Supporting Information for

"Allosteric Control of Nanomechanical DNA Origami Devices for Enhanced Target Binding"

by Akinori Kuzuya,* Yusuke Sakai, Takahiro Yamazaki, Yan Xu, Yusei Yamanaka, Yuichi Ohya, and Makoto Komiyama*

EXPERIMENTAL PROCEDURES

Staple DNA strands and dye-labelled staples were purchased from Sigma Genosys (Japan) and used without further purification. Biotin-TEG and DTPA-HEG modified anchor strands were chemically synthesized using appropriate CPG columns and a phosphoramidite (Glen Research, VA), and purified by reverse-phase HPLC. BSPP-coated 5 nm AuNP was prepared according to the literature (C. Loweth, W. Caldwell, X. Peng, A. P. Alivisatos, P. G. Schultz, Angew. Chem. Int. Ed. 1999, 38, 1808–1812). Formation of nanomechanical DNA origami was performed with M13mp18 ssDNA (4 nM, Takara, Japan), staples and anchor strands (16 nM for each strand) in a solution containing Tris (40 mM), acetic acid (20 mM), EDTA (10 mM), and magnesium acetate (12.5 mM, 1 X TAE/Mg buffer, 50 µL). This mixture was cooled from 90°C to 25°C at a rate of -1.0°C/min using a PCR thermal cycler to anneal the strands. After excess staples and anchors were removed from the mixture by using an ultrafiltration microtube (Amicon Ultra 0.5 mL-100K, Millipore, Ireland), pre-closing of DNA pliers in the use of G-quadruplex zipper was initiated by adding 1/10 volume of 2 M NaCl to origami solution and kept under room temperature overnight. Capturing of SA in the jaws was then achieved with adding 1 eq. of SA to the solution of DNA pliers, and the mixture was immediately subjected to AFM measurement. For miRNA or AuNP capturing, 2 eq. of the target was used, and the mixture was incubated under room temperature for 2 d before AFM measurement (whereas AuNP capturing is significantly slow probably because of electrostatic repulsion,¹⁴ overnight reaction may be sufficient for miRNA capturing,⁵ according to our previous studies). Post-opening of DNA pliers by buffer exchange was achieved by concentrating the mixture with the ultrafiltration microtube and re-suspending it in 1X TAE/Mg buffer three times in ca. 1 h at room temperature (calculated reduction factor of Na⁺ was 1/11000). AFM imaging of DNA origami was performed on a SPA-300HV system (SII, Japan) and on a Multimode 8/Nanoscope V system (Bruker AXS). The mixture (3 µL) was deposited on a freshly cleaved mica, additional 1X TAE/Mg buffer (or 1 X TAE/Mg buffer with 200 mM NaCl for pre-closed DNA pliers, 200 µL) was added, and the imaging was done using fluid DFM scanning (or PeakForce Tapping) mode with a BL-AC40TS

tip (Olympus, Japan). Counting of DNA pliers in AFM images were performed as in the previous study.⁵

Biotin-TEG

miR20 and its splitted complements

DTPA-HEG

Figure S1. Chemical structure of the ligands.

	(i)	(ii)	(iii)	(iv)	(v)
Cross	96	271	26	51	16
Antiparallel	27	79	3	18	3
Parallel	8	25	130	5	50
Unclear	36	47	24	14	12
Sum	167	422	183	88	81

 Table S1. Counted numbers of the motifs in AFM images for Figure 2.

 Table S2. Counted numbers of the motifs in AFM images for Figure 3.

	+ Na⁺ + Na⁺ + miRNA		+ Na⁺ + miRNA - Na⁺	+ miRNA
Cross	17	4	22	88
Antiparallel	7	8	5	20
Parallel	78	108	57	55
Unclear	3	14	16	31
Sum	105	134	100	194

Tuble Con Countou numbere er une moune in 7 a minugee fer rigure	Table S3.	Counted	numbers	of the	motifs in	n AFM	images	for F	igure	4
--	-----------	---------	---------	--------	-----------	-------	--------	-------	-------	---

		L Not	+ Na⁺	+ AuNP	
	+ Na⁺		+ AuNP		
		+ AUNP	- Na⁺		
Cross	17	12	26	11	
Antiparallel	7	7	2	3	
Parallel	78	104	103	10	
Unclear	3	23	33	12	
Sum	105	146	164	36	

		X = 3' Biotin-
90w bio toe	CGACGGTCAAAACAGATAAAACATCGCCATTAAAAATACCGAAX	TEG
		X = 3' Biotin-
148w bio toe	CAGCGTGCAAAATACGTTGAGGACTAAAGACTTTTTCATGAGGX	TEG
		X = spacer C18,
91wlongDTPA	AAAACAGATAAAACATCGCCATTAAAAATACCGAAXY	Y = 3' DTPA
		X = spacer C18,
144wlongDTPA	AAAATACGTTGAGGACTAAAGACTTTTTCATGAGGXY	Y = 3' DTPA
	AAAACAGATAAAACATCGCCATTAAAAATACCGAA TTTT	
90w mir-20	CTACCTGCAC	
	TATAAGCACTTTA TTTT	
138w mir-20	ATCCGCGACCTGCTCCGATAAATTGTGTCGAAACACTAAA	

Table S4. Anchor strands used to form DNA pliers. Other staple strands are listed in the Supporting Information of ref. 5a in the main text.