Supporting Information for

Pd(0)-Catalyzed Intramolecular Arylative Dearomatization of β-Naphthols

Ren-Qi Xu, Ping Yang and Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China Fax (+86) 21-54925087; E-mail: slyou@sioc.ac.cn

Table of Contents

General methods	S2
General procedure for the preparation of β -naphthols (1a-1o)	S3-S14
General procedure for Pd-catalyzed arylative dearomatization reaction	S15-S22
Palladium-catalyzed asymmetric arylative dearomatization reaction	S23
Transformations of 2a	S24-S25
X-Ray of 2c	S26-S27
References	S27
Copies of NMR spectra and HPLC chromatographs	S28-S104

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H and ¹⁹F NMR spectra were recorded on a Varian or Agilent instrument (400 MHz and 376 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals and CFCl₃, respectively. ¹³C NMR spectra were recorded on a Varian (100 MHz or 75 MHz) or Agilent instrument (100 MHz) and internally referenced to residual solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm).

Substituted 2-bromobenzaldehydes and 2-hydroxy-1-naphthaldehyde were commercially available.

General procedure for the preparation of β -naphthols (1a-1o)

To a solution of the phosphonium salt¹ (13 mmol, 1.3 equiv.) in THF (60 mL), at 0 °C and under an argon atmosphere, was added *t*-BuOK (13 mmol, 1.3 equiv.). The mixture was stirred at 0 °C for 30 min before the aldehyde (10 mmol, 1.0 equiv.) was added. The resulting mixture was allowed to warm to room temperature and stirred for about 10 h. After completion (monitored by TLC), the reaction mixture was quenched with saturated NH₄Cl solution (20 mL) and THF was removed under reduced pressure. The mixture was diluted with H₂O (20 mL) and extracted with ethyl acetate (50 mL x 3). The combined ethyl acetate extract was washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was concentrated under reduced pressure, the crude product was purified by silica gel column chromatography (PE : EtOAc = 50:1 - 20:1).

To a solution of the above obtained olefin (10 mmol, 1.0 equiv.) in EtOH (60 mL) were added NaOAc (20 mmol, 2.0 equiv.) and TsNHNH₂ (40 mmol, 4.0 equiv.). The resulting mixture was then refluxed for 2-6 h (monitored by ¹H NMR). After completion, the reaction mixture was quenched with saturated NH₄Cl solution (20 mL) and EtOH was removed under reduced pressure. The mixture was diluted with H₂O (20 mL) and extracted with ethyl acetate (50 mL x 3). The combined ethyl acetate extract was washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was concentrated under reduced pressure, the crude product was purified by silica gel column chromatography (PE : EtOAc = 50:1 - 30:1) to afford the desired β -naphthol product.

White solid, m.p. = 91-93 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.54-7.50 (m, 1H), 7.37-7.33 (m, 1H), 7.26-7.22 (m, 2H), 7.12-7.09 (m, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 5.01 (s, 1H), 3.34-3.30 (m, 2H), 3.09-3.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 141.0 133.1, 132.8, 130.7, 129.4, 128.6, 128.1, 128.0, 127.7, 126.5, 124.2, 123.1, 122.7, 118.5, 117.7, 36.2, 25.7; IR (thin film): v_{max} (cm⁻¹) = 3272, 2949, 2923, 1668, 1626, 1585, 1564, 1514, 1440, 1368, 1311, 1262, 1244, 1223, 1109, 1043, 1022, 926, 863, 810, 782, 743, 699, 656; Anal. calcd for C₁₈H₁₅BrO: C, 66.07; H, 4.62; Found: C, 66.06; H, 4.68.

Colorless crystal solid, m.p. = 93-94 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.53-7.49 (m, 1H), 7.41-7.39 (m, 1H), 7.37-7.33 (m, 1H), 7.24-7.22 (m, 1H), 7.20-7.17 (m, 2H), 7.06 (d, *J* = 8.8 Hz, 1H), 4.97 (s, 1H), 3.34-3.30 (m, 2H), 3.08-3.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 139.3, 133.8, 133.1, 130.6, 129.5, 129.4, 128.6, 128.0, 127.7, 127.0, 126.5, 123.1, 122.7, 118.7, 117.7, 33.7, 25.5; IR (thin film): v_{max} (cm⁻¹) = 3295, 3063, 1629, 1583, 1514, 1473, 1437, 1353, 1313, 1264, 1228, 1154, 1117, 1062, 1009, 946, 912, 854, 802, 776, 742, 698, 680; Anal. calcd for C₁₈H₁₅ClO: C, 76.46; H, 5.35; Found: C, 76.46; H, 5.29.

White solid, m.p. = 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H),

7.53-7.49 (m, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.26-7.23 (m, 2H), 7.06 (d, J = 8.8 Hz, 1H), 6.93-6.89 (m, 1H), 5.05 (s, 1H), 3.31-3.27 (m, 2H), 3.07-3.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 144.3, 139.4, 133.1, 129.7, 129.4, 128.64, 128.58, 128.12, 128.07, 126.5, 123.1, 122.8, 118.2, 117.8, 100.2, 40.6, 26.0; IR (thin film): v_{max} (cm⁻¹) = 3279, 3057, 2956, 2928, 1627, 1583, 1511, 1460, 1433, 1353, 1298, 1265, 1214, 1151, 1106, 1063, 1003, 945, 907, 876, 857, 803, 734, 695, 644; Anal. calcd for C₁₈H₁₅IO: C, 57.77; H, 4.04; Found: C, 57.65; H, 3.99.

Light yellow solid, m.p. = 114-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.53-7.49 (m, 1H), 7.46 (d, *J* = 8.8 Hz, 1H), 7.36-7.32 (m, 1H), 7.07 (d, *J* = 8.8 Hz, 1H), 6.76 (d, *J* = 2.8 Hz, 1H), 6.66 (dd, *J* = 8.8, 3.2 Hz, 1H), 5.08 (s, 1H), 3.71 (s, 3H), 3.33-3.28 (m, 2H), 3.03-2.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 150.9, 141.9, 133.3, 133.1, 129.3, 128.6, 128.1, 126.5, 123.1, 122.7, 118.4, 117.7, 116.3, 114.6, 113.5, 55.4, 36.4, 25.6; IR (thin film): v_{max}(cm⁻¹) = 3473, 3418, 3052, 2940, 1624, 1600, 1568, 1513, 1472, 1412, 1354, 1301, 1276, 1241, 1157, 1123, 1052, 1004, 910, 861, 807, 748, 726, 673; Anal. calcd for C₁₉H₁₇BrO₂: C, 63.88; H, 4.80; Found: C, 63.91; H, 4.76.

