Supporting Information for

Highly Efficient Synthesis of Chiral Aromatic Ketones via Rh-Catalyzed Asymmetric Hydrogenation of β , β -disubstituted enones

Tao Zhang,^{a,†} Jun Jiang,^{b,†} Lin Yao,^c Huiling Geng,^{a,*} Xumu Zhang^{d,*}

- ^a School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China. E-mail: genghuiling@nwsuaf.edu.cn
- ^b College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
- ^c School of Chemistry & Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- ^d Department of chemistry, South University of Science and Technology, Shenzhen, Guangzhou 518055, China. E-mail: zhangxm@sustc.edu.cn

Contents

1. General Information	S2
2. General procedure for the synthesis of substrates.	S2
2.1 Procedure for the synthesis of β -substituted α , β -unsaturated esters 1	S2
2.2 Procedure for the synthesis of intermediates 2	S3
2.3 Procedure for the synthesis of substrates 3	S3
3. NMR and ESI-MS Data of compounds 3	S3
4. General procedure for the asymmetric hydrogenation of 3	S7
5. NMR, optical rotation and ESI-MS Data of product 4	S7
6. Reference	S20
7. NMR spectra of compounds 3 and 4	S20

1. General Information.

All reactions dealing with air or moisture sensitive compounds were carried out in a dry reaction vessel under nitrogen protection or in the nitrogen-filled glove box. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers without further purification. THF was dried with sodium chips and indicated by benzophenone. Anhydrous solvents were purchased from Sigma-Aldrich and transferred by syringe. All products were puried by chromatography using silica gel from SORBTECH (40-63 μ m). Thin layer chromatography was carried out using silica gel plates from Merk (GF₂₅₄). [Rh(NBD)Cl]₂ and other metal precursors were purchased from Heraeus.

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance (400 MHz) spectrometer with CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.0 ppm) for ¹³C NMR. All data was presented as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ¹³C NMR analyses were run with decoupling. Enantiomeric excess values were determined with Agilent 1100 Series HPLC instrument. Optical rotations were measured using a 1 mL cell with a1 dm path length on a Jasco P-2000 polarimeter at 589 nm.

2. General procedure for the synthesis of substrates.

All substrates **3a-3q** were prepared through Horner-Wadsworth-Emmons reaction using aromatic ketones as starting material according to the reported procedure.¹

2.1 Procedure for the synthesis of β , β -disubstituted- α , β -unsaturated esters 1.

To a suspension of sodium hydride (60% dispersion in mineral oil, 40 mmol) in dry THF (100 mL), trimethyl phosphonoacetate (24 mmol) was added dropwise at 0 °C under argon atmosphere. After 30 min, appropriate ketones (20 mmol) was added dropwise to the reaction system at the same temperature. The reaction mixture was then warmed to reflux and vigorously stirred for 8 h. After the mixture was cooled to room temperature in an ice bath, saturated aqueous solution of ammonium chloride (20 mL) was added dropwise to quench the reaction. The aqueous phase was extracted with diethyl ether (2 × 50 mL) and the combined organic phase was washed with brine (50 mL), dried over sodium sulfate. After removing the solvent by rotary evaporation, the product mixture was achieved and purified as a colorless oil by column-chromatography using the mixture of hexane and ethyl acetate as the eluent (V_{hexane} : V_{EtOAc} = 95:5).

2.2 Procedure for the synthesis of intermediates 2.

To a solution of the (*E*)-ester **1** (15 mmol) and *N*,*O*-dimethylhydroxyamine hydrochloride (2.93 g, 30 mmol) in THF (30 mL), a THF solution of *i*-PrMgCl (32.5 mL, 2M in THF) was slowly added at -5 °C. The resulting mixture was then stirred for 30 min and treated with saturated aqueous solution of NH₄Cl (20 mL). The mixture solution was extracted with ethyl acetate (3 × 30 mL), washed with brine (30 mL) and dried over Na₂SO₄. After concentration of the combined organic phase, the residue was purified by silica-gel column chromatography (V_{hexane}:V_{EtOAc} = 10:1~2:1) to obtain the *N*-methoxy amide.

