0.897 g (4.9 mmol) of DipNHLi were taken and 70 mL of toluene was added to it at -78 °C. The reaction mixture was brought to room temperature over a period of 3 hrs. Then it was heated at 80 °C for 12 hrs. Subsequently all volatiles including solvents were removed and extracted with 60 mL of *n*-hexane. After removal of solvents under vacuum off-white solid compound **1** was formed. Yield of the crude product: 3.2 g (90.2 %). We were unable to get pure compound of it as it is highly soluble even in *n*-pentane. However we have measured the purity of **1** using mesitylene as an external standard which shows the crude product was 70 % pure. We have proceeded to the next step with crude product. ¹H NMR (300 MHz, C₆D₆, 298K): $\delta = 4.81$ (d, ³*J*_(H, H) = 8.56 Hz, 1H, Si–*H*). ppm. ²⁹Si NMR (59.6 MHz, C₆D₆, 298K): $\delta = -19.83$ (d, ¹*J*_(Si, H) = 277 Hz.) ppm. IR (KBr, cm⁻¹): $\bar{v} = 420$ (s), 432 (w), 450 (w), 460 (s), 475 (m), 499 (w), 520 (m), 594 (w), 650 (w), 722 (w), 743 (s), 786 (s), 805 (s), 872 (s), 905 (w), 936 (w), 1052(m), 1076 (w), 1107 (m), 1122 (w), 1168 (m), 1186 (m), 1253 (m), 1320 (m), 1360 (m), 1385 (w), 1431 (m), 1474 (s), 1568 (m), 1605 (m), 1767 (w), 2241(s, Si-*H*), 2723 (w), 2751 (w), 2809 (m), 3003 (s), 3060 (s), 3181(w), 3364 (s, N-H).

Synthesis of 2: In a100 mL Schlenk flask 1.19 g of compound 1 was dissolved in 10 mL of nhexane and in another 25 ml Schlenk flask 0.415 g of NHC^{Me4} was dissolved in 7 mL of toluene. The toluene solution of NHC^{Me_4} was added to the *n*-hexane solution of **1** at -78 °C. Subsequently the reaction mixture was allowed to warm to room temperature slowly over a period of 4 hrs and then stirred for another 12 hrs at room temperature. The reaction mixture was dried thoroughly and extracted with 50 mL of warm *n*-hexane using D4 filtration unit. The filtrate was kept at -20 °C. After one day yellow block shaped crystals were formed and 0.570 g of compound 2 collected. The resulting mother liquor was concentrated to about 25 mL of volume, kept at -20 °C for another two days and yielded 0.110 g of compound 2. Yield: 0.680 g (51%). Single crystals suitable for X-ray diffraction analysis were obtained from a saturated solution of *n*-pentane at 0 °C after one day. M.P.: 153 °C (decomposed; color changed at 145 °C from deep yellow to light yellow). ¹**H** NMR (300 MHz, C₆D₆, 298K): $\delta = 1.04-1.06$ (6H, CH(CH₃)₂, 6H, C–CH₃ of NHC^{Me4}), 1.11 (d, 6H, CH(CH₃)₂), 1.18–1.21 (m, 18H, (CH(CH₃)₂), 1.25-1.29 (m, 12H, (CH(CH₃)₂), 1.43 (d, 6H, CH(CH₃)₂), 2.85 (sep, 2H, CH(CH₃)₂) 3.05-3.09 (6H, N-CH₃, 2H, CH(CH₃)₂), 3.28 (sep, 2H, CH(CH₃)₂), 3.56 (sep, 2H, CH(CH₃)₂), 6.43 (s, 1H, Si-H), 6.78 (t, 1H, Ar-H), 7.00 (br, 2H, Ar-H), 7.13-7.15 (m, 5H, Ar-H), 7.19 (br, 2H, Ar-H). ppm. ¹³C NMR (75.43 MHz, C₆D₆, 298K): δ = 7.96 (2C, CH₃, C-CH₃ of NHC^{Me4}), 22.99 (2C, CH(CH₃)₂), 24.12 (2C, CH(CH₃)₂), 24.72 (2C, CH(CH₃)₂), 24.94 (2C, CH(CH₃)₂), 25.24 (2C, CH(CH₃)₂), 25.70 (2C, CH(CH₃)₂), 26.55 (2C, CH(CH₃)₂), 26.90 (2C, CH(CH₃)₂), 27.89 (2C, CH(CH₃)₂), 31.66 (2C, CH(CH₃)₂), 31.89 (2C, CH(CH₃)₂), 33.26 (2C, N-CH₃), 35.01 (2C, CH(CH₃)₂), 113.02 (1C, Ar-CH), 120.76 (2C, Ar-CH), 121.03 (2C, Ar-CH), 122.92 (2C, Ar-CH), 126.00 (2C, CH₃-C of NHC^{Me4}), 127.12 (1C, Ar-CH), 132.55(2C, Ar-CH), 139.80 (1C), 139.88 (2C), 140.26 (2C), 147.46 (2C), 147.51 (2C), 147.57 (2C), 148.13 (2C), 152.06 (1C), 155.57 (1C, NCN), ppm. ²⁹Si NMR (59.6 MHz, C₆D₆, 298K): $\delta = -76.46$ (¹J_(Si, H) = 199.26) ppm. UV/Vis (*n*-hexane): $\lambda_{max}(\varepsilon) = 271$ (13530), 318 (5341), 373 (sh, 2448), and 440 (sh, 1464) nm (Lmol⁻¹cm⁻¹). **IR** (KBr, cm⁻¹): $\bar{v} = 744$ (m), 804 (w), 834 (w), 907 (w), 995 (m), 1047 (w), 1144(w), 1286(m), 1353 (s), 1414 (s), 1460 (1460), 1581(vw), 1646 (vw), 2112(m, Si-H), 2866 (vs), 2901(vs), 2905(vs), 2918(vs), 29 41(s), 2950 (vs), 2954 (vs), 2999 (w). Elemental

Analysis: Calcd. for C₅₅H₇₉N₃Si₂ (809.60): C, 81.52; H, 9.83; N, 5.19. Found: C, 80.94; H, 10.059; N, 5.33.

Synthesis of 3: In a 25 mL Schlenk flask, 0.248 g (0.28 mmol) of compound 2 was suspended with 12 mL *n*-hexane and 5 µL (0.28 mmol) water added at 0 °C. Then the reaction mixture was allowed to stir at the same temperature for another 2 hrs and the vellow color of the solution slowly turns into colorless. Subsequently all volatiles were removed under high vacuum and the residue washed with *n*-pentane to give compound **3** as a white solid. Yield: 0.195 g (85 %). Single crystals suitable for X-ray structural analysis were obtained from saturated toluene solution at -20 °C after 2 days. M.P.: 140 °C (decomposed). ¹H NMR (300 MHz, C₆D₆, 298K): $\delta = 1.05$ (d, 6H, CH(CH₃)₂), 1.12 (s, 6H, C-CH₃), 1.17-1.1.20 (m, 12H, CH(CH₃)₂), 1.26-1.34(m, 18 H, CH(CH₃)₂), 1.45 (d, 6H, CH(CH₃)₂), 1.64 (d, 6H, CH(CH₃)₂), 2.74 (s, 6H, N-CH₃), 2.92 (sep, 2H, CH(CH₃)₂), 3.06 (d, 1H, ${}^{3}J_{(H,H)} = 6.45$ Hz, N-H), 3.45 (m, 6H, $CH(CH_3)_2$, 4.93 (d, ${}^{3}J_{(H,H)} = 6.51$ Hz, 1H, Si-H), 6.88–6.93 (m, 1H, Ar-H), 6.98–7.01 (m, 2 H, Ar-H), 7.20 (br, 5H, Ar-H), 7.34 (br, 2H, Ar-H), 13.27 (br, 1H, C^{imid}-H) ppm. ¹³C NMR $(75.43 \text{ MHz}, C_6D_6, 298 \text{ K}): \delta = 7.51 (2\text{C}, \text{C}-\text{CH}_3), 23.33 (2\text{C}, \text{CH}(\text{CH}_3)_2), 23.55 (2\text{C}, \text{CH}(\text{CH}_3)_$ 24.35 (2C, CH(CH₃)₂), 24.44 (2C, CH(CH₃)₂), 25.06 (2C, CH(CH₃)₂), 25.22 (2C, CH(CH₃)₂), 26.14 (2C, CH(CH₃)₂), 26.18 (2C, CH(CH₃)₂), 27.42 (2C, CH(CH₃)₂), 31.20 (2C, CH(CH₃)₂), 31.23 (2C, CH(CH₃)₂), 32.71 (2C, N-CH₃), 34.62 (2C, CH(CH₃)₂), 120.55(2C, Ar-CH), 121.04 (2C, Ar-CH), 122.20 (1C, Ar-CH), 123.08 (2C, CH₃-C), 123.25 (2C, Ar-CH), 126.83 (1C, Ar-CH), 128.34 (1C, Ar-CH), 130.00 (1C, Ar-CH), 140.39 (2C), 141.55 (1C), 141.70 (1C), 144.62 (2C), 146.68 (2C), 147.45 (1C), 147.61 (2C), 147.67 (1C), ppm. ²⁹Si NMR (59.6 MHz, $C_6 D_6$, 298K): $\delta = -42.46$ (d, ${}^{1}J_{(Si, H)} = 220.81$) ppm. **IR** (KBr, cm⁻¹): $\bar{v} = 523$ (w), 596 (w), 632 (w), 653 (vw), 673 (vw), 715 (w), 736 (w), 758 (m), 803 (m), 834 (m), 855 (m), 874 (w), 940 (vw), 1003(m), 1076 (vw), 1103 (w), 1168 (w), 1243 (m), 1314 (m), 1359 (m), 1380 (m), 1460 (s), 1566 (m), 1605 (m), 1640 (w), 1756 (w), 2125 (s, Si-H), 2883 (vs), 2973 (vs), 3024(w), 3363 (s, N-H). Elemental Analysis: Calcd. for C₅₅H₈₁N₃OSi (827.61): C, 79.75; H, 9.86; N, 5.07. Found: C, 78.10; H, 9.896; N, 5.42.