Light yellow solid, m.p. = 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.53-7.49 (m, 1H), 7.42 (s, 1H), 7.37-7.33 (m, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 8.8 Hz, 1H), 7.04 (d, *J* = 7.6 Hz, 1H), 5.04 (s, 1H), 3.30-3.26 (m, 2H), 3.04-3.00 (m, 2H), 2.31 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 150.9, 138.0, 137.8, 133.2, 133.1, 130.3, 129.4, 128.6, 128.5, 128.1, 126.5, 123.9, 123.1, 122.8, 118.5, 117.8, 35.7, 25.9, 20.6; IR (thin film): $v_{max}(cm^{-1}) = 3253, 2964, 2922, 1628, 1584, 1514, 1489, 1439, 1358, 1322, 1300, 1266, 1215, 1164, 1126, 1064, 1039, 1014, 949, 910, 859, 806, 768, 739, 692, 672; Anal. calcd for C₁₉H₁₇BrO: C, 66.87; H, 5.02; Found: C, 66.70; H, 5.04.$

Light yellow solid, m.p. = 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.52-7.47 (m, 1H), 7.36-7.32 (m, 1H), 7.05 (d, *J* = 8.8 Hz, 1H), 7.04 (s, 1H), 6.55 (s, 1H), 5.23 (s, 1H), 3.85 (s, 3H), 3.69 (s, 3H), 3.32-3.28 (m, 2H), 3.02-2.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 148.2, 147.9, 133.1, 132.9, 129.2, 128.5, 127.9, 126.4, 123.0, 122.8, 118.6, 117.7, 115.4, 113.8, 113.2, 56.1, 55.9, 35.7, 25.6; IR (thin film): v_{max}(cm⁻¹) = 3446, 3160, 2963, 2936, 1604, 1502, 1458, 1436, 1382, 1354, 1311, 1253, 1212, 1155, 1061, 1026, 957, 911, 853, 809, 780, 746, 696; Anal. calcd for C₂₀H₁₉BrO₃: C, 62.03; H, 4.95; Found: C, 62.05; H, 4.91.

Light yellow solid, m.p. = 143-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 8.8 Hz, 1H), 7.04 (s, 1H), 6.73 (s, 1H), 5.95 (s, 2H), 4.99 (s, 1H), 3.28-3.24 (m, 2H), 2.99-2.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 147.4, 146.9, 134.1, 133.1, 129.4, 128.6, 128.1, 126.5, 123.1, 122.7, 118.5, 117.7, 114.1, 112.7, 110.2, 101.6, 36.1, 25.9; IR (thin film): v_{max}(cm⁻¹) = 3538, 3445,

2891, 1622, 1600, 1583, 1501, 1472, 1438, 1389, 1355, 1308, 1272, 1229, 1199, 1148, 1109, 1041, 1013, 961, 936, 910, 851, 807, 770, 754, 699, 669, 646; Anal. calcd for C₁₉H₁₅BrO₃: C, 61.47; H, 4.07; Found: C, 61.45; H, 4.05.

White solid, m.p. = 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.59 (d, *J* = 2.0 Hz, 1H), 7.53-7.48 (m, 1H), 7.37-7.33 (m, 1H), 7.18 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 1H), 4.93 (s, 1H), 3.32-3.28 (m, 2H), 3.06-3.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 139.6, 133.1, 132.5, 132.2, 131.3, 129.3, 128.7, 128.1, 127.7, 126.6, 124.4, 123.2, 122.6, 118.4, 117.6, 35.5, 25.5; IR (thin film): v_{max}(cm⁻¹) = 3212, 2969, 1630, 1584, 1515, 1468, 1439, 1357, 1271, 1224, 1168, 1098, 1065, 1037, 1012, 912, 867, 841, 803, 780, 741, 688; Anal. calcd for C₁₈H₁₄BrClO: C, 59.78; H, 3.90; Found: C, 59.60; H, 3.85.

Light yellow solid, m.p. = 118-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.53-7.49 (m, 2H), 7.37-7.33 (m, 1H), 7.05 (d, *J* = 8.8 Hz, 1H), 6.98 (dd, *J* = 9.6, 3.2 Hz, 1H), 6.82 (td, *J* = 8.0, 2.8 Hz, 1H), 5.00 (s, 1H), 3.33-3.29 (m, 2H), 3.05-3.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, *J* = 245.6 Hz), 150.7, 143.2 (d, *J* = 7.3 Hz), 133.8 (d, *J* = 8.1 Hz), 133.1, 129.4, 128.7, 128.2, 126.6, 123.2, 122.6, 118.3, 118.27 (d, *J* = 3.1 Hz), 117.6, 117.4 (d, *J* = 22.2 Hz), 115.0 (d, *J* = 22.3 Hz), 36.2 (d, *J* = 1.1 Hz), 25.3; ¹⁹F NMR (386 Hz, CDCl₃) δ -115.1(m); IR (thin film): v_{max}(cm⁻¹) = 3557, 3499, 3450,

2986, 2950, 2927, 1623, 1576, 1512, 1469, 1406, 1356, 1258, 1231, 1196, 1153, 1103, 1063, 1014, 954, 910, 863, 808, 743, 693; Anal. calcd for C₁₈H₁₄BrFO: C, 62.63; H, 4.09; Found: C, 62.80; H, 4.08.