2.3 Procedure for the synthesis of substrates 3.

At the temperature of $-5\sim0$ °C, a THF solution (20 mL) of PhMgBr (15 mmol) was slowly added to the solution of *N*-methoxy amide (2.05 g, 10 mmol) in THF (20 mL) in 30min. The resulting solution was stirred at -5 °C for 30 min and treated with saturated aqueous solution of NH₄Cl (20 mL). The mixture was extracted with ethyl acetate (3 × 30 mL), washed with brine (30 mL) and dried over Na₂SO₄. After concentration of the organic phase, the residue was purified by silica-gel column chromatography (V_{hexane}: V_{EtOAc} = 50:1 as eluent) to afford (*E*)-enones.

3. NMR and ESI-MS Data of compounds 3.

(E)-1, 3-diphenylbut-2-en-1-one 3a

Light yellow oil; 51% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.05-7.95 (m, 2H), 7.65-7.55 (m, 3H), 7.55-7.40 (m, 5H) 7.18 (s, 1H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.85, 155.05, 142.83, 139.42, 132.54, 129.13, 128.63, 128.56, 128.30, 126.51, 122.15, 18.90; ESI–MS: calculated for C₁₆H₁₅O⁺ ([M+H]⁺) 223.11, found 223.33.

(*E*)-3-(4-fluorophenyl)-1-phenylbut-2-en-1-one **3b**

Light yellow oil; 55 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.15-7.95 (m, 2H), 7.75-7.45 (m, 6H), 7.15-7.08 (m, 2H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.65, 164.57, 162.09, 153.67, 139.32, 138.76 (d, J = 3.3 Hz), 132.60, 128.43 (d, J = 31.6 Hz), 128.33 (d, J = 8.3 Hz), 121.99 (d, J = 1.0 Hz), 115.56 (d, J = 21.6 Hz), 18.86; ESI–MS: calculated for C₁₆H₁₄FO⁺ ([M+H]⁺) 241.10, found 241.22.

(*E*)-3-(4-chlorophenyl)-1-phenylbut-2-en-1-one **3c**

Light yellow oil; 40 % yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.83(m, 2H), 7.50-7.32 (m, 5H), 7.28-7.22 (m, 2H), 7.02 (s, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.64, 153.35,

141.10, 139.21, 135.11, 132.67, 128.81, 128.61, 128.29, 127.81, 122.39, 18.71; ESI–MS: calculated for $C_{16}H_{14}ClO^+$ ([M+H]⁺) 257.07 and 259.07, found 257.09 and 259.06. (*E*)-3-(2-chlorophenyl)-1-phenylbut-2-en-1-one **3d**

Light yellow oil; 45 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.60-7.45 (m, 6H), 7.32-7.29 (m, 1H), 6.89 (s, 1H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.71, 154.17, 143.08, 138.86, 132.74, 131.46, 129.99, 129.08, 128.59, 128.42, 128.34, 126.88, 125.36, 20.91; ESI–MS: calculated for C₁₆H₁₄ClO⁺ ([M+H]⁺) 257.07 and 259.07, found 257.22 and 259.15. (*E*)-3-(3-chlorophenyl)-1-phenylbut-2-en-1-one **3e**

Light yellow oil; 55 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.56-7.42 (m, 5H), 7.37-7.34 (m, 2H), 7.13 (s, 1H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.70, 153.06, 144.62, 139.07, 134.64, 132.75, 129.88, 129.01, 128.62, 128.32, 126.64, 124.65, 123.00, 18.76. ESI–MS: calculated for C₁₆H₁₄ClO⁺ ([M+H]⁺) 257.07 and 259.07, found 257.11 and 259.07. (*E*)-3-(4-bromophenyl)-1-phenylbut-2-en-1-one **3f**

Light yellow oil; 35 % yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.85 (m, 2H), 7.48-7.42 (m, 3H), 7.40-7.30 (m, 4H), 7.03 (s, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.67, 153.38, 141.60, 139.19, 132.68, 131.78, 128.61, 128.29, 128.08, 123.35, 122.45, 18.68; ESI–MS: calculated for C₁₆H₁₄BrO⁺ ([M+H]⁺) 301.02 and 303.02, found 301.16 and 303.12. (*E*)-1-phenyl-3-(4-(trifluoromethyl)phenyl)but-2-en-1-one **3g**

Light yellow oil; 51 % yield; 1H NMR (400 MHz, CDCl3) δ 7.95-7.78 (m, 2H), 7.60-7.50 (m, 3H) 7.48-7.25 (m, 4H), 7.05 (s, 1H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 191.65, 152.85, 146.33, 138.94, 132.84, 130.87 (q, J = 32.7 Hz), 128.65, 128.65, 128.33, 126.83, 125.58 (q, J = 3.7 Hz), 123.74, 18.76; ESI–MS: calculated for C17H14F3O+ ([M+H]+) 291.10, found 291.08.

