Supporting Information

Expeditious Synthesis of Pyrano[2,3,4-de]quinolines via Rh(III)Catalyzed Cascade C-H Activation/Annulation/Lactonization of Quinolin-4-ol with Alkynes

Gang Liao, ${ }^{\text {a }}$ Hong Song, ${ }^{a}$ Xue-Song Yin, ${ }^{\text {a,b }}$ and Bing-Feng Shi* ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, China.${ }^{\mathrm{b}}$ School of Chemical \& Environmental Engineering, Wuyi University, Jiangmen, 529020, China*To whom correspondence should be addressed. Email: bfshi@zju.edu.cn
Table of Contents:

1. General information S2
2. Experimental Section S2
2.1 General Procedure for the Preparation of tertiary propargylic alcohols(GP1) S2
2.2 General Procedure for the Rh (III)-Catalyzed reaction (GP2) S4
3. References S21
4. NMR Spectra S22

1. General Information:

1,2-dimethoxyethane was dried by Sodium and stored under nitrogen. All 4-Hydroxyauinoline substrate were purchased from commercial suppliers and used without additional purification. NMR spectra were recorded on a Bruke Avance operating for ${ }^{1} \mathrm{H}$ NMR at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 100 MHz , and ${ }^{19} \mathrm{~F}$ NMR at 376 MHz , using TMS as internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal (77.16 ppm for ${ }^{13} \mathrm{C}$ NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or a low-resolution MS instrument using EI ionization.

2. Experimental Section

2.1 General Procedure for the Preparation of tertiary propargylic alcohols (GP1)

A solution of n-butyllithium in hexanes $(1.6 \mathrm{M}, 33.0 \mathrm{mmol})$ was added dropwise to a solution of freshly distilled diisopropylamine (33.0 mmol) in dried THF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, then cooled to $-78^{\circ} \mathrm{C}$. Propargyl ester (31.3 mmol) in dried THF (10 mL) was then added dropwise to the reaction mixture. After 1 h at the same temperature, ketone (62.6 mmol) was added, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted four times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried with anhydrous MgSO_{4}, and the solvents evaporated to dryness. The oily residue was purified by flash silica gel column chromatography (hexanes/EtOAc) to get propargylic alcohol.

2c

$2 g$
2h

2k
$\mathrm{p}-\mathrm{tBuC} 6_{6} \mathrm{H}_{4}=\mathrm{p}-\mathrm{tBuC} \mathrm{C}_{6} \mathrm{H}_{4}$

$$
\mathrm{p}-\mathrm{OMeC}_{6} \mathrm{H}_{4}=\mathrm{p}-\mathrm{OMeC}_{6} \mathrm{H}_{4}
$$

$\mathrm{m}-\mathrm{FC}_{6} \mathrm{H}_{4}=\mathrm{m}-\mathrm{FC}_{6} \mathrm{H}_{4}$
2r
$\mathrm{p}-\mathrm{BrC}_{6} \mathrm{H}_{4}=\mathrm{p}-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$
2u

2x

$$
\mathrm{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \stackrel{\text { 2p }}{=} \mathrm{p}-\mathrm{FC}_{6} \mathrm{H}_{4}
$$

2s

2v

$2 f$

2j

$2 n$

2q
$\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}$
2t

2w

$2 z$
 was knows compound and were prepared accounding to literature. ${ }^{[1]} \mathbf{2 a c}, \mathbf{2 b}, \mathbf{2 e}, \mathbf{2 f}, \mathbf{2 g}$ were prepared accounding to the GP1.

Tert-butyl 4-hydroxy-4-methylpent-2-ynoate (2ac)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,88.7$, 83.7, 75.6, 65.1, 30.7, 28.1; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 184.1099 ; found 184.1100 .
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 1 \mathrm{H}), 1.04(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.1,90.9,75.0,68.7,52.9,36.0,28.5,8.8$. HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 156.0786; found 156.0783.