White solid, m.p. = 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.70-7.66 (m, 2H), 7.53-7.49 (m, 1H), 7.42 (d, *J* = 2.0 Hz, 1H), 7.37-7.31 (m, 2H), 7.04 (d, *J* = 8.8 Hz, 1H), 4.89 (s, 1H), 3.37-3.33 (m, 2H), 3.14-3.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 142.2, 133.2, 133.1, 130.0 (q, *J* = 33.9 Hz), 129.4, 128.7, 128.2, 128.15 (q, *J* = 1.5 Hz), 127.2 (q, *J* = 3.6 Hz), 126.6, 124.4 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 271.0 Hz), 123.2, 122.6, 118.3, 117.5, 36.0, 25.2; ¹⁹F NMR (386 Hz, CDCl₃) δ -62.6 (s); IR (thin film): v_{max}(cm⁻¹) = 3270, 2925, 1582, 1516, 1457, 1442, 1408, 1359, 1332, 1281, 1218, 1173, 1112, 1079, 1026, 1011, 954, 910, 893, 858, 823, 804, 757, 740, 702; Anal. calcd for C₁₉H₁₄BrF₃O: C, 57.74; H, 3.57; Found: C, 57.85; H, 3.72.

Colorless crystal solid, m.p. = 118-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.75-7.72 (m, 2H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.60 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.52-7.48 (m, 2H), 7.41-7.37 (m, 1H), 7.23-7.17 (m, 2H), 7.08-7.04 (m, 2H), 5.06 (s, 1H), 3.39-3.35 (m, 2H), 3.13-3.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 141.6, 141.0, 139.2, 133.4, 132.7, 130.8, 129.1, 128.8, 128.5, 127.9, 127.8, 127.6, 127.5, 127.3, 124.2, 122.9, 121.1, 119.0, 117.7, 36.3, 25.7; IR (thin film): $v_{max}(cm^{-1}) = 3246$, 3058, 3014, 2962, 1625, 1578, 1492, 1468, 1453, 1435, 1362, 1302, 1262, 1206, 1154, 1113, 1069, 1023, 1007, 928, 880, 831, 789, 748, 731, 690; Anal. calcd for C₂₄H₁₉BrO: C, 71.47; H, 4.75; Found: C, 71.54; H, 4.84.

Light yellow solid, m.p. = 161-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.8 Hz, 1H), 7.99 (d, *J* = 2.0 Hz, 1H), 7.79 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.73-7.70 (m, 3H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.50-7.46 (m, 2H), 7.38-7.35 (m, 1H), 7.28-7.21 (m, 2H), 7.12-7.08 (m, 2H), 5.06 (s, 1H), 3.36-3.32 (m, 2H), 3.11-3.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 140.94, 140.93, 135.8, 132.8, 132.3, 130.7, 129.6, 128.8, 128.4, 128.0, 127.7, 127.2, 127.1, 126.5, 126.1, 124.3, 123.4, 118.5, 118.2, 36.2, 25.8; IR (thin film): v_{max}(cm⁻¹) = 3311, 1628, 1571, 1492, 1468, 1445, 1365, 1325, 1270, 1223, 1191, 1151, 1112, 1072, 1023, 1008, 911, 894, 840, 806, 751, 728, 694, 655; Anal. calcd for C₂₄H₁₉BrO: C, 71.47; H, 4.75; Found: C, 71.52; H, 4.76.

Yellow solid, m.p. = 104-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.52 (s, 1H), 7.47-7.43 (m, 1H), 7.34-7.30 (m, 1H), 7.27-7.22 (m, 2H), 7.12-7.07 (m, 1H), 5.15 (s, 1H), 3.31-3.27 (m, 2H), 3.06-3.02 (m, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 140.9, 132.8, 131.8, 130.6, 129.2, 128.0, 127.9, 127.8, 127.7, 125.8, 125.6, 124.2, 123.1, 122.5, 117.7, 36.2, 26.0, 17.0; IR (thin film): v_{max}(cm⁻¹) = 3569, 3064, 2920, 2872, 1628, 1505, 1468, 1435, 1397, 1254, 1219, 1196, 1177, 1157, 1097, 1023, 978, 886, 850, 740, 648, 622; HRMS (EI) calcd for C₁₉H₁₇BrO [M]⁺: 340.0463. Found:

340.0462.

Yellow solid, m.p. = 123-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.75 (s, 1H), 8.42 (s, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.58-7.52 (m, 2H), 7.34-7.30 (m, 2H), 7.23-7.20 (m, 1H), 7.08-7.04 (m, 1H), 4.03 (s, 3H), 3.40-3.36 (m, 2H), 3.08-3.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 153.7, 141.5, 136.3, 132.6, 130.74, 130.66, 130.0, 129.0, 127.6, 127.4, 126.9, 124.3, 123.3, 122.9, 121.4, 113.4, 52.5, 35.8, 25.4; IR (thin film): v_{max}(cm⁻¹) = 3159, 3126, 2951, 1673, 1623, 1577, 1508, 1446, 1380, 1352, 1302, 1261, 1222, 1155, 1113, 1088, 1020, 998, 955, 931, 905, 861, 791, 764, 745, 726, 656; HRMS (ESI) calcd for C₂₀H₁₈BrO₃ [M + H]⁺: 385.0434; Found: 385.0434.

White solid, m.p. = 107-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.0 Hz, 1H), 7.78 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.49-7.43 (m, 2H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 7.23-7.17 (m, 2H), 7.12-7.08 (m, 1H), 5.34 (s, 1H), 3.10-3.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 140.4, 133.5, 132.8, 130.6, 128.10, 128.07, 127.7, 127.6, 125.6, 125.3, 124.5, 124.2, 121.1, 120.4, 119.8, 37.1, 30.9; IR (thin film): v_{max}(cm⁻¹) = 3371, 3050, 2943, 2872, 1902, 1805, 1572, 1506, 1464, 1388, 1253, 1197, 1170, 1070, 1022, 992, 921, 863, 793, 740, 657; Anal. calcd for C₁₈H₁₅BrO: C, 66.07; H, 4.62; Found: C, 66.05; H, 4.71.