(*E*)-1-phenyl-3-(*p*-tolyl)but-2-en-1-one **3h**

Light yellow oil; 54 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.05-7.95 (m, 2H), 7.60-7.44 (m, 5H), 7.27-7.20 (m, 2H), 7.16 (s, 1H), 2.59 (s, 3H), 2.39 (s, 3H). ¹³C NMR(100 MHz, CDCl₃) δ 191.85, 155.12, 139.85, 139.58, 139.36, 132.42, 129.32, 128.52, 128.25, 126.43, 121.32, 21.23, 18.78; ESI–MS: calculated for C₁₇H₁₇O⁺ ([M+H]⁺) 237.13, found 237.17. (*E*)-1-phenyl-3-(*m*-tolyl)but-2-en-1-one **3**i

Light yellow oil; 43 % yield; ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.88 (m, 2H), 7.44-7.33 (m, 4H), 7.26-7.17 (m, 3H), 7.05 (s, 1H), 2.48 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.85, 155.36, 142.88, 139.51, 138.25, 132.50, 129.93, 128.56, 128.30, 127.21, 123.68, 121.96, 21.53, 18.97; ESI–MS: calculated for C₁₇H₁₇O⁺ ([M+H]⁺) 237.13, found 237.29. (*E*)-3-(4-methoxyphenyl)-1-phenylbut-2-en-1-one **3**j

Light yellow oil; 41 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.57-7.54 (m, 2H), 7.48-7.45 (m, 2H), 7.16 (s, 1H), 6.95-6.93 (m, 2H), 3.85 (s, 3H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.76, 160.66, 154.79, 139.75, 134.92, 132.34, 128.50, 128.21, 127.92, 120.39, 114.00, 55.39, 18.65; ESI–MS: calculated for C₁₇H₁₇O₂⁺ ([M+H]⁺) 253.12, found 253.19. (*E*)-1-phenyl-3-(thiophen-2-yl)but-2-en-1-one **3**k

Light yellow oil; 47 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.57-7.44 (m, 4H), 7.39-7.34 (m, 2H), 7.12-7.10 (m, 1H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.24, 147.66, 146.30, 139.60, 132.46, 128.55, 128.20, 128.14, 127.30, 119.05, 18.29; ESI–MS: calculated for C₁₄H₁₃OS⁺ ([M+H]⁺) 229.06, found 229.27.

(E)-3-(naphthalen-2-yl)-1-phenylbut-2-en-1-one 31

Light yellow oil; 57 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.91-7.85 (m, 3H), 7.72-7.69 (m, 1H), 7.55-7.50 (m, 5H), 7.25 (s, 1H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.89, 154.78, 139.93, 139.48, 133.60, 133.23, 132.56, 128.58, 128.55, 128.32, 128.29, 127.64, 126.79, 126.59, 126.17, 124.09, 122.53, 18.88; ESI–MS: calculated for C₂₀H₁₇O⁺ ([M+H]⁺) 273.12, found 273.32.

(*E*)-3-(naphthalen-1-yl)-1-phenylbut-2-en-1-one **3m**

Light yellow oil; 50 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.98 (m, 3H), 7.84-7.82 (m, 2H), 7.53-7.44 (m, 6H), 7.38-7.37 (m, 1H), 7.05 (s, 1H), 2.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.41, 156.75, 142.65, 139.11, 133.83, 132.65, 130.28, 128.60, 128.56, 128.35, 128.25, 126.42, 126.07, 125.42, 125.31, 125.11, 124.35, 22.48; ESI–MS: calculated for C₂₀H₁₇O⁺ ([M+H]⁺) 273.12, found 273.24.

(*E*)-1, 3-diphenylpent-2-en-1-one **3n**

Light yellow oil; 51 % yield; ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.54-7.52 (m, 3H), 7.47-7.39 (m, 5H), 7.04 (s, 1H), 3.10-3.05 (q, J = 1.2 Hz, 2H), 1.15-1.11 (t, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.23, 144.69, 137.33, 132.88, 128.52, 128.40, 128.06, 127.65, 126.26, 45.62, 43.05, 29.22, 12.07; ESI–MS: calculated for C₁₇H₁₇O⁺ ([M+H]⁺) 237.12, found 237.23.