Figure S1: ¹H NMR of 1 in [D6]-benzene at RT.

Figure S2: ²⁹Si{¹H} NMR of 1 in [D6]-benzene at RT.

Figure S3: ²⁹Si NMR of 1 in [D6]-benzene at RT.

Figure S4: ¹H NMR of **1** with mesitylene in [D6]-benzene at RT.

Figure S5: ¹H NMR of 2 in [D6]-benzene at RT.

Figure S6: ¹³C{¹H} NMR of **2** in [D6]-benzene at RT.

Figure S7: ²⁹Si NMR of 2 in [D6]-benzene at RT.

Figure S8: ²⁹Si{H} NMR of 2 in [D6]-benzene at RT.

Figure S9: ¹H NMR of 3 in [D6]-benzene at RT.

Figure S10: ¹³C{¹H} NMR of **3** in [D6]-benzene at RT.

Figure S11: ²⁹Si NMR of 3 in [D6]-benzene at RT.

Figure S12: ²⁹Si{H} NMR of **3** and NHC^{Me}₄ in [D6]-benzene at RT.

λ

Figure S13: UV/Vis spectrum of compound 2.

Figure S14: Linear regression of compound 2 at 271 nm.

Figure S15: Linear regression of compound 2 at 318 nm.

Figure S16: Linear regression of compound 2 at 373 nm.

Figure S17: Linear regression of compound 2 at 440 nm.

X-ray structural Analysis

Diffraction data were collected at low temperature (-103.0 °C) using a STOE-IPDS 2T diffractometer with graphite-monochromated molybdenum Ka radiation, $\lambda = 0.71073$ Å. The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least-squares techniques (SHELXL-2013).^{S4} All non-hydrogen-atoms were refined with anisotropic displacement parameters. The hydrogen atoms bound to nitrogen or silicon atoms of 3 were located and refined freely. All other hydrogen atoms were refined isotropically on calculated positions using a riding model with their U_{iso} values constrained to 1.5 U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for the aromatic carbon atoms. The crystal and refinement data are summarized in Tables S1 and S2. Crystallographic data were deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. These data can be obtained free of charge on quoting the depository numbers CCDC 1542299 FAX (2.0.5*n*-pentane) and 1542300 (3) bv (+44-1223-336-033),email (deposit@ccdc.cam.ac.uk) or their web interface (at http://www.ccdc.cam.ac.uk).

 Table S1. Crystal data and structure refinement for 2•0.5n-pentane (CCDC: 1542299)

Identification code	DD 491A
Empirical formula	$C_{57.50}H_{85}N_3Si$
Formula weight	846.37
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	a = 19.358 (4) Å
	b = 21.667 (3) Å
	c = 27.029 (5) Å
Volume	11337 (3) Å ³
Z	8
Density (calculated)	0.992 Mg/m ³ .
Absorption coefficient	0.076 mm ⁻¹
<i>F</i> (000)	3720
Crystal size	0.29 x 0.23 x 0.18 mm ³
Theta range for data collection	4.131 to 25.026 deg.
Index ranges	-11<=h<=22, -25<=k<=25, -12<=l<=32
Reflections collected	25584
Independent reflections	9947 [<i>R</i> (int) = 0.1462]
Completeness to theta = 25.242°	96.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.744 and 0.633
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	9947 / 219/ 595
Goodness-of-fit on F^2	1.021
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.1168, wR2 = 0.2818
<i>R</i> indices (all data)	R1 = 0.2221, wR2 = 0.3407
Extinction coefficient	0.0028 (6)
Largest diff. peak and hole	0.827 and -0.684 e.Å ⁻³

Table S2. Crystal data and structure refinement for 3 (CCDC: 1542300)

Identification code	DD 491B		
Empirical formula	$C_{55}H_{81}N_3OSi$		
Formula weight	828.31		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ / <i>c</i>		
Unit cell dimensions	a = 14.730 (6) Å		
	$b = 17.458 (8) \text{ Å} \beta = 91.470(9)^{\circ}.$		
	c = 24.128 (5) Å		
Volume	6202 (5) Å ³		
Ζ	4		
Density (calculated)	0.887 g/cm^3 .		
Absorption coefficient	0.070 mm ⁻¹		
<i>F</i> (000)	1816.0		
Crystal size	0.17 x 0.12 x 0.09 mm ³		
Theta range for data collection	2.766 to 57.168 deg.		
Index ranges	-16<=h<=19, -23<=k<=23, -32<=l<=32		
Reflections collected	108845		
Independent reflections	15682 [$R(int) = 0.1534$]		
Completeness to theta = 25.242°	99.0 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.647 and 0.746		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	15682 / 6/ 566		
Goodness-of-fit on F^2	1.017		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0731, wR2 = 0.1926		
<i>R</i> indices (all data)	R1 = 0.1841, wR2 = 0.0.2444		
Largest diff. peak and hole	0.0.71 and -0.40 e.Å ⁻³		

Computational Calculation:

Computational Method:

All theoretical calculations, in this paper are carried out using the Gaussian03 suite of programs.⁵⁵ The Full geometry optimizations of IV, V, 2-Dip, 2-Dip', and 3-Dip were performed at B3LYP/6-311G(d,p) level of theory. Frequency analyses were performed to determine the relative energies of 2-Dip and 3-Dip in solution (CPCM method, heptane) at B3LYP/6-311G(d,p) level of theory.^{S6} Wiberg bond orders (WBI) as a criterion to estimate the bond orders of chemical structures were also calculated within the natural bond orbital (NBO) analysis for IV, V, 2-Dip, and 2-Dip'.^{S7} The electronic absorption spectrums for IV, V, 2-Dip, and 2-Dip' were predicted with using the optimized geometry at time-dependent density functional theory (TD-DFT) method in solution (heptane) at B3LYP/6-311G(d,p) level of theory. ¹H, ¹³C, and ²⁹Si NMR chemical shifts were calculated by the GIAO method in solution (benzene) at B3LYP/6-311+2df level of theory. The proposed O-H bond activation mechanism for the formation of **3** was modelled using simplified model systems **2-Dip*** and **3-Dip*** (Dip group instead of Ter) at B3LYP/6-311G(d,p). The chemical reaction channels have been checked by the intrinsic reaction coordinate (IRC) method to verify the energy profiles at the B3LYP/6-311G(d,p) level of theory for the processes from transition state to intermediates, by using the second-order Gonzalez-Schlegel method.^{S8, S9} The relative Gibbs free energies are given in kcal/mol. The GaussView 5.0 program was employed for visualization of the final geometries of the optimized structures.^{S10}

Table S3. The calculated NMR, UV/Vis, WBO, and NBO results for the compounds of $H_2Si=NH$, **IV**, $H_2Si(NHC^{Me_4})=NH$, **V**, **2-Dip'** (NHC free form of **2-Dip**), **2-Dip**, and **3-Dip**. NMR results of **2-Dip** at the B3LYP/6-311G(d,p) level of theory (solvent: benzene for NMR and *n*-heptane for UV/Vis).