To a solution of the 2-bromoaniline (20 mmol, 1.0 equiv.) in MeOH (30 mL), under an argon atmosphere, was added 2-hydroxy-1-naphthaldehyde (20 mmol, 1.0 equiv.). The mixture was stirred for 2 h before adding sodium cyanoborohydride (22 mmol, 1.1 equiv.) and AcOH (0.8 mL). After completion (monitored by TLC), the reaction mixture was quenched with saturated NaHCO₃ solution (20 mL) and MeOH was removed under reduced pressure. The mixture was diluted with H₂O (20 mL) and extracted with ethyl acetate (50 mL x 3). The combined ethyl acetate extract was washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was concentrated under reduced pressure, the crude product was purified by silica gel column chromatography (PE/EA = 10/1-4/1) to afford the desired product **A** (1.97 g, 30% yield).

To a solution of **A** (3.0 mmol, 1.0 equiv.) in DCM (20 mL), under an argon atmosphere, was added Et₃N (4.0 mmol, 1.3 equiv.). The mixture was stirred at rt when acetyl chloride (4.0 mmol, 1.3 equiv.) was added dropwise. After completion (monitored by TLC), the reaction mixture was quenched with saturated NH₄Cl solution (20 mL). The mixture was diluted with H₂O (20 mL) and extracted with DCM (50 mL x 3). The combined DCM extract was washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was concentrated under reduced pressure, the crude product was purified by silica gel column chromatography (PE/EA = 20/1) to afford the desired product **3m** (0.61 g, 55% yield).

White solid, m.p. = 159-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H),

7.74-7.71 (m, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.29-7.23 (m, 2H), 7.18-7.13 (m, 2H), 7.02-6.97 (m, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 8.8 Hz, 1H), 5.48 (d, $J_{AB} =$ 15.6 Hz, 1H), 4.93 (d, $J_{BA} = 15.6$ Hz, 1H), 1.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 155.1, 140.9, 134.0, 133.5, 131.0, 130.6, 130.4, 128.9, 128.6, 128.4, 126.0, 123.0, 122.4, 121.6, 119.9, 113.4, 43.7, 22.0; IR (thin film): v_{max} (cm⁻¹) = 3071, 3038, 2965, 1624, 1579, 1522, 1476, 1456, 1416, 1375, 1292, 1239, 1201, 1158, 1073, 1034, 1018, 972, 860, 819, 796, 767, 746, 725, 705, 628; HRMS (ESI) calcd for C₁₉H₁₇BrNO₂ [M + H]⁺: 370.0437; Found: 370.0439.

To a solution of the 2-methoxynaphthalene (10 mmol, 1.3 equiv.) in DCM (20 mL), under an argon atmosphere, was added 1-(2-bromophenyl)prop-2-en-1-one (7.7 mmol, 1.0 equiv.) and indium trichloride (0.77 mmol, 0.1 equiv.). The mixture was stirred at rt for about 20 h. After completion (monitored by TLC), the reaction mixture was quenched with saturated NaHCO₃ solution (10 mL). The mixture was diluted with H₂O (20 mL) and extracted with DCM (50 mL x 3). The combined DCM extract was washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was concentrated under reduced pressure, the crude product (**B**) was obtained (1.4 g, 51% yield) and used in the following reaction without further purification.

To a 100 mL, round-bottomed flask were added **B** (3.8 mmol, 1.0 equiv.), hydrazine hydrate (1.8 ml, 10.0 equiv.), potassium hydroxide (13.3 mmol, 3.5 equiv.) and diethylene glycol (15 mL). The mixture was refluxed at 170 $^{\circ}$ C for about 2 h.

After completion (monitored by TLC), the reaction mixture was cooled to rt and quenched with saturated NH₄Cl solution (10 mL). The mixture was diluted with H₂O (20 mL) and extracted with ethyl acetate (50 mL x 3). The combined ethyl acetate extract was washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was concentrated under reduced pressure, the crude product (**C**) was obtained (0.75 g, 56% yield) and used in the following reaction without further purification.

A flame-dried two-necked, round-bottomed flask was cooled down to room temperature under argon. To this flask were added C (2.11 mmol, 1.0 equiv.) and DCM (15 mL). The mixture was stirred at 0 °C while the 0.5 M BBr₃/DCM solution (6.4 mL, 1.5 equiv.) was added dropwise. Then the resulting mixture was allowed to warm to room temperature and stirred for about 2 h. After completion (monitored by TLC), the reaction mixture was quenched with saturated NaHCO₃ (20 mL). The mixture was diluted with H₂O (20 mL) and extracted with DCM (50 mL x 3). The combined DCM extract was washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was concentrated under reduced pressure, the crude product was purified by silica gel column chromatography (PE/EA = 30/1) to afford the desired product **3n** (0.67 g, 93% yield).

White solid, m.p. = 96-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.45 (m, 1H), 7.31 (m, 1H), 7.22 (m, 2H), 7.04 (m, 2H), 4.95 (s, 1H), 3.11 (t, *J* = 8.0 Hz, 2H), 2.91 (t, *J* = 8.0 Hz, 2H), 1.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 141.4, 133.1, 132.7, 130.2, 129.4, 128.6, 127.7, 127.5, 127.4, 126.4, 124.6, 123.0, 122.9, 119.8, 117.6, 36.2, 29.8, 24.7; IR (thin film): v_{max}(cm⁻¹) = 3286, 3050, 2948, 1622, 1515, 1468, 1442, 1368, 1313, 1263, 1244, 1194, 1146, 1110, 1043, 1023, 926, 862, 812, 782, 743, 700, 657; Anal. calcd for C₁₉H₁₇BrO: C, 66.87; H, 5.02; Found: C, 66.97; H, 5.00.

General procedure for Pd-catalyzed arylative dearomatization reaction

A flame-dried Schlenk tube was cooled down to room temperature under argon. To this tube were added $[Pd(C_3H_5)Cl]_2$ (1.5 mg, 0.004 mmol, 0.5 mol%), QPhos (8.6 mg, 0.012 mmol, 1.5 mol%), Cs₂CO₃ (391.0 mg, 1.2 mmol, 1.5 equiv.), β -naphthols (**1a-1o**) (0.8 mmol, 1.0 equiv.) and toluene (4.0 mL). Then the reaction mixture was stirred at 120 °C. After completion (monitored by TLC), the reaction mixture was cooled to room temperature and diluted with ethyl acetate (3mL). The mixture was filtered through celite, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (PE : EtOAc = 50:1 - 30:1) to afford the desired products (**2a-2o**).