(*E*)-1,3-diphenylhex-2-en-1-one **30**

Light yellow oil; 43 % yield; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.54-7.51 (m, 3H), 7.49-7.39 (m, 5H), 7.05 (s, 1H), 3.06-3.02 (t, *J* = 1.3 Hz, 2H), 1.54-1.49 (m, *J* = 1.3 Hz, 2H), 0.97-0.93 (t, *J* = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.58, 159.96, 142.03, 139.40, 132.50, 128.90, 128.61, 128.52, 128.31, 126.83, 122.66, 33.60, 22.40, 14.15; ESI–MS: calculated for C₁₈H₁₉O⁺ ([M+H]⁺) 251.14, found 251.35.

(*E*)-3-methyl-1, 5-diphenylpent-2-en-1-one **3p**

Light yellow oil; 45 % yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.54-7.43 (m, 3H), 7.28-7.15 (m, 4H), 6.76 (s, 1H), 2.95-2.83 (ddtt, *J* = 1.3 Hz, 4H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.82, 157.95, 141.04, 139.19, 132.30, 128.53, 128.43, 128.39, 128.22, 126.13, 121.62, 42.99, 33.98, 19.71; ESI–MS: calculated for C₁₈H₁₉O⁺ ([M+H]⁺) 251.14, found 251.44. (*E*)-4-phenylpent-3-en-2-one **3q**

Light yellow oil; 55 % yield; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.38-7.37 (m, 3H), 6.51(s, 1H), 2.54 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.86, 153.86, 142.56, 129.08, 128.55, 126.48, 124.56, 32.21, 18.35. ESI–MS: calculated for C₁₁H₁₃O⁺ ([M+H]⁺) 161.09, found 161.44.

4. General procedure for the asymmetric hydrogenation of 3.

In a nitrogen-filled glovebox, appropriate [Rh(NBD)Cl]₂ (4.6 mg, 0.01 mmol) and ligand (2.1 eq.) was dissolved in 4.0 ml anhydrous solvent and stirred at room temperature for 30 min. A specified volume of the resulting solution (0.4 ml, 1% Rh catalyst) was transferred by syringe to a Score-Break ampule charged with substrate **3** solution (0.2 mmol in 1.2 ml). The ampule was placed into an autoclave, which was then charged with 60 atm of H₂. The autoclave was stirred at desired temperature for the indicated period of time. After release of hydrogen gas, the resulting mixture passed through a silica plug to remove metal complex and was concentrated under reduced pressure. The crude product was analyzed by ¹H NMR to determine the conversion. The enantiomeric excess was directly determined by HPLC analysis. The absolute configurations were assigned according to the literature and their analogues.

5. NMR, optical rotation and ESI-MS Data of product 4.

(S)-1,3-diphenylbutan-1-one 4a

Light yellow oil; yield: 99%; 94% *ee.* $[\alpha]_D^{22} = +4.6^{\circ}$ (c = 1.0, CHCl₃) (lit. +0.57°, c = 1.0, CHCl₃)¹. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 16.3 min (minor), t_R = 19.8 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.91 (m, 2H), 7.56-7.42 (m, 3H), 7.32-7.17 (m, 5H), 3.53-3.46 (m, 1H), 3.33-3.15 (m, 2H), 1.34 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.07, 146.59, 137.29, 132.92, 128.55, 128.53, 128.07, 126.85, 126.27, 47.05, 35.62, 21.85; ESI–MS: calculated for C₁₆H₁₇O⁺ ([M+H]⁺) 225.12, found 225.83.