]	IV		V	2-	Dip'	2.	Dip	3-Dip
¹ H of <i>H</i>-Si 7.2		6	5.7			,	7.2	5.1	
¹ H of <i>H</i> -NHC		-		-		-		-	15.4
¹³ C of NHC		-	16	164.2		-		66.4	159.8
²⁹ Si	-7	74.7	-7	'8.7				92.9	-53.3
Si=N	1	601	1	630	1	503	1	624	
Bond length	1.	001	1.	037	1.	575	1	.024	_
Si=N 1.696		1 176		1.240		0.081			
(WBI) 1.080		1.	170	1.	340	0	.901	-	
Si-NHC				1 962		_		08/	
Bond length	-		1.702		_		1.704		-
Si-NHC			0	670			0	617	_
(WBI)		-	0.	070		-	0	.017	-
LIV/Vie	222, 184, 119		347, 267, 213, 185				479, 4	28, 317,	_
0 1 1 15							263		-
	Si	Ν	Si	Ν	Si	Ν	Si	Ν	-
Hybrids	sp ^{1.63}	sp ^{1.63}	sp ^{1.83}	sp ^{1.78}	р	р	sp ^{2.27}	sp ^{1.37}	-
Charges	1.225	-1.204	1.246	-1.476	1.546	-1.075	1.584	-1.196	-

HOMO of IV	HOMO-1 of IV	LUMO of IV
HOMO of V	HOMO-1 of V	LUMO of V
HOMO of 2-Dip'	HOMO-1 of 2-Dip'	LUMO of 2-Dip'
HOMO of 2-Dip	HOMO-1 of 2-Dip	HOMO-3 of 2-Dip

Table S4. Frontier Molecular Orbitals of $H_2Si=NH$, **IV**, $H_2Si(NHC^{Me_4})=NH$, **V**, **2-Dip'**, and **2-Dip** at the B3LYP/6-311G(d,p) level of theory.

Figure S18. The relative free energy of **2-Dip** and **3-Dip** at B3LYP/6-311G(d,p) level of theory. ΔG energy values at 298 K are given in kcal mol⁻¹ (Dip instead of Tip, Solvent = Heptane).

Figure S19. Proposed reaction mechanism of **2-Dip**^{*} with H₂O to furnish **3-Dip**^{*} using simplified model system (Dip group instead of Ter) at B3LYP/6-311G(d,p) level of theory. ΔG energy values at 298 K are given in kcal mol⁻¹.

Table S5. Cartesian coordinates of IV.

Si,0,0.488774,0.014562,-0.000533 H,0,1.339054,1.23669,0.003304 N,0,-1.106255,-0.127286,0.00095 H,0,-1.723704,0.676172,-0.003247 H,0,1.285595,-1.225731,0.000764

Table S6. Cartesian coordinates of V.

Si.0,2.440232,-0.671806,0.010063 H,0,2.437577,-1.658535,-1.144546 N,0,3.211135,0.774865,-0.012671 C,0,0.532212,-0.212911,-0.011101 N,0,-0.050065,1.004218,-0.002096 C,0,-1.437642,0.885113,0.002992 C,0,-1.717654,-0.450306,-0.002843 N,0,-0.487809,-1.103496,-0.016073 C,0,0.669701,2.286517,-0.002596 H,0,0.397672,2.850087,0.89225 H,0,0.387594,2.854921,-0.891263 H,0,1.748706,2.054664,-0.008928 C,0,-2.341612,2.070812,0.009395 H,0,-2.189343,2.697428,-0.87437 H,0,-2.174876,2.698811,0.889454 H,0,-3.384708,1.754239,0.017743 C,0,-3.018869,-1.178748,-0.001926 H,0,-3.151965,-1.777772,-0.908544 H,0,-3.846215,-0.471086,0.048072 H,0,-3.107299,-1.852135,0.856173 C,0,-0.321206,-2.554442,0.004592 H,0,0.70189,-2.795876,-0.271871 H,0,-0.998401,-3.012626,-0.71691 H,0,-0.529344,-2.950444,1.000695 H,0,4.221519,0.82566,0.000209 H,0,2.421545,-1.617363,1.195774

Table S7. Cartesian coordinates and energy values for the 2-Dip'.

Si,-0.0329117134,-0.2264851764,0.8449730475 H,0.9386838647,0.1049875592,1.906446231 N,-1.3574792874,0.612671182,0.5600653737 C,-2.1948681542,1.6338930926,0.9561063686 C,-3.0066578342,2.2649276287,-0.0346833826 C,-3.8800819947,3.2839127506,0.3374885208 H,-4.4821118366,3.7710441415,-0.4208685843 C,-4.0054757414,3.6840742702,1.6624718489 H,-4.696879846,4.4739071835,1.9348402379 C,-3.233561661,3.0622010584,2.6348084277 H.-3.3342970359.3.3778624192.3.6665085775 C,-2.3184365721,2.0576100709,2.3164845167 C,-2.8689466539,1.8681848659,-1.4949165322 H,-2.4767621455,0.8495629696,-1.4943853227 C,-1.8394271316,2.7730676439,-2.201481215 H,-2.1784138922,3.8139932748,-2.2088967322 H.-1.6888721001,2.4622858959,-3.2405057661 H.-0.8727637951,2.7406891106,-1.6932617706 C,-4.2003503096,1.8603680212,-2.2612141761 H,-4.9453312342,1.243506496,-1.7528891378 H,-4.0515900212,1.4526523429,-3.2655503644 H,-4.6162674752,2.865374882,-2.3814414671 C,-1.4471622205,1.4762510749,3.4199347725 H.-1.1390731806.0.4741341865.3.1052731186 C,-2.1690812554,1.3011178856,4.7668584419 H,-2.4152128568,2.2605431296,5.2300466921 H,-1.5254304714,0.7616868718,5.4680883781 H,-3.0966110633,0.7349871893,4.652087088 C,-0.1698449405,2.3209051871,3.6011485198 H,0.3702605013,2.4433646684,2.6599517876 H,0.5091447573,1.8575396643,4.3245186305 H,-0.4259334705,3.3198381995,3.9669244103 C,0.4929840353,-1.8216250472,0.0145874705 C,-0.4045206167,-2.7926185747,-0.5037197629 C,0.0889256271,-4.043502159,-0.8898581187 H.-0.6085792959.-4.7843792988.-1.2627741021 C,1.4445238442,-4.340072873,-0.8211302474 H,1.8054734001,-5.3135178122,-1.13453639 C,2.3359412508,-3.3774151764,-0.3663250413