Light yellow oil, 185.6 mg, 95% yield (from **1aa**); 180.2 mg, 92% yield (from **1ab**); 183.6 mg, 94% yield (from **1ac**). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 10.0 Hz, 1H), 7.36-7.33 (m, 2H), 7.28-7.20 (m, 3H), 7.09 (t, *J* = 7.6 Hz, 1H), 7.02-6.98 (m, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.18 (d, *J* = 10.0 Hz, 1H), 3.37-3.29 (m, 1H), 3.18-3.10 (m, 1H), 2.83-2.77 (m, 1H), 2.40-2.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 146.4, 145.5, 145.1, 145.0, 129.9, 129.2, 129.0, 127.8, 127.5, 126.8, 126.7, 124.7, 124.3, 124.2, 64.9, 41.5, 31.4; IR (thin film): v_{max} (cm⁻¹) = 3065, 3022, 2926, 2849, 1658, 1618, 1596, 1563, 1477, 1451, 1394, 1298, 1237, 1206, 1111, 1025, 955, 876, 826, 748, 666; HRMS (ESI) calcd for C₁₈H₁₅O[M + H]⁺: 247.1111; Found: 247.1111.

Light yellow oil, 190.8 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 10.0 Hz, 1H), 7.35-7.33 (m, 1H), 7.26-7.20 (m, 3H), 7.04-6.99 (m, 2H), 6.56 (s, 1H), 6.18 (d, J = 10.0 Hz, 1H), 3.31-3.23 (m, 1H), 3.13-3.06 (m, 1H), 2.82-2.75 (m, 1H), 2.38-2.31 (m, 1H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 146.7, 145.7, 145.1, 142.0, 136.3, 130.0, 129.2, 129.1, 128.6, 127.9, 126.8, 124.8, 124.42, 124.41, 65.0, 42.0, 31.1, 21.1; IR (thin film): v_{max} (cm⁻¹) = 3018, 2921, 2853, 1657, 1618, 1596, 1563, 1492, 1448, 1394, 1300, 1237, 1208, 1115, 1031, 976, 954, 876, 833, 812, 752, 665; HRMS (ESI) calcd for C₁₉H₁₇O[M + H]⁺: 261.1274; Found: 2461.1273.

White solid, m.p. = 152-154 °C; 226.3 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 10.0 Hz, 1H), 7.37-7.35 (m, 1H), 7.28-7.26 (m, 2H), 7.00-6.98 (m, 1H), 6.87 (s, 1H), 6.28 (s, 1H), 6.21 (d, J = 10.0 Hz, 1H), 3.88 (s, 3H), 3.67 (s, 3H), 3.25-3.17 (m, 1H), 3.10-3.03 (m, 1H), 2.79-2.72 (m, 1H), 2.34-2.27 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 149.0, 148.3, 146.5, 145.0, 137.2, 136.5, 130.0, 129.1, 129.0, 127.8, 126.8, 124.4, 107.18, 107.16, 65.3, 55.8, 55.7, 42.9, 31.0; IR (thin film): v_{max} (cm⁻¹) = 3053, 3003, 2933, 2897, 2833, 1658, 1624, 1564, 1502, 1447, 1403, 1330, 1303, 1266, 1247, 1211, 1188, 1166, 1115, 1078, 1032, 1002, 960, 875, 841, 823, 774, 741, 621; HRMS (ESI) calcd for C₂₀H₁₉O₃[M + H]⁺: 307.1329; Found: 307.1327.

Yellow oil, 208.3 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 9.6 Hz, 1H), 7.34-7.32 (m, 1H), 7.28-7.23 (m, 2H), 7.03-7.01 (m, 1H), 6.87 (s, 1H), 6.66 (s, 2H), 6.17 (d, J = 10.0 Hz, 1H), 3.76 (s, 3H), 3.33-3.25 (m, 1H), 3.13-3.06 (m, 1H), 2.82-2.75 (m, 1H), 2.39-2.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 159.5, 146.75, 146.72, 145.0, 137.5, 130.0, 129.3, 129.0, 127.8, 126.8, 125.0, 124.3, 113.1, 109.6, 64.3, 55.2, 42.1, 31.5; IR (thin film): v_{max} (cm⁻¹) = 3006, 2938, 2834, 1658, 1602, 1563, 1487, 1449, 1395, 1309, 1249, 1206, 1167, 1146, 1083, 1030, 960, 914, 835, 814, 752, 665; HRMS (ESI) calcd for C₁₉H₁₇O₂[M + H]⁺: 277.1223; Found: 277.1222.

Yellow oil, 218.3 mg, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 10.0 Hz, 1H), 7.36-7.34 (m, 1H), 7.32-7.27 (m, 2H), 7.05-7.03 (m, 1H), 6.78 (s, 1H), 6.21 (s, 1H), 6.19 (d, J = 9.6 Hz, 1H), 5.90 (dd, J = 14.8, 0.8 Hz, 2H), 3.23-3.15 (m, 1H), 3.06-2.99 (m, 1H), 2.81-2.74 (m, 1H), 2.38-2.30 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 147.7, 146.9, 146.5, 145.1, 138.4, 137.8, 130.1, 129.3, 129.2, 127.9, 127.0, 124.5, 104.9, 104.8, 101.1, 64.9, 42.5, 31.2; IR (thin film): v_{max} (cm⁻¹) = 2959, 2891, 2854, 1657, 1618, 1563, 1500, 1471, 1395, 1358, 1298, 1244, 1208, 1159, 1126, 1035, 935, 857, 820, 798, 756, 643; HRMS (ESI) calcd for C₁₉H₁₅O₃[M + H]⁺: 291.1016; Found: 291.1015.