Signal 1: VWD1 A, Wavelength=230 nm

Peak	RetTime	Type	Width	A	ea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	de
1	16.376	MM	0.3233	1473.	74536	75.	98515	2.9602
2	19.832	MM	0.4504	4.831	15e4	1787.	53967	97.0398
Total	ls :			4.978	352e4	1863.	52482	

(+)-3-(4-fluorophenyl)-1-phenylbutan-1-one 4b

Light yellow oil; yield: 99%; 96% *ee*. $[\alpha]_D^{22} = +4.7 \circ (c = 1.0, CHCl_3)$. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane:isopropanol = 99.5:0.5; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 20.3 min (minor), 28.1 min (major). ¹H NMR (400 MHz, CDCl_3) δ 7.92-7.90 (m, 2H), 7.54-7.42 (m, 3H), 7.24-7.20 (m, 2H), 6.99-6.95 (m, 2H), 3.53-3.48 (m, 1H), 3.29-3.13 (m, 2H), 1.32 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 198.85, 162.59, 160.16, 142.16 (d, *J* = 3.2 Hz), 137.20, 133.01, 128.30 (d, *J* = 55.2 Hz), 128.24 (d, *J*= 7.8 Hz), 115.22 (d, *J*= 21.1 Hz), 47.09, 34.92, 22.09; ESI–MS: calculated for C₁₆H₁₆FO⁺ ([M+H]⁺) 243.11, found 243.14.

(+)-3-(4-chlorophenyl)-1-phenylbutan-1-one 4c

Light yellow oil; yield: 99%; 95% *ee*. $[\alpha]_D^{22} = +2.8 \circ (c = 1.0, CHCl_3)$ (lit. +1.76°, c = 1.3, CHCl_3)². The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 18.9 min (minor), 25.8 min (major). ¹H NMR (400 MHz, CDCl_3) δ 7.92-7.90 (m, 2H), 7.55-7.42 (m, 3H), 7.27-7.19 (m, 4H), 3.52-3.45 (m, 1H), 3.29-3.14 (m, 2H), 1.32 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 198.66, 145.00, 137.14, 133.05, 131.90, 128.61, 128.60, 128.26, 128.02, 46.83, 34.99, 21.93; ESI–MS: calculated for C₁₆H₁₆ClO⁺ ([M+H]⁺) 259.08 and 261.08, found 259.20 and 261.20.

(+)-3-(2-chlorophenyl)-1-phenylbutan-1-one 4d

0.5511 8.12089e4 2255.32153

8.33734e4 2336.38454

97.4038

2

Totals :

25.794 BB

Light yellow oil; Yield: 89%, 93% *ee*; $[\alpha]_D^{22} =+9.9 \circ (c = 1.0, CHCl_3)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane:isopropanol = 99.5:0.5; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 20.4 min (minor), 22.8 min (major); ¹H NMR (400 MHz, CDCl_3) δ 8.00-7.95 (m, 2H), 7.57-7.23 (m, 6H), 7.16-7.12 (m, 1H), 4.02-3.97 (m, 1H), 3.39-3.10 (m, 2H), 1.33 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 198.59, 143.56, 137.06, 133.52, 133.02, 129.80, 128.58, 128.12, 127.38, 127.32, 127.06, 45.62, 31.88, 20.15; ESI–MS: calculated for C₁₆H₁₆ClO⁺ ([M+H]⁺) 259.08 and 261.08, found 259.89 and 261.74.

(+)-3-(3-chlorophenyl)-1-phenylbutan-1-one 4e

Light yellow oil; Yield: 99%, 95 %*ee*; $[\alpha]_D^{22} = +4.7 \circ (c = 1.0, CHCl_3)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 15.4 min (minor), 17.4 min (major); ¹H NMR (400 MHz, CDCl_3) δ 7.86-7.84 (m, 2H), 7.47-7.35 (m, 3H), 7.18-7.07 (m, 4H), 3.45-3.38 (m, 1H), 3.23-3.07 (m, 2H), 1.25 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 198.52, 148.68, 137.12, 134.30, 133.08, 129.78, 128.61, 128.04, 127.05, 126.46, 125.24, 46.69, 35.28, 21.80; ESI-MS: calculated for C₁₆H₁₆ClO⁺ ([M+H]⁺) 259.08 and 261.08, found 258.86 and 260.90.