H.3.3990210084,-3.5870479566,-0.3396241313 C,1.8821367027,-2.1264173573,0.0610272429 C,-1.8762788068,-2.55574023,-0.7058899165 C,-2.7870151545,-2.7300438478,0.3590666155 C,-4.1508540302,-2.556190002,0.1108499248 H,-4.8630518036,-2.6825388653,0.9176062416 C,-4.6138452284,-2.2279589579,-1.1563797928 C,-3.7145810015,-2.0847041028,-2.2038837084 H,-4.0870268273,-1.8439063962,-3.1930554994 C.-2.3408903661,-2.2504958449,-2.005780309 C,-2.3308795111,-3.1733473456,1.7476190585 H,-1.2562590771,-2.9880016731,1.8239052011 C,-3.0097535121,-2.3946839075,2.8871348139 H,-2.9250960572,-1.3166579542,2.7373304042 H,-2.5455784335,-2.647860475,3.844798573 H,-4.0723744876,-2.6387978904,2.9697885383 C,-2.5361014073,-4.6909688159,1.9284956816 H.-3.5956635302,-4.9513486047,1.8489738611 H,-2.1812776818,-5.013881538,2.9122025654 H,-1.9942873856,-5.2600128175,1.1692022431 C,-1.4030640643,-2.1510453902,-3.2100829831 H,-0.3763786581,-2.1819188657,-2.84088625 C,-1.5563326583,-0.8343963117,-3.990042795 H,-2.5546015878,-0.7308284907,-4.4240004995 H,-0.836403491,-0.8000965654,-4.8134459779 H,-1.378230513,0.0288539521,-3.3473194954 C,-1.5869795698,-3.358734538,-4.1506313752 H,-1.4256673811,-4.3040561184,-3.6268753944 H,-0.8794958237,-3.308042244,-4.9839533238 H,-2.5975086942,-3.3807648973,-4.569184909 C,2.9228956838,-1.1380269995,0.5197585074 C,3.4785816045,-1.2499329598,1.8165324489 C,4.4724917458,-0.3479192038,2.2019650462 H,4.9030497416,-0.4180539532,3.1944448661 C,4.9180402497,0.6443745718,1.3374728326 C,4.3785554847,0.7404148172,0.0630797324 H.4.7435985707,1.5069388884,-0.6107997048 C.3.3836601526,-0.1422708115,-0.3721856832 C,3.0278640725,-2.3224710543,2.8071305647 H,2.1638527414,-2.8336351775,2.3773395951

C.2.5781714709,-1.7287119578,4.1550587133 H.2.1829940312,-2.5175171634,4.8018330041 H,1.7963031103,-0.9781065778,4.0190734808 H,3.4075002366,-1.2539265012,4.6865219593 C,4.124800387,-3.3833013753,3.020497279 H,5.0230192316,-2.9398767819,3.4602262303 H.4.4140022584,-3.8533032778,2.0774217688 H,3.7732183205,-4.1684852911,3.6964461094 C,2.8908453193,-0.0400270581,-1.8152332012 H,2.0364380636,-0.7090692078,-1.9297265194 C,3.9767933613,-0.5246160908,-2.7961855377 H.4.8668920405.0.1092909118.-2.7458297177 H,3.6036385685,-0.4991451899,-3.8243365156 H,4.2836922624,-1.5492887011,-2.5720051944 C,2.4111809475,1.3751134485,-2.1835422612 H,1.6270379711,1.7219659732,-1.5058418119 H,2.0038727031,1.3835421568,-3.1983478922 H.3.2259569508,2.1035196723,-2.1511456363 H.-5.6759749891,-2.0925388807,-1.3287921801 H.5.6886242656,1.3378090279,1.6560617662

Table S8. Cartesian coordinates and energy values of 2-Dip in heptane.

Si,10.4155749612,13.344247903,19.7326838881 H,10.2245187445,14.7248699648,19.2007883233 N,9.7403001364,12.8660222696,21.1307824204 C,8.9410941958,13.0910182165,22.2171667064 C,8.5655881932,11.9888771686,23.0590586584 C,7.7864355243,12.1974702581,24.1943966713 H,7.5215609203,11.3499360321,24.8173934878 C,7.3352687654,13.4616845791,24.5557719936 H,6.7367695608,13.6045525426,25.4487356148 C,7.6614333555,14.5362826852,23.7389462534 H,7.2977768618,15.5225049479,24.0057079789 C,8.435970928,14.3860808956,22.5877803524 C.8.9577161795.10.5724431589.22.6671284832 H,9.8882897952,10.6614186088,22.1023843157 C,7.8812446178,9.9700301662,21.7396602698 H,6.927618867,9.8856147768,22.2702116198

H.8.1603280971,8.9645693006,21.3992595685 H,7.719136503,10.6070518365,20.8668705928 C.9.2156877672.9.6297562463.23.8520863927 H,9.9345930715,10.0624260971,24.5501926214 H,9.621170902,8.6767130266,23.4963173114 H,8.2990065189,9.40125833,24.4046245052 C.8.6673934227.15.5917121906.21.6879956495 H.9.6454089694,15.4664609486,21.2166966391 C,8.6928944549,16.9492465915,22.4094229845 H,7.7056795048,17.2323721614,22.785960502 H,9.0087009785,17.7353044972,21.716150498 H,9.3852293746,16.9437907073,23.2538360884 C,7.6059772263,15.6219533681,20.5692112249 H,7.5647033685,14.6652104971,20.044776077 H,7.8105818779,16.413788496,19.8392557193 H,6.6162080745,15.8054898973,20.998866854 C,9.3916883318,12.345881459,18.3566847803 N.9.2400306086,11.0008954064,18.3293620381 C.8.1828209214,10.6281241244,17.507441757 C.7.6652551728,11.7841236321,17.0021611977 N,8.4279780674,12.8238423224,17.5297753821 C,10.1012371092,10.0706893727,19.0505354017 H,10.9423214341,9.7637351256,18.4258035749 H,9.5256329605,9.1958083647,19.3413480154 H,10.4555998161,10.5652239328,19.9510842879 C,7.7794404886,9.207891308,17.2997892841 H,7.4285487354,8.7494247111,18.2294054432 H,8.6083191543,8.6032432281,16.9205231656 H,6.9676752138,9.1488051792,16.5748755491 C,6.5236889262,12.0166294784,16.0717721164 H,5.7392331424,12.6206375157,16.537659635 H,6.0776417328,11.0665395183,15.7783996879 H,6.8413403032,12.5316968326,15.1600393397 C,8.2006970864,14.2251446401,17.1801997581 H,8.9232462367,14.8412610357,17.7020550808 H,7.19268301,14.5228062748,17.4715048764 H.8.3347960642,14.3598831078,16.107031347 C,12.3113195867,13.0932724353,19.4090913886 C,13.2445285905,12.6067503495,20.369609991 C,14.6216014148,12.6505303898,20.0974479451 S26 H,15.3066540076,12.2968242449,20.8584568446 C,15.1203626103,13.1540031223,18.9084476474 H,16.1892392968,13.1882273644,18.7279705927 C,14.2279363153,13.629675167,17.9616756273 H,14.5970480613,14.0458363062,17.0314798531 C,12.8464070786,13.607490764,18.1889732511 C,12.9461163852,12.0604548408,21.7496826101 C,12.8379390369,12.9539400519,22.840988293 C.12.7446785152,12.4349063345,24.1344302339 H,12.6466557981,13.110826154,24.9749845563 C,12.7854533061,11.0676823511,24.3674239755 C,12.9241616633,10.195204231,23.2985711826 H,12.9699751199,9.1295078789,23.4900709191 C,13.0116807575,10.6661120572,21.9844895185 C,12.915542061,14.468419453,22.6601698806 H,12.6433163798,14.6964396927,21.6274956653 C,11.9471435047,15.2423594092,23.5683436974 H.10.9319085883,14.8503796126,23.4972949214 H.11.9334683846,16.2977293983,23.2806918605 H,12.2541432216,15.2023184961,24.6175576085 C,14.3592266534,14.9689000371,22.8761659526 H,14.6916325593,14.7555772769,23.8967271137 H,14.4159195897,16.0513683005,22.7229371993 H,15.0607504857,14.4935858924,22.1874136694 C,13.2359476633,9.6480310981,20.863671056 H,13.003163131,10.1404125096,19.9159804478 C,12.3313615198,8.4065215745,20.9876235716 H,12.6428655767,7.764931242,21.8160421837 H,12.3908455743,7.8020014025,20.0769750699 H,11.2881570725,8.6751721869,21.1607255181 C,14.7082124812,9.192002733,20.7934365908 H,15.3826566591,10.0267317356,20.6001148259 H,14.8449233021,8.4570691809,19.9933571459 H,15.0119417717,8.7249636751,21.734916377 C,12.0469651348,14.1997225656,17.0467265941 C,11.7936529922,15.5938858745,17.0183929196 C,11.1888074141,16.1503685481,15.8874290451 H,10.9966119571,17.2164681581,15.8558675995 C,10.8514429511,15.3668023136,14.7913281996 C,11.127207912,14.006121901,14.8095961161