Yellow oil, 210.1 mg, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 10.0 Hz, 1H), 7.36-7.34 (m, 1H), 7.29-7.24 (m, 3H), 7.18 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.00-6.98 (m, 1H), 6.74 (d, *J* = 2.0 Hz, 1H), 6.17 (d, *J* = 10.0 Hz, 1H), 3.31-3.23 (m, 1H), 3.12-3.05 (m, 1H), 2.83-2.77 (m, 1H), 2.41-2.34 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 147.4, 145.7, 145.4, 143.7, 132.3, 130.3, 129.3, 129.2, 127.89, 127.87, 127.2, 125.8, 124.6, 124.2, 64.9, 42.1, 30.9; IR (thin film): v_{max} (cm⁻¹) = 3022, 2926, 2850, 1658, 1618, 1595, 1564, 1474, 1450, 1434, 1394, 1301, 1236, 1206, 1160, 1098, 1069, 984, 909, 870, 814, 751, 664; HRMS (ESI) calcd for C₁₈H₁₄ClO [M + H]⁺: 281.0728; Found: 281.0727.

Yellow oil, 200.3 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 10.0 Hz, 1H), 7.36-7.33 (m, 1H), 7.29-7.24 (m, 2H), 7.02-6.98 (m, 2H), 6.78 (td, *J* = 8.8, 2.4 Hz, 1H), 6.69 (dd, *J* = 8.4, 5.2 Hz, 1H), 6.17 (d, *J* = 10.0 Hz, 1H), 3.33-3.25 (m, 1H), 3.13-3.05 (m, 1H), 2.83-2.76 (m, 1H), 2.41-2.34 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 162.6 (d, *J* = 243.7 Hz), 147.5 (d, *J* = 8.2 Hz), 146.1, 145.2, 141.0 (d, *J* = 2.5 Hz), 130.1, 129.25, 129.19, 127.8, 127.0, 125.5 (d, *J* = 9.1 Hz), 124.2, 113.9 (d, *J* = 22.8 Hz), 111.6 (d, *J* = 22.0 Hz), 64.2, 42.3, 31.3 (d, *J* = 2.1 Hz); ¹⁹F NMR (386 Hz, CDCl₃) δ -115.5 (m); IR (thin film): v_{max} (cm⁻¹) = 3063, 3025, 2926, 2849, 1658, 1615, 1594, 1564, 1481, 1432, 1395, 1303, 1242, 1207, 1146, 1129, 1080, 961, 926, 862, 834, 813, 755, 665; HRMS (ESI) calcd for C₁₈H₁₄FO [M + H]⁺: 265.1023; Found: 265.1022.

Yellow oil, 215.1 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.54 (d, J = 10.0 Hz, 1H), 7.39-7.35 (m, 2H), 7.30-7.28 (m, 2H), 6.96-6.94 (m, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.19 (d, J = 9.6 Hz, 1H), 3.41-3.23 (m, 1H), 3.21-3.14 (m, 1H), 2.87-2.81 (m, 1H), 2.45-2.37 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 149.6, 146.2, 145.5, 133.0, 130.3 (q, J = 31.7 Hz), 129.5, 129.3, 127.9, 127.3, 124.3 (q, J = 270.9 Hz), 124.9, 124.14, 124.09 (q, J = 3.8 Hz), 121.8 (q, J = 3.8 Hz), 64.9, 42.1, 31.2; ¹⁹F NMR (386 Hz, CDCl₃) δ -62.2 (s); IR (thin film): v_{max} (cm⁻¹) = 3065, 3030, 2934, 2851, 1660, 1618, 1565, 1488, 1430, 1395, 1331, 1236, 1199, 1153, 1114, 1060, 956, 887, 825, 760, 687, 652; HRMS (ESI) calcd for C₁₉H₁₄F₃O[M + H]⁺: 315.0991; Found: 315.0991.

White solid, m.p. = 64-66 °C; 83.3 mg, 80% yield (0.4 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.32 (m, 2H), 7.29-7.20 (m, 4H), 7.07 (t, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), 3.40-3.32 (m, 1H), 3.18-3.11 (m, 1H), 2.81-2.74 (m, 1H), 2.42-2.35 (m, 1H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 146.1, 146.0, 145.1, 141.7, 131.8, 130.0, 129.0, 128.2, 127.7, 127.5, 126.9, 126.7, 124.8, 124.3, 64.7, 41.6, 31.7, 16.0; IR (thin film): v_{max} (cm⁻¹) = 3672, 2975, 2951, 2923, 1650, 1599, 1570, 1475, 1437, 1366, 1252, 1198, 1131, 1073, 1018, 976, 915, 888, 772, 755, 662, 612; HRMS (ESI) calcd for C₁₉H₁₇O [M + H]⁺: 261.1274; Found: 261.1272.

Yellow solid, m.p. = 119-121 °C; 198.6 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.51 (dd, J = 7.2, 1.2 Hz, 1H), 7.39-7.31 (m, 3H), 7.23 (td, J = 7.6, 0.8 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 3.85 (s, 3H), 3.37-3.29 (m, 1H), 3.16-3.09 (m, 1H), 2.93-2.87 (m, 1H), 2.43-2.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 165.2, 150.5, 147.7, 145.1, 143.9, 132.1, 131.2, 128.0, 127.9, 127.8, 127.3, 126.8, 125.1, 124.9, 124.6, 66.5, 52.3, 40.5, 31.4; IR (thin film): v_{max} (cm⁻¹) = 2992, 2945, 1735, 1712, 1668, 1614, 1565, 1473, 1447, 1429, 1366, 1316, 1294, 1263, 1212, 1149, 1131, 1052, 988, 965, 944, 841, 798, 750, 621; HRMS (ESI) calcd for C₂₀H₁₇O₃ [M + H]⁺: 305.1172; Found: 305.1171.

Light yellow solid, m.p. = 83-85 °C; 246.1 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 9.6 Hz, 1H), 7.48 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.45-7.39 (m, 3H), 7.37-7.33 (m, 3H), 7.31-7.27 (m, 1H), 7.24-7.19 (m, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.19 (d, *J* = 9.6 Hz, 1H), 3.39-3.31 (m, 1H), 3.19-3.12 (m, 1H), 2.87-2.81 (m, 1H), 2.47-2.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 147.1, 145.4, 145.2, 144.7, 142.8, 140.0, 129.6, 128.7, 128.5, 127.8, 127.7, 127.0, 126.8, 126.7, 125.7, 124.8, 124.4, 124.2, 65.3, 41.8, 31.5; IR (thin film): v_{max} (cm⁻¹) = 3028, 2952, 2929, 1662, 1600, 1549, 1479, 1451, 1386, 1292, 1234, 1212, 1187, 1151, 1111, 1075, 1022, 982, 898, 850, 754, 718, 692, 647; HRMS (ESI) calcd for C₂₄H₁₉O [M + H]⁺: 323.1430; Found: 323.1429.