Signal 1: VWD1 A, Wavelength=230 nm

Peak	k RetTime Type W		Width	Width Area			ght	Area	
+	[min]		[min]	mAU	*s	[mAU	1	*	
1	15.431	VB	0.3130	1058.	00366	51.	06998	2.3100	
2	17.446	BV	0.3638	4.474	30e4	1858.	80078	97.6900	
Tota	ls :			4.580	10e4	1909.	87076		

(+)-3-(4-bromophenyl)-1-phenylbutan-1-one 4f

Light yellow oil; Yield: 94%, 92% *ee*; $[\alpha]_D^{22} = +4.8 \circ (c = 1.0, CHCl_3)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95.5:0.5; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 24.7 min (minor), 34.0 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.55-7.40 (m, 5H), 7.16-7.13 (m, 2H), 3.51-3.46 (m, 1H), 3.29-3.14 (m, 2H), 1.32 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.63, 145.56, 137.15, 133.08, 131.60, 128.70, 128.62, 128.04, 119.95, 46.78, 35.07, 21.91; ESI–MS: calculated for C₁₆H₁₆BrO⁺ ([M+H]⁺) 303.03 and 305.03, found 303.11 and 305.10.

(+)-1-phenyl-3-(4-(trifluoromethyl)phenyl)butan-1-one 4g

Light yellow oil; yield: 97%; 96% *ee*. $[\alpha]_D^{22} = +8.3 \circ (c = 1.0, CHCl_3)$. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 15.2 min (minor), 20.6 min (major). ¹H NMR (400

MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.57-7.54 (m, 2H), 7.46-7.37 (m, 5H), 3.62-3.56 (m, 1H), 3.34-3.15 (m, 2H), 1.36 (d, J = 7.0 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 198.41, 150.63, 137.08, 133.17, 128.66, 128.66,128.66 (q, J = 33.0 Hz), 128.04, 127.30, 125.51 (q, J = 3.8 Hz), 46.58, 35.38, 21.86; ESI–MS: calculated for C₁₇H₁₆F₃O⁺ ([M+H]⁺) 293.11, found 293.16.

 # [min]
 [min]
 mAU
 *s
 [mAU]
 %

 1
 15.295 VB
 0.3179
 1254.73682
 59.37255
 2.2439

 2
 20.611 BB
 0.4241
 5.46622e4
 1988.33435
 97.7561

 Totals :
 5.59170e4
 2047.70690
 5.59170e4
 10.477.0690

(+)-1-phenyl-3-(*p*-tolyl)butan-1-one **4h**

Light yellow oil; yield: 98%; 91% *ee*. $[\alpha]_D^{22} = +3.3 \circ (c = 1.0, CHCl_3)$. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane:isopropanol = 99.5:0.5; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 17.9 min (minor), 23.4 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.91 (m, 2H), 7.56-7.42 (m, 3H), 7.18-7.10 (m, 4H), 3.49-3.44 (m, 1H), 3.30-3.13 (m, 2H), 2.31 (s, 3H), 1.32 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.18, 143.60, 137.29, 135.75, 132.92, 129.21, 128.55, 128.09, 126.71, 47.16, 35.22, 21.96, 20.97; ESI–MS: calculated for C₁₇H₁₉O⁺ ([M+H]⁺) 239.14, found 239.36.

					1	-
1	17.967	MM	0.7139	1969.14478	45.97083	3.6255
2	23.430	MM	0.6077	5.23442e4	1435.65588	96.3745
Total	s:			5.43134e4	1481.62671	

(-)-1-phenyl-3-(m-tolyl)butan-1-one 4i

Light yellow oil; yield: 95%; 94% *ee*. $[\alpha]_D^{22} = -1.4 \circ (c = 0.5, CHCl_3)$. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane:isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 13.7 min (minor), 15.3 min (major). ¹H NMR (400 MHz, CDCl_3) δ 7.94-7.92 (m, 2H), 7.54-7.42 (m, 3H), 7.21-7.00 (m, 4H), 3.49-3.44 (m, 1H), 3.31-3.14 (m, 2H), 2.33(s, 3H), 1.32 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 199.14, 146.59, 138.05, 137.33, 132.90, 128.54, 128.42, 128.08, 127.68, 127.02, 123.80, 47.08, 35.55, 21.85, 21.46; ESI–MS: calculated for C₁₇H₁₉O⁺ ([M+H]⁺) 239.14, found 239.22.