H.10.8903716693,13.4066091953,13.9382166968 C,11.7321198325,13.4033387202,15.9189236011 C,12.2410088033,16.5218633313,18.1476640428 H,12.4457566219,15.9037594928,19.0233870764 C,11.1726219698,17.551068033,18.5544028265 H,11.5079691831,18.1072002457,19.4341649811 H,10.2268822949,17.0673836571,18.8066331526 H,10.9840864402,18.2823791706,17.7631082922 C,13.5541074599,17.2388409648,17.7718971146 H,13.4165810795,17.8690713792,16.887962562 H,14.3520847997,16.5258533952,17.5557366055 H,13.8875780924,17.8789884245,18.5941396389 C,12.1190618916,11.9257744429,15.8367381056 H,12.282028002,11.5721513204,16.8577752389 C,13.4434186991,11.7429194234,15.0658637385 H,13.3433519797,12.1027582824,14.0373367585 H,13.720030598,10.6846712644,15.0274210919 H,14.2639527487,12.2865856228,15.534740898 C,11.0356451937,11.0392319194,15.1980046869 H,10.0612629673,11.178376278,15.6678499045 H,11.3135593585,9.9850154653,15.2922164924 H,10.9239820275,11.2429570446,14.1292133849 H,12.7153238839,10.6844653753,25.3796299541 H,10.3935743235,15.8192492547,13.9178909111

Zero-point correction=	1.044090 (Hartree/Particle)
Thermal correction to Energy=	1.102579
Thermal correction to Enthalpy=	1.103523
Thermal correction to Gibbs Free Ene	ergy= 0.951623
Sum of electronic and zero-point Energy	rgies= -2360.841490
Sum of electronic and thermal Energi	es= -2360.783001
Sum of electronic and thermal Enthal	pies= -2360.782057
Sum of electronic and thermal Free E	nergies= -2360.933956

Table S9. Cartesian coordinates and energy values of 3-Dip in heptane.

Si,0,0.228816,0.207544,0.146732 H,0,0.218151,1.256785,1.20034 O,0,-1.007144,0.328813,-0.866532 N,0,0.222191,-1.302324,1.121226 H,0,0.464116,-2.11082,0.562332 C,0,-0.852094,-1.596915,2.00612 C,0,-0.894987,-0.989316,3.290897 C,0,-1.959557,-1.276289,4.150906 H,0,-1.978923,-0.816369,5.1334 C,0,-2.965804,-2.166584,3.800127 H,0,-3.769951,-2.392385,4.492574 C,0,-2.904708,-2.788294,2.559646 H,0,-3.672442,-3.505511,2.288704 C,0,-1.878708,-2.517494,1.649896 C.0.0.236131,-0.110784,3.817513 H,0,0.947967,0.019912,3.00433 C,0,-0.25001,1.283126,4.251339 H,0,-0.708515,1.817007,3.4158 H,0,0.587287,1.888293,4.610487 H,0,-0.980914,1.222855,5.064005 C,0,0.979167,-0.81507,4.969879 H.0.0.325737,-0.969888,5.834049 H,0,1.832714,-0.214578,5.299791 H,0,1.35341,-1.792419,4.655597 C,0,-1.880998,-3.272053,0.322428 H,0,-1.090122,-2.866431,-0.308719 C,0,-1.588908,-4.769665,0.539121 H,0,-0.63453,-4.916782,1.049654 H,0,-1.541985,-5.295374,-0.418797 H,0,-2.369366,-5.239326,1.146009 C,0,-3.191813,-3.084722,-0.462258 H,0,-3.131732,-3.599212,-1.426126 H,0,-3.378263,-2.026332,-0.65662 H,0,-4.05276,-3.492091,0.076546 C,0,1.921429,0.377853,-0.773639 C,0,2.514554,1.66688,-0.879416 C,0,3.645695,1.873062,-1.680214 H,0,4.066272,2.870609,-1.743312 C,0,4.234288,0.828165,-2.377346 H,0,5.109922,1.000429,-2.993918 C.0.3.689671,-0.442727,-2.265368 H,0,4.142537,-1.274815,-2.793346 C,0,2.550553,-0.677314,-1.483749

C,0,2.022937,2.887715,-0.139032 C,0,1.046078,3.730153,-0.714706 C,0,0.66214,4.886241,-0.027662 H,0,-0.086053,5.541422,-0.459049 C,0,1.231414,5.220465,1.193766 C,0,2.213987,4.405148,1.739486 H,0,2.670168,4.682663,2.683104 C,0,2.630315,3.24057,1.088354 C,0,0.457223,3.449277,-2.095978 H,0,0.643605,2.400055,-2.330167 C,0,1.161042,4.304383,-3.168613 H.0.1.010479,5.372168,-2.980172 H,0,0.765403,4.077286,-4.164015 H,0,2.236815,4.1161,-3.183569 C,0,-1.065106,3.648794,-2.155811 H,0,-1.556699,3.017672,-1.414345 H,0,-1.43452,3.366035,-3.146838 H,0,-1.354857,4.690531,-1.986983 C,0,3.767625,2.418663,1.695275 H,0,3.806051,1.46394,1.167938 C,0,3.560664,2.10182,3.185583 H,0,3.579861,3.004285,3.803515 H,0,4.358829,1.444713,3.543974 H,0,2.607548,1.598811,3.352211 C,0,5.124175,3.119451,1.480904 H,0,5.320823,3.292515,0.420694 H,0,5.94011,2.509503,1.881387 H,0,5.147585,4.088904,1.988188 C,0,2.086116,-2.111685,-1.464509 C,0,2.63512,-3.011482,-0.518556 C,0,2.285638,-4.363624,-0.591869 H,0,2.70187,-5.063024,0.124267 C,0,1.424917,-4.831112,-1.577189 C,0,0.899226,-3.946272,-2.508661 H,0,0.240053,-4.321118,-3.283956 C,0,1.219475,-2.584436,-2.475777 C,0,3.645346,-2.559721,0.53553 H.0.3.625568,-1.469007,0.562874 C,0,3.304281,-3.051717,1.952644 H,0,2.305367,-2.725455,2.246775

H,0,4.020565,-2.642044,2.671346 H,0,3.352797,-4.141836,2.032811 C,0,5.072332,-2.988095,0.139933 H,0,5.157092,-4.078433,0.09588 H,0,5.798843,-2.623704,0.8729 H,0,5.350831,-2.590396,-0.838615 C,0,0.675749,-1.66918,-3.571288 H,0,0.950591,-0.645007,-3.315534 C,0,1.322307,-1.996967,-4.93113 H,0,2.411554,-1.92277,-4.881393 H,0,0.971269,-1.300525,-5.699207 H.0.1.071565,-3.01077,-5.258673 C,0,-0.858846,-1.704411,-3.658785 H,0,-1.234624,-2.705191,-3.894136 H,0,-1.19929,-1.032388,-4.45441 H,0,-1.288722,-1.36628,-2.714213 C,0,-3.592726,0.857875,-0.536095 H,0,-2.454616,0.61781,-0.538428 N,0,-4.439953,1.003558,0.489467 C,0,-5.720992,1.292293,0.014858 N,0,-4.298822,1.047266,-1.657951 C,0,-5.631346,1.318971,-1.349085 C,0,-4.054159,0.864756,1.893977 H,0,-3.008053,0.571921,1.93886 H,0,-4.648523,0.087352,2.372901 H,0,-4.191347,1.812383,2.417446 C,0,-6.88173,1.507491,0.92529 H,0,-7.781375,1.721305,0.348407 H,0,-6.713068,2.35022,1.602594 H,0,-7.082229,0.62421,1.539228 C,0,-6.661839,1.571336,-2.396354 H,0,-6.773717,0.713879,-3.066954 H,0,-6.409319,2.441509,-3.009981 H,0,-7.63191,1.760683,-1.936898 C,0,-3.70366,0.955177,-2.991059 H,0,-2.640777,0.758343,-2.858799 H.0.-3.841406.1.893935.-3.529393 H.0.-4.162624.0.139773.-3.552594 H,0,0.919915,6.121036,1.712641 H,0,1.170151,-5.884583,-1.621506

Zero-point correction=	1.068234 (Hartree/Particle)
Thermal correction to Energy=	1.129386
Thermal correction to Enthalpy=	1.130330
Thermal correction to Gibbs Free Ener	rgy= 0.967766
Sum of electronic and zero-point Ener	gies= -2437.350468
Sum of electronic and thermal Energie	es= -2437.289315
Sum of electronic and thermal Enthalp	oies= -2437.288371
Sum of electronic and thermal Free En	nergies= -2437.450935

Table S10. Cartesian coordinates and energy values for the H_2O in heptane.