Light yellow solid, m.p. = 149-151 °C; 244.2 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 4H), 7.47 (dd, J = 8.4, 2.0 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.37-7.33 (m, 2H), 7.23 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.22 (d, J = 9.6 Hz, 1H), 3.39-3.31 (m, 1H), 3.19-3.12 (m, 1H), 2.85-2.79 (m, 1H), 2.43-2.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 145.5, 145.4, 145.2, 145.1, 140.0, 139.8, 129.7, 128.8, 128.7, 128.5, 127.73, 127.67, 127.6, 126.87, 126.85, 124.85, 124.81, 124.4, 64.9, 41.8, 31.5; IR (thin film): v_{max} (cm⁻¹) = 2953, 2905, 1661, 1619, 1599, 1556, 1480, 1452, 1372, 1296, 1261, 1237, 1188, 1111, 1076, 1051, 1025, 926, 890, 841, 820, 757, 721, 693; HRMS (ESI) calcd for C₂₄H₁₉O [M + H]⁺: 323.1430; Found: 323.1430.

Light yellow solid, m.p. = 159-161 °C; 42.7 mg, 74% yield (0.2 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 10.0 Hz, 1H), 7.41-7.38 (m, 1H), 7.35-7.31 (m, 2H), 7.23-7.17 (m, 2H), 6.87-6.83 (m, 1H), 6.78 (d, J = 7.2 Hz, 1H), 6.28 (d, J = 10.0 Hz, 1H), 4.86 (d, J = 10.8 Hz, 1H), 4.34 (d, J = 10.8 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 168.3, 146.2, 144.8, 142.0, 134.6, 131.0, 129.7, 128.9, 128.2, 127.8, 127.2, 124.1, 123.8, 122.7, 117.7, 60.6, 59.4, 24.3; IR (thin film): v_{max} (cm⁻¹) = 3295, 3028, 2924, 2853, 1662, 1560, 1478, 1404, 1337, 1283, 1238, 1215, 1193, 1163, 1133, 1094, 1024, 950, 861, 839, 811, 763, 695, 618; HRMS (ESI) calcd for C₁₉H₁₆NO₂ [M + H]⁺: 290.1176; Found: 290.1174.

Light yellow oil, 200.4 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 10.0 Hz, 1H), 7.33-7.31 (m, 1H), 7.24-7.13 (m, 4H), 7.00 (t, J = 6.4 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.54 (d, J = 7.6 Hz, 1H), 6.15 (d, J = 9.6 Hz, 1H), 2.91-2.90 (m, 2H), 2.21-2.16 (m, 1H), 2.00-1.89 (m, 2H), 1.80-1.73 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 204.3, 148.8, 144.2, 138.7, 137.2, 130.6, 129.64, 129.56, 129.1, 129.0, 126.9, 126.7, 126.1, 123.8, 58.3, 39.0, 29.6, 17.8; IR (thin film): v_{max} (cm⁻¹) = 3060, 3018, 2927, 2855, 1657, 1618, 1563, 1487, 1446, 1395, 1287, 1261, 1228, 1124, 1097, 1065, 1038, 1001, 964, 876, 823, 747, 665; HRMS (ESI) calcd for C₁₉H₁₇O [M + H]⁺: 261.1274; Found: 261.1273.

Light yellow oil, 40.6 mg, 88% yield (0.2 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.37-7.29 (m, 3H), 7.19 (t, J = 7.2 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.67 (d, J = 9.6 Hz, 1H), 6.22 (d, J = 9.6 Hz, 1H), 3.49-3.41 (m, 1H), 3.13-3.06 (m, 1H), 2.77-2.71 (m, 1H), 2.26-2.19 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 145.1, 143.5, 138.9, 138.6, 134.4, 128.5, 128.1, 127.9, 127.3, 127.1, 126.5, 125.5, 123.9, 123.4, 62.2, 37.7, 32.2; IR (thin film): v_{max} (cm⁻¹) = 3063, 3026, 2930, 2852, 1668, 1593, 1455, 1390, 1284, 1227, 1152, 1073, 1023, 968, 881, 759, 688; HRMS (ESI) calcd for C₁₉H₁₇O [M + H]⁺: 247.1117; Found: 247.1120.

Palladium-catalyzed asymmetric arylative dearomatization reaction

A flame-dried Schlenk tube was cooled down to room temperature under argon. To this tube were added $[Pd(C_3H_5)Cl]_2$ (1.8 mg, 0.005 mmol, 2.5 mol %), (*R*,*R*,*S*,*S*)-L7 (5.9 mg, 0.0075 mmol, 3.75 mol %), K₂CO₃ (41.5 mg, 0.3 mmol, 1.5 equiv.) and toluene (1.0 mL). After the reaction was stirred at room temperature for 30 minutes, **1aa** (65.5 mg, 0.2 mmol) was added. Then the reaction was stirred at 120 °C. After 10 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (3mL). The mixture was filtered through celite, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (PE/EtOAc = 30/1) to afford the desired product **2a**.

Light yellow oil, 29.5 mg, 60% yield, 72% *ee* [Daicel Chiralpak AD-H, *n*-hexane/2-propanol =99/1, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 12.96 min, t (major) = 15.57 min]; $[\alpha]_D^{20} = +129.3$ (c = 0.4, CHCl₃).

Transformations of 2a.

A flame-dried Schlenk tube was cooled down to room temperature under argon. To this tube were added **2a** (98.4 mg, 0.40 mmol) and Et₂O (3.0 mL). Then the reaction mixture was cooled to 0 \C followed by adding LiAlH₄ (15.2 mg, 0.40 mmol). After completion (5 minutes), the reaction was quenched by adding H₂O (1.0 mL). The mixture was filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (PE/EtOAc = 30/1) to afford **4a major** (80.4 mg, 81% yield) and **4a minor** (11.6 mg, 12% yield).