Totals : 2.54154e4 1247.64524

(S)-3-(4-methoxyphenyl)-1-phenylbutan-1-one 4j

Light yellow oil; yield: 64%; 88% *ee*. $[\alpha]_D^{22} = +3.6^{\circ}$ (c = 1.0, CHCl₃). (lit. +21.64°, c = 5.09, CCl₄)⁴. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 27.0 min (minor), 39.1 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.91 (m, 2H), 7.54-7.42 (m, 3H), 7.20-7.18 (m, 2H), 6.85-6.83 (m, 2H), 3.78 (s, 3H), 3.49-3.43 (m, 1H), 3.39-3.12 (m, 2H), 1.31 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.24, 158.02, 138.70, 137.29, 132.93, 128.56, 128.09, 127.75, 113.92, 55.26, 47.31, 34.86, 22.08; ESI–MS: calculated for C₁₇H₁₉O₂⁺ ([M+H]⁺) 255.13, found 255.08.

(+)-1-phenyl-3-(thiophen-2-yl)butan-1-one 4k

5.30173e4

880.00357

Totals :

Light yellow oil; yield: 97%; 86% *ee*. $[\alpha]_D^{22} = +5.2 \circ (c = 1.0, CHCl_3)$. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane:isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 17.2 min (minor), 20.2 min (major). ¹H NMR (400 MHz, CDCl_3) δ 7.95-7.93 (m, 2H), 7.57-7.43 (m, 3H), 7.13-7.11 (m, 1H), 6.92-6.86 (m, 2H), 3.87-3.82 (m, 1H), 3.40-3.17 (m, 2H), 1.42 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 198.47, 150.65, 137.16, 133.06, 128.60, 128.07, 126.61, 122.89, 122.78, 47.90, 31.06, 22.78; ESI–MS: calculated for C₁₄H₁₅OS⁺ ([M+H]⁺) 231.08, found 230.98.

(-)-3-(naphthalen-2-yl)-1-phenylbutan-1-one 4l

Light yellow oil; yield: 80 %; 90 % *ee*. $[\alpha]_D^{22} = -3.9$ ° (c = 0.5, CHCl₃) (lit. -4.54°, c = 0.44, CHCl₃)². The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 97:3; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 15.2 min (minor), 17.8 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.80-7.69 (m, 4H), 7.54-7.41 (m, 6H), 3.71-3.66 (m, 1H), 3.42-3.24 (m, 2H), 1.42 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.00, 144.06, 137.29, 133.66, 132.98, 132.32, 128.63, 128.20, 128.10, 127.65, 127.60, 125.98, 125.72, 125.34, 124.97, 46.98, 35.71, 21.89; ESI–MS: calculated for C₂₀H₁₉O⁺ ([M+H]⁺) 275.14, found 275.11.

(+)-3-(naphthalen-1-yl)-1-phenylbutan-1-one 4m

Light yellow oil; yield: 44 %; 81 % *ee*. $[\alpha]_D^{22} = +10.3 \circ (c = 1.0, CHCl_3)$. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 98: 2; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 13.6 min (minor), 17.2 min (major). ¹H NMR (400 MHz, CDCl_3) δ 8.20-8.17 (m, 1H), 7.97-7.85 (m, 3H), 7.74-7.72 (m, 1H), 7.57-7.42 (m, 7H), 4.44-4.39 (m, 1H), 3.43-3.30 (m, 2H), 1.48 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl_3) δ 199.09, 142.67, 137.29, 134.05, 133.05, 131.17, 128.99, 128.60, 128.09, 126.83, 126.10, 125.52, 123.18, 122.55, 46.75, 29.66, 21.08; ESI–MS: calculated for C₂₀H₁₉O⁺ ([M+H]⁺) 275.14, found 275.21.

Signal 1: VWD1 A, Wavelength=230 nm

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU	1	8	
1	13.682	MM	0.2960	9245.	47559	520.	58569	9.4049	
2	17.245	MM	0.4502	8.905	91e4	3297.	12402	90.5951	
Tota	ls :			9.830	46e4	3817.	70972		

(S)-1,3-diphenylpentan-1-one 4n

Light yellow oil; yield: 99%; 94% *ee*. $[\alpha]_D^{22} = +4.4 \circ (c = 1.0, CHCl_3)$ (lit. +2.49°, c = 1.1, CHCl₃)¹. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99.5:0.5; flow rate = 0.5 mL/min; UV detection at 230 nm; $t_R = 19.9$ min (minor), 26.3 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.88 (m, 2H), 7.53-7.40 (m, 3H), 7.30-7.16 (m, 5H), 3.28-3.22 (m, 3H), 1.82-1.61 (m, 2H), 0.80 (t, J = 7.3 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 199.23, 144.69, 137.33, 132.88, 128.52, 128.40, 128.06, 127.65, 126.26, 45.62, 43.05, 29.22, 12.07; ESI–MS: calculated for C₁₇H₁₉O⁺ ([M+H]⁺) 239.14, found 239.40.