O,0.,0.,0.118665 H,0.,0.756944,-0.474661 H,0.,-0.756944,-0.474661

0.021121 (Hartree/Particle)
0.023956
0.024901
ergy= 0.003474
rgies= -76.431946
es= -76.429110
pies= -76.428166
nergies= -76.449592

Table S11. Cartesian coordinates and energy values for the 2-Dip* in gas phase.

Si,-0.3608383238,-0.2801415756,-0.6129670291 H,-0.6961887523,-0.5515459932,-2.0509409439 N,1.0950320319,0.3503586855,-0.2701237703 C,2.4578176369,0.3461293339,-0.3082662336 C,3.1747387434,1.2452148876,0.5496978359 C,4.5659400793,1.2955242586,0.5054909301 H,5.0947070455,1.9861177493,1.1543256089 C,5.3001311327,0.4776882844,-0.3482125945 H,6.383083915,0.5306265861,-0.3694775773 C,4.6191193736,-0.4165798334,-1.1661601423 H.5.191667794,-1.0615663816,-1.8244157479 C.3.2267190984,-0.5093503909,-1.1643409965 C.2.3898706652.2.1674697649.1.472546117 H,1.4559433013,1.644122451,1.6972365637 C,2.0075969078,3.4736114992,0.7484162509 H,2.9027217988,4.0451490171,0.482287047 H.1.3758319142,4.1097915697,1.3803981897 H,1.4628627256,3.2510836658,-0.1715897046 C.3.091715899.2.4780842822.2.8032980507 H,3.3958432146,1.5617704431,3.3162243808 H,2.4191370139,3.0317647787,3.4671397643 H.3.9851243157.3.0950960842.2.6656270184 C,2.5289909019,-1.4797760711,-2.1067322873 H,1.5775425848,-1.7565165007,-1.6388287281 C,3.2943896938,-2.7914816528,-2.346739285 H,4.2084995875,-2.6333960545,-2.9265564482 H,2.6723250137,-3.4931096865,-2.9114357209 H.3.5750828693,-3.2678470751,-1.4039772555 C.2.1969901674,-0.8052169794,-3.4524945497 H,1.6181853715,0.108201757,-3.3012425331 H,1.6172938997,-1.472295192,-4.1001122726 H,3.1178908297,-0.5341783876,-3.9784969007 C,-1.5365135121,1.2873946638,-0.3236594813 N,-2.3611435522,1.6429941221,0.6880581767 C,-2.8624470248,2.9293905101,0.4912734147 C,-2.3309142084,3.3762366463,-0.68233289 N,-1.5180461062,2.3522356117,-1.1599276193 C,-2.6445524819,0.8495774787,1.8829010777 H,-3.7227126862,0.7560482311,2.0199540641 H,-2.2085857035,1.3313439272,2.7600275228 H,-2.2153545669,-0.1399134327,1.7627186822 C,-3.7890588646,3.5876114481,1.4565234191 H,-3.3360871727,3.6892123735,2.447378929 H,-4.7214382261,3.026753662,1.573824158 H,-4.0469222947,4.5877617918,1.1090277682 C,-2.5068338182,4.6753479267,-1.3933172692 H.-1.5705795673,5.2394005256,-1.4452876879 H.-3.2344173052,5.2947512873,-0.8691258516 H,-2.8683376302,4.5318702151,-2.4156061475 C,-0.6943114455,2.4320313658,-2.3691850849

H,-1.219251692,2.0059765432,-3.225634715 H.0.2305579816,1.8865341126,-2.1862017417 H.-0.4573763586.3.47502943.-2.56906505 C,-1.1583717871,-1.7618736429,0.3315920222 C,-0.5250591574,-2.3975930658,1.4347211321 C,-1.1028545728,-3.5422722229,1.9991713031 H,-0.6140296201,-4.0269612887,2.8368615556 C,-2.2825885636,-4.0758228672,1.5055135793 H,-2.7090702101,-4.9682968286,1.9515579132 C,-2.9169600506,-3.4568947971,0.4370315891 H,-3.8411662963,-3.8782439149,0.0570167338 C,-2.3827025259,-2.308323669,-0.1527414218 C,0.7776946768,-1.8968631542,2.0609980115 H,1.0747184429,-0.9888827076,1.540024067 C,-3.1670892611,-1.7011165932,-1.3213956928 H,-2.7210418453,-0.7409083633,-1.5807871531 C,0.5967864701,-1.5326722774,3.5469727725 H,0.3400758694,-2.4040020091,4.1575055013 H,1.5238294834,-1.1105206613,3.9452877167 H,-0.1934892533,-0.788197287,3.6832895495 C,1.9177914569,-2.916956884,1.8842406039 H,2.8549936445,-2.5072357176,2.2700388423 H,1.7123802486,-3.8521347651,2.4154927694 H,2.0699110496,-3.1555948184,0.829416893 C,-4.6381891627,-1.4138614441,-0.9655890752 H,-5.1336811918,-0.8993072416,-1.7947210036 H,-5.2002535643,-2.3300446111,-0.767603673 H,-4.718415238,-0.7797409191,-0.0782244308 C,-3.0692286197,-2.586883036,-2.5773266 H,-3.5081583433,-3.5728074527,-2.3990427384 H,-3.6008508327,-2.1288566935,-3.4175924171 H,-2.0275384607,-2.7317458308,-2.8715830603

Zero-point correction=	0.714692 (Hartree/Particle)
Thermal correction to Energy=	0.755700
Thermal correction to Enthalpy=	0.756644
Thermal correction to Gibbs Free E	Energy= 0.638812
Sum of electronic and zero-point E	nergies= -1663.029461
Sum of electronic and thermal Ener	rgies= -1662.988453
Sum of electronic and thermal Enth	nalpies= -1662.987509
	S34

Table S12. Cartesian coordinates and energy values for the 2-Dip*·H₂O in gas phase.

Si,-0.3758812492,0.3691706243,0.6177562362 H,-0.7227669747,0.7471360358,2.0251194258 N,0.9864976663,-0.5145608911,0.3510953028 C,2.3654946746,-0.5269337796,0.3812501925 C,3.0670211832,-1.4010600296,-0.5098155179 C,4.4589483136,-1.4752786876,-0.4632975025 H,4.9748644562,-2.1500435023,-1.1398248274 C,5.2034580522,-0.7071815289,0.4230922273 H,6.2856561453,-0.7745918996,0.4409522227 C,4.5343012568,0.1493891156,1.2904800302 H,5.114793937,0.7456407755,1.9852944166 C,3.1426911431,0.2545379735,1.2972936353 C,2.3071076147,-2.2800349957,-1.49746395 H,1.2690778029,-1.9440077789,-1.459451207 C,2.3246122815,-3.7622813435,-1.0746256368 H,3.3487759359,-4.145252313,-1.0209377289 H,1.7756943215,-4.3799327207,-1.7951063424 H,1.8570931114,-3.8922092285,-0.0966663052 C,2.8077439847,-2.1239428596,-2.944342388 H,2.7895489058,-1.0783410875,-3.2613644703 H,2.1800522569,-2.7000693842,-3.633412257 H,3.8332678645,-2.4870243869,-3.0615488525 C,2.4526873399,1.1407618451,2.3263458995 H,1.5541755718,1.5573726498,1.8563577133 C,3.2842532359,2.3428809074,2.8007116778 H,4.14285952,2.0340218172,3.4040256646 H,2.6706056202,2.9973893875,3.4271395067 H,3.6592282532,2.9315526586,1.9597305027 C,1.9888848528,0.307249649,3.5384541358 H,1.3789513435,-0.5416745673,3.2255516928 H,1.401357123,0.9153547434,4.2347371646 H,2.8580053484,-0.0819160006,4.0788687169 C,-1.7370998587,-0.9993526796,0.2401301679 N,-2.0834568386,-1.4479827264,-0.9875183487 C,-2.9562948351,-2.5277020472,-0.8907073449 C.-3.1441302761,-2.7517034647,0.4420864845 N.-2.3947540222,-1.7914303112,1.1152895214 C,-1.587432461,-0.8888815891,-2.2454641416 H,-2.2249027614,-0.0715527994,-2.5858495155 H,-1.5616066111,-1.6746837004,-2.9980836324 H.-0.576106022,-0.5237340347,-2.0883672235 C,-3.5099542989,-3.2350341541,-2.081298287 H,-2.7256845588,-3.7330563198,-2.6597919745 H,-4.0367730699,-2.5497971704,-2.7516574135 H,-4.2202799148,-3.999020618,-1.7660730501 C,-3.9391013409,-3.7966602743,1.1484588906 H,-3.3023860841,-4.414706901,1.7878922628 H,-4.4218464771,-4.4546818439,0.4261929329 H,-4.7233803763,-3.3611387948,1.7752424795 C,-2.2394366212,-1.7633249393,2.5735180775 H,-1.9359510276,-0.7659705455,2.8788201345 H,-1.4594399575,-2.4714536053,2.8572465828 H,-3.1925103189,-2.0085243184,3.0398513622 C,-0.9437154033,1.9068726008,-0.4145731362 C,-0.1345749003,2.5327144066,-1.4012031834 C,-0.6201629923,3.6492096336,-2.09387451 H,0.0056225844,4.1249062824,-2.8402609501 C,-1.8797185608,4.1680346162,-1.8409106259 H,-2.2372402089,5.033157618,-2.3894627401 C,-2.6742220291,3.5761700304,-0.8699851581 H,-3.6537778212,3.9926205129,-0.6618442916 C,-2.2286586225,2.4635127758,-0.1504865423 H,0.6992802997,-2.1271247854,1.3264618194 O.0.5556233648,-2.9056795894,1.9165826129 H,1.4263606596,-3.072236623,2.28975154 C,1.287544923,2.0810186485,-1.7333704241 H,1.4813440845,1.1480213466,-1.2095609211 C,-3.1790284327,1.9232486231,0.9230541201 H,-2.7243396935,1.0492620481,1.3854004927 C,1.4871764594,1.8065499166,-3.2356970127 H,1.3793475821,2.7129193063,-3.8387626721 H.2.491394828,1.4123301641,-3.4126678336 H.0.7682574547,1.072631054,-3.6112791354 C,2.3206762865,3.1095242552,-1.233364756 H,3.3359392098,2.7406832377,-1.4010785333