Colorless oil, 80.4 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) 7.31-7.22 (m, 4H), 7.17-7.09 (m, 2H), 7.01 (td, J = 7.6, 1.6 Hz, 1H), 6.57 (d, J = 7.6 Hz, 1H), 6.48 (dd, J = 10.0, 2.8 Hz, 1H), 5.99 (dd, J = 10.0, 2.0 Hz, 1H), 4.99 (t, J = 2.4 Hz, 1H), 2.97-2.81 (m, 3H), 1.92-1.84 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 145.0, 142.2, 132.5, 131.4, 127.7, 127.58, 127.56, 126.83, 126.78, 126.6, 126.2, 124.8, 124.2, 74.5, 59.2, 31.7, 30.6; IR (thin film): v_{max} (cm⁻¹) = 3538, 3431, 3023, 2932, 2845, 1952, 1917, 1811, 1633, 1596, 1478, 1365, 1221, 1164, 1111, 1066, 1016, 956, 912, 871, 829, 751; HRMS (ESI) calcd for C₁₈H₁₅ [M - OH]⁺: 231.1168; Found: 231.1169.

Colorless oil, 11.6 mg, 12% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 7.2 Hz, 1H), 7.30 (td, J = 7.2, 1.2 Hz, 1H), 7.26-7.24 (m, 1H), 7.2-7.12 (m, 3H), 6.94 (d, J = 7.6 Hz, 1H), 6.68 (d, J = 9.6 Hz, 1H), 6.22 (dd, J = 9.6,

5.6 Hz, 1H), 4.07 (d, J = 5.6 Hz, 1H), 3.06-2.98 (m, 1H), 2.95-2.88 (m, 1H), 2.51-2.45(m, 1H), 1.96-1.89 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 143.9, 141.1, 131.8, 130.3, 128.4, 127.6, 127.4, 127.23, 127.19, 127.0, 126.8, 126.3, 124.9, 69.1, 57.7, 37.8, 30.2; IR (thin film): v_{max} (cm⁻¹) = 3552, 3431, 3024, 2931, 2853, 1950, 1918, 1810, 1727, 1632, 1594, 1479, 1400, 1272, 1215, 1159, 1038, 956, 917, 867, 751; HRMS (ESI) calcd for C₁₈H₁₅ [M - OH]⁺: 231.1168; Found: 231.1170.

A flame-dried Schlenk tube was cooled down to room temperature under argon. To this tube were added **2a** (49.2 mg, 0.20 mmol), EtOAc (2.0 mL) and Pd/C (20 mg). Then the reaction mixture was subjected to hydrogen (1 atm.). The mixture was stirred at room temperature for 3.5 h. After completion, the mixture was filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (PE/EtOAc = 30/1) to afford **5a** (40.9 mg, 83% yield).

Colorless oil, 40.9 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 7.2 Hz, 1H), 7.24-7.20 (m, 2H), 7.29-7.11 (m, 3H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 3.31-3.12 (m, 3H), 3.07-3.00 (m, 1H), 2.82 (dd, *J* = 8.4, 5.2 Hz, 2H), 2.78-2.71 (m, 1H), 2.31-2.24 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 211.7, 145.7, 145.0, 142.6, 136.0, 128.4, 127.7, 127.6, 127.0, 126.7, 126.5, 125.4, 124.5, 65.5, 41.0, 37.6, 31.4, 28.9; IR (thin film): v_{max} (cm⁻¹) = 3659, 3548, 3020, 2931, 2851, 1955, 1708, 1605, 1480, 1445, 1347, 1298, 1263, 1228, 1162, 1120, 1092, 1027, 748; HRMS (ESI) calcd for C₁₈H₂₀ NO [M +NH₄]⁺: 266.1539; Found: 266.1542.

X-Ray of 2c (CCDC 1534422)

Table 1. Crystal data and structure refinement for cd214584.

Identification code cd214584 Empirical formula C20 H18 O3 Formula weight 306.34 Temperature 293(2) K Wavelength 0.71073 Å Crystal system Monoclinic C 2/c Space group a = 27.179(3) Å Unit cell dimensions a= 90 °. b = 6.7881(7) Åb= 127.703(2) °. c = 20.759(2) Å $g = 90^{\circ}$. 3030.2(5) Å³ Volume Ζ 8 Density (calculated) 1.343 Mg/m³ 0.089 mm⁻¹ Absorption coefficient F(000) 1296 Crystal size 0.211 x 0.165 x 0.123 mm³ 1.998 to 25.991 °. Theta range for data collection -33<=h<=33, -4<=k<=8, -25<=l<=25 Index ranges Reflections collected 8734 Independent reflections 2978 [R(int) = 0.0307]Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7457 and 0.6484 Full-matrix least-squares on F² Refinement method 2978 / 0 / 210 Data / restraints / parameters Goodness-of-fit on F² 1.042 Final R indices [I>2sigma(I)] R1 = 0.0414, wR2 = 0.1083R indices (all data) R1 = 0.0482, wR2 = 0.1145Extinction coefficient n/a S26

Largest diff. peak and hole

0.192 and -0.221 e.Å-3

References

(1) Nina, B., Igor, O., Bogdan A, Š. Synlett 2013, 24, 49

-0.000

Racemic sample

Peak	Summary	with	Statistics			
Name:						

inallie.							
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height
1	xrq-13-35-rac	1:A,1	1	16.133	5357651	50.04	172896
2	xrq-13-35-rac	1:A,1	1	12.904	5350142	49.96	257584
Mean				14.518			
Std. Dev.				2.283			

Enantioenriched sample

Peak	Summary	with	Statistics
	Man	201	

Nallie.							
	Sample Name	Vial	Inj	Retention Time (min)	Area	% Area	Height
1	xrq-13-35-2	1:A,2	1	15.570	7637168	85.96	176295
2	xrq-13-35-2	1:A,2	1	12.956	1247475	14.04	60234
Mean				14.263			
Std. Dev.				1.848			

-115.519 -115.533 -115.542 -115.556 -115.565 -115.579

S87

S91

4a major