Light yellow oil; yield: 99%; 89% *ee*. $[\alpha]_D^{22} = +5.6 \circ (c = 1.0, CHCl_3)$. (lit. +4.7°, c = 1.0, EtOH) ³. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane:

isopropanol = 99.5:0.5; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 22.3 min (minor), 30.8 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 2H), 7.54-7.51 (m, 1H), 7.44-7.40 (m, 2H), 7.29-7.15 (m, 5H), 3.38-3.19 (m, 3H), 1.73-1.58 (m, 2H), 1.23-1.16 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.21, 144.99, 137.33, 132.88, 128.52, 128.41, 128.05, 127.58, 126.24, 45.97, 41.10, 38.59, 20.63, 13.99; ESI–MS: calculated for C₁₈H₂₁O⁺ ([M+H]⁺) 253.15, found 253.15.

Peak	RetTime	Type	e Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	8
							1	
1	22.361	BB	1.0319	1988.	24121	29.	13862	5.6922
2	30.823	BB	0.7880	3.294	08e4	654.	59064	94.3078
Tota	ls :			3.492	90e4	683.	72926	

(+)-3-methyl-1, 5-diphenylpentan-1-one 4p

Light yellow oil; yield: 99%; 63% *ee*. $[\alpha]_D^{22} = +1.6$ ° (c = 0.5, CHCl₃) (lit. +7.1°, c = 1.1, CHCl₃) ¹. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 230 nm; t_R = 13.9 min (minor), 14.5 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.91 (m, 2H), 7.54-7.42 (m, 3H), 7.28-7.16 (m, 5H), 3.02-2.62 (m, 4H), 2.29-2.22 (m, 1H), 1.78-1.55 (m, 2H), 1.03 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.13, 142.43, 137.48, 132.85, 128.55, 128.34, 128.32, 128.09, 125.72, 45.87, 38.88, 33.45, 29.63, 19.96; ESI–MS: calculated for C₁₈H₂₁O⁺ ([M+H]⁺) 253.15, found 253.25.

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	8
1	13.956	BV	0.2512	318	.27734	19.	38582	18.6066
2	14.553	VB	0.2642	1392	.28345	80.	57129	81.3934
Tota	le ·			1710	56079	99	95711	

(*R*)-4-phenylpentan-2-one 4q

Light yellow oil; yield: 96%; 87% *ee*. $[\alpha]_D^{22} = -5.8 \circ (c = 0.5, CHCl_3)$ (lit. -40.0°, c = 2.13, CHCl_3)². The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 99:1; flow rate = 0.5 mL/min; UV detection at 210 nm; $t_R = 19.1$ min (minor), 23.0min (major). ¹H NMR (400 MHz, CDCl_3) δ 7.31-7.17 (m, 5H), 3.33-3.26 (m, 1H), 2.79-2.63 (m, 2H), 2.06 (s, 3H), 1.27 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 207.78, 146.18, 128.54, 126.76, 126.31, 52.02, 35.48, 30.54, 21.99; ESI–MS: calculated for C₁₁H₁₅O⁺ ([M+H]⁺) 163.11, found163.24.

reak	Necrime	TAbe	ninden	Area		mergine		Area
#	[min]		[min]	mAU	*s	[mAU	1	8
1	19.121	MM	0.3535	1309	58838	61.	74215	6.6374
2	23.073	MM	0.4578	1.842	209e4	670.0	63953	93.3626
Tota	ls :			1.97	305e4	732.	38168	

6. Reference

(1) S. M. Lu, C. A. Bolm, Chem. Eur. J., 2008, 14, 7513-7516.

- (2) K. Endo, D. Hamada, S. Yakeishi, T. Shibata, Angew. Chem. Int. Ed., 2013, 52, 606-610.
- (3) T. Yasukawa, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc., 2012, 134, 16963-16966.
- (4) W. D. Ollis, M. Rey, I. O. Sutherland. J. Chem. Soc., Perkin Trans. 1, 1983, 5, 1009-1027.

7. NMR spectrum of compounds 3 and 4.

S27

S44