H,2.2147264519,4.0671428738,-1.753307214 H,2.2042446952,3.2959538565,-0.1634406816 C,-4.5270625129,1.4636225001,0.3368686669 H,-5.1564771878,1.027816257,1.1192504268 H,-5.0812713283,2.295750828,-0.105250532 H,-4.3848821181,0.7101132692,-0.4426223417 C,-3.3878418307,2.9460903705,2.0558138908 H,-3.8691134681,3.8569049016,1.6892513046 H,-4.0235836282,2.5261342042,2.8418550854 H,-2.4336383057,3.2306684995,2.5052598924

Zero-point correction=	0.740718 (Hartree/Particle)
Thermal correction to Energy=	0.784030
Thermal correction to Enthalpy=	0.784974
Thermal correction to Gibbs Free End	ergy= 0.663830
Sum of electronic and zero-point Ene	rgies= -1739.475065
Sum of electronic and thermal Energi	les= -1739.431754
Sum of electronic and thermal Enthal	pies= -1739.430810
Sum of electronic and thermal Free E	nergies= -1739.551953

Table S13. Cartesian coordinates and energy values for the TS1 in gas phase.

Si,0.4128363948,0.0512240178,-0.737783194 H,0.747596292,0.7727227563,-1.9746273544 N,-1.1224767304,-0.7497330039,-0.6310692611 C,-2.512361495,-0.4469443511,-0.5798859256 C,-3.3587219238,-1.4064072933,0.0338837907 C,-4.7374134133,-1.1856246646,0.0586567464 H,-5.3883741755,-1.9143680057,0.5272350311 C,-5.2917239998,-0.0450280322,-0.5063290096 H,-6.3636159464,0.1173424618,-0.4737531099 C,-4.4630421837,0.8794601948,-1.1288661547 H,-4.9066470283,1.7546807139,-1.5870389555 C,-3.0782709774,0.6993462939,-1.1908313559 C,-2.7732741638,-2.6928154849,0.6043265762 H,-1.7549743245,-2.4550224383,0.9235996088 C,-2.660722815,-3.7751012682,-0.4902346136 H,-3.6519075193,-4.0403827604,-0.8710527036 H,-2.1988846067,-4.6845411599,-0.0902714673 H,-2.0582731905,-3.4342766295,-1.3351987186 C,-3.5302747988,-3.2422901779,1.8234857611 H,-3.656404453,-2.480426179,2.5974570404 H,-2.9782730395,-4.0806281221,2.2594141618 H,-4.5228162792,-3.6175083073,1.5578163461 C,-2.2197602455,1.6744445403,-1.9905802133 H,-1.268668962,1.7957066956,-1.4654688432 C,-2.8081675632,3.0884402769,-2.1124290777 H,-3.702309337,3.1084806042,-2.7423845845 H,-2.0741970181,3.7529928429,-2.576608974 H,-3.0703290411,3.5067980481,-1.1369349573 C.-1.9161613,1.0939725857,-3.3878316248 H,-1.4105360479,0.1283982013,-3.3264231998 H,-1.2748996812,1.7764274278,-3.9553900954 H,-2.846639043,0.9598185112,-3.9486675511 C,1.9557690087,-1.0673862017,-0.3093507508 N,2.2005613814,-1.7165326624,0.8510834102 C,3.4442482006,-2.345271708,0.8200731527 C.3.9802432818,-2.067892984,-0.4017561485 N.3.0494229327,-1.2872582018,-1.0824962142 C,1.3031730712,-1.7415550842,1.9995699383 H,1.6503829869,-1.0510243011,2.7692006938 H,1.2574266817,-2.752056761,2.4061476028 H,0.308981284,-1.4532956,1.6725522938 C,3.9707867378,-3.1475818204,1.961496279 H,3.3510121488,-4.027461849,2.1621308909 H,4.0215457766,-2.5600651638,2.8831078141 H,4.9775447039,-3.5008458112,1.7390726088 C,5.2837546856,-2.4774554229,-0.9997364057 H,5.1489447015,-3.148171535,-1.8539363858 H,5.8877062695,-3.0036496406,-0.2604675292 H,5.8565751621,-1.6120412046,-1.3441137354 C,3.1735686897,-0.892724623,-2.4915579587 H,3.6533862635,0.0832644655,-2.5811958364 H,2.157949686,-0.9113329892,-2.9023298777 H,3.7796553774,-1.6368961035,-3.0060515242 C.0.6600500399,1.4551455946,0.6421295011 C.-0.1209591632,1.6579733101,1.8213777935 C,0.1578378342,2.7294820367,2.6813118009 H,-0.4543261271,2.8704274515,3.564497803

C,1.182365473,3.6238884892,2.4303384493 H,1.3719860358,4.4518794855,3.1053072099 C.1.9622914718.3.4395778262.1.3016056697 H,2.7688728991,4.1353697385,1.099440682 C,1.7319714595,2.3783171193,0.4206204124 H,-0.9117535304,-1.4995411367,-1.326614909 O,0.4018491746,-1.7090017141,-2.368029301 H,0.7632522235,-2.5913273771,-2.2267450201 C,-1.3168090464,0.7989953508,2.2456247525 H,-1.4069091795,-0.0351608732,1.5556904028 C,2.697537846,2.30980115,-0.7692879531 H.2.4998268768,1.4020507673,-1.3288229077 C,-1.1662411876,0.2135565426,3.6660117686 H,-1.1925791509,0.9943242759,4.4307657499 H,-1.9919790999,-0.4730344641,3.8756988207 H,-0.2312010917,-0.3351265168,3.7969593705 C,-2.6304111144,1.6038569645,2.1731431996 H,-3.4884776893,0.9552091465,2.3678725408 H,-2.637510352,2.4086650217,2.914666073 H,-2.7708284546,2.0489083878,1.1887358006 C,4.1720972097,2.2395783896,-0.3277935686 H,4.8234473178,2.0974849022,-1.1966538288 H,4.4961966699,3.1558510911,0.1719198522 H,4.3401365931,1.4095119385,0.3638324962 C,2.4670945404,3.4750726925,-1.7494872787 H,2.6544414941,4.4406602274,-1.2713785602 H,3.1336866188,3.3941684635,-2.6143108322 H,1.4375529042,3.478540136,-2.1146815654

Zero-point correction=	0.741109 (Hartree/Particle)
Thermal correction to Energy=	0.782679
Thermal correction to Enthalpy=	0.783624
Thermal correction to Gibbs Free Ene	ergy= 0.667930
Sum of electronic and zero-point Ener	rgies= -1739.441984
Sum of electronic and thermal Energie	es= -1739.400414
Sum of electronic and thermal Enthalp	pies= -1739.399469
Sum of electronic and thermal Free En	nergies= -1739.515163

 Table S14. Cartesian coordinates and energy values for the 3-Dip* in gas phase.

Si,-0.2236382165,0.6402804699,-1.054940356 H,-0.1945612252,1.7269474088,-2.0564095439 N,-1.7846847421,-0.1595653379,-1.2060045578 C,-3.1466079985,0.0250109593,-0.915138512 C,-3.9738424229,-1.1295053043,-0.7865364198 C.-5.3276476231,-0.9655981546,-0.4967163173 H,-5.958959589,-1.8398848191,-0.3972134186 C,-5.8887510964,0.2925793082,-0.3201516647 H,-6.9417557596,0.3981020062,-0.0854302235 C,-5.0803353968,1.4122132223,-0.4539555549 H.-5.5205566856,2.3939830639,-0.3298873685 C,-3.7206283657,1.3123882119,-0.7579138726 C,-3.4041327135,-2.5306326983,-1.0061250277 H,-2.3852084774,-2.5491371415,-0.5993650399 C,-3.3181574241,-2.8631077684,-2.5122996233 H,-4.3226196691,-2.9094837491,-2.9429707997 H.-2.8333494637.-3.8312251287.-2.6735428159 H,-2.7588244877,-2.106753941,-3.0680704023 C,-4.1591775127,-3.6452147161,-0.2648315089 H,-4.2648354543,-3.4203055784,0.79934298 H,-3.6135753524,-4.5882430291,-0.360492897 H,-5.1583875591,-3.8082575469,-0.6779262959 C,-2.9148856846,2.5816649516,-1.0090724052 H,-1.882558214,2.4034117167,-0.6977954177 C,-3.3745847536,3.7992069517,-0.1908533994 H,-4.3524732061,4.1669992189,-0.5136131669 H,-2.6641116708,4.6205278762,-0.3191956513 H,-3.4325677694,3.5672986894,0.8753937015 C,-2.8983155698,2.913808347,-2.5139404893 H,-2.5221424324,2.0736162358,-3.1004280415 H,-2.2630354052,3.7818196309,-2.7171333311 H,-3.9105667235,3.1428299105,-2.8610743539 C,3.1550126441,-1.4706337947,-0.2595833747 N,3.9273287836,-1.374900879,0.8540511721 C,5.0308101946,-2.2337151769,0.8117860822 C.4.9470037026,-2.894100477,-0.3770189331 N.3.7966628874, -2.4081337858, -1.0047881077 C,3.6269185421,-0.4756370028,1.9600256916 H,4.4441430901,0.2325852258,2.1169151354

H.3.4632936629,-1.0366610007,2.8834268338 H.2.7224348837.0.0749535143.1.7141606446 C,6.0353593269,-2.3227344776,1.9111385118 H,5.577637899,-2.6283795195,2.8577303302 H,6.5363240997,-1.3645541571,2.0843090733 H,6.8046256222,-3.0561284111,1.6662304096 C.5.8305713219,-3.9315892732,-0.9840561185 H.5.2952531659,-4.8703337349,-1.161189143 H,6.6697094546,-4.1517320522,-0.323014482 H,6.2436535139,-3.6042179779,-1.9437860814 C,3.3171886489,-2.8377495459,-2.3124695648 H.4.0586103392,-2.6250350332,-3.0868849474 H,2.4040889848,-2.2873617049,-2.5289395735 H,3.1016722015,-3.9092828825,-2.3137257149 C,0.262416401,1.4041299546,0.6338097063 C,-0.2339551427,0.9418667892,1.882779703 C,0.1121889678,1.6156792071,3.0598924018 H.-0.2749958822,1.2651167095,4.0100744281 C,0.9433655244,2.7258396531,3.0368795304 H.1.1886257737.3.2450818059.3.9575861328 C,1.4759582764,3.1542020408,1.8292330067 H,2.1488762093,4.0044910798,1.8203714422 C,1.1684163498,2.5032687645,0.6302248155 H,-1.577150801,-1.1202325947,-1.4398916399 O,0.7993789612,-0.5732529052,-1.4846821117 H.1.6212621712,-0.7967993319,-0.9392966658 C,-1.0963093955,-0.3129141226,2.0266760753 H,-1.3580041243,-0.6575157545,1.0288448511 C,1.8694271907,3.0121902336,-0.6343176398 H,1.6423298417,2.336197866,-1.4576493859 C,-0.3047184201,-1.4511743288,2.7011966223 H,-0.0024434778,-1.1812272546,3.7178414687 H,-0.9192848496,-2.3544987109,2.7657295086 H,0.5960264913,-1.6962814601,2.1326715487 C,-2.4180288983,-0.0474577337,2.7698142666 H,-3.0331444185,-0.9516056643,2.7785196087 H.-2.2497611579.0.2467922711.3.8099916503 H.-2.9948346259,0.739880871,2.2806520635 C,3.4035310306,2.9983364611,-0.4913868245 H,3.8694479371,3.3017481198,-1.4338007412

H,3.7526116123,3.6851863217,0.284715829 H,3.7637374473,1.9961844437,-0.2465618545 C,1.3640471335,4.4070195411,-1.0444966 H,1.5738432646,5.1498509129,-0.269239593 H,1.8512591673,4.7378282447,-1.9668032328 H,0.2850521375,4.4000434507,-1.215886419

Zero-point correction=	0.741323 (Hartree/Particle)
Thermal correction to Energy=	0.784255
Thermal correction to Enthalpy=	0.785199
Thermal correction to Gibbs Free Energy	rgy= 0.661997
Sum of electronic and zero-point Ener	gies= -1739.521809
Sum of electronic and thermal Energie	es= -1739.478877
Sum of electronic and thermal Enthalp	oies= -1739.477933
Sum of electronic and thermal Free Er	nergies= -1739.601136

Table S15. Cartesian coordinates and energy values for the H_2O in gas phase.

O,1.3621370635,1.7748753051,-0.0235142 H,2.3227245901,1.8225433143,-0.0235142 H,1.0864201971,2.6962768706,-0.0235142

Zero-point correction=	0.021325 (Hartree/Particle)
Thermal correction to Energy=	0.024160
Thermal correction to Enthalpy=	0.025104
Thermal correction to Gibbs Free En	ergy= 0.003679
Sum of electronic and zero-point Ene	ergies= -76.426123
Sum of electronic and thermal Energ	ies= -76.423288
Sum of electronic and thermal Entha	lpies= -76.422343
Sum of electronic and thermal Free E	Energies= -76.443769

	2-Dip	3-Dip	H_2O	2-Dip*	2-Dip*·H ₂ O	TS1	3-Dip*	H ₂ O (Gas)
Vibrational Frequencies	17.40	2.30	1606.97	12.23	10.31	-124.53	9.99	1637.92
Imaginary Frequencies	0	0	0	0	0	1	0	0

Table S16. Imaginary frequencies and vibrational frequencies (cm⁻¹) of optimized structures at B3LYP/6-311G(d,p).

References

S1 C. Gerdes, W. Saak, D. Haase and T. Müller, J. Am. Chem. Soc., 2013, 135, 10353–10361.

S2 N. Kuhn and T. Kratz, *Synthesis*, 1993, 561–562.

S3 D. Schadle, C. Schädle, D. Schneider, C. M. Mössmer and R. Anwander, *Organometallics*, 2015, **34**, 4994–5008.

S4 G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112–122.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004, Gaussian 03, Revision C.02.

S6 M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comp. Chem., 2003, 24, 669–681.

S7 K. B. Wiberg, *Tetrahedron*, 1968, **24**, 1083–1096.

S8 K. Fukui, Acc. Chem. Res., 1981, 14, 363–368.

S9 C, Gonzalez and H, Schlegel, J. Chem. Phys., 1991, 95, 5853–5860.

S10 R. Dennington, T. Keith and J. Millam, *Semichem Inc.*, Shawnee Mission, KS, GaussView, Version 5, 2009.