Ethyl 4-hydroxy-4-methylhept-2-ynoate (2e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.47$ $(\mathrm{m}, 5 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,90.7$, 75.2, 68.1, 62.2, 45.2, 29.0, 17.9, 14.2, 14.1. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 184.1099; found 184.1096.

Methyl 4-hydroxy-4,5,5-trimethylhex-2-ynoate (2f)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.1,91.2,75.9,74.1,52.8,38.4,25.1,24.3$. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 184.1099 ; found 184.1101.

Methyl 4-hydroxy-4,6-dimethylhept-2-ynoate (2g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, 2 H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{dd}, J=6.6,4.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.1,91.4,75.2$, 68.0, 52.9, 51.1, 30.2, 25.1, 24.2, 24.1. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 184.1099 ; found 184.1097 .

2.2 General Procedure for the $\mathbf{R h}$ (III)-Catalyzed reaction (GP2)

A mixture of quinolin-4-ol $1(0.2 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}\left(0.005 \mathrm{mmol}, 0.0025\right.$ equiv), $\mathrm{AgSbF}_{6}(0.02$ mmol, 0.1 equiv), alkyne 2 ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Cu}(\mathrm{OAc})_{2}(0.4 \mathrm{mmol}, 2.0$ equiv), LiOTf (0.4 $\mathrm{mmol}, 2.0$ equiv) in 2 mL DME in a $50-\mathrm{mL}$ Schlenck tube (Purged with N_{2}) was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h . Then a 1 mL ammonium hydroxide was added and then the whole solution was stirred for 5 min . The resulting mixture was filtered with celite. The organic layer was concentrated under reduced pressure and separated on a silica gel column to provide the desired product.

8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3a)

The title compound 3a was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid ($32.9 \mathrm{mg} 65 \%$ yield) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,166.5,158.8,152.4,150.3,131.8,127.0,122.0,118.0,116.1,105.3,104.2$, 81.1, 24.4; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right): 253.0739$; found 253.0737.

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0027 \mathrm{~A}$	Wavelength=0.71073
Cell:	$\mathrm{a}=7.2462(9)$	$\mathrm{b}=8.215(1)$
	$\alpha=90$	$\beta=93.583(10)$
Temperature:	293 K	$\gamma=20.228(3)$
	Calculated	
Volume	$1201.8(3)$	Reported
Space group	$\mathrm{P} 21 / \mathrm{c}$	$1201.7(3)$
Hall group	-P 2 ybc	$\mathrm{P} 21 / \mathrm{c}$
Moiety formula	$\mathrm{C} 15 \mathrm{H} 11 \mathrm{~N} \mathrm{O3}$	-P 2 ybc
Sum formula	$\mathrm{C} 15 \mathrm{H} 11 \mathrm{~N} \mathrm{O3}$	$\mathrm{C} 15 \mathrm{H} 11 \mathrm{~N} \mathrm{O3}$
Mr	253.25	$\mathrm{C} 15 \mathrm{H} 11 \mathrm{~N} \mathrm{O3}$
Dx, $\mathrm{g} \mathrm{cm}^{-3}$	1.400	253.25
Z	4	1.400
		4

Mu $\left(\mathrm{mm}^{-1}\right)$	0.099	0.099
F000	528.0	528.0
F000'	528.27	
h,k,lmax	$8,9,24$	$8,9,24$
Nref	2194	2190
Tmin,Tmax	$0.978,0.984$	$0.968,0.984$
Tmin'	0.968	

Correction method= MULTI-SCAN
Data completeness $=0.998 \quad$ Theta $($ max $)=25.350$
$R($ reflections $)=0.0423$ (1421) $\quad w R 2$ (reflections) $=0.1198(2190)$
$\mathrm{S}=1.031$
Npar $=$ Npar $=175$

8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3aa)

The title compound 3aa was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (27.0 mg 51% yield) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=8.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}$, $1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,166.7,161.7,159.0,149.8$, $131.9,126.4,121.9,116.3,115.5,105.5,104.1,81.1,25.7,24.4$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}$ $\left(\mathrm{M}^{+}\right): 267.0895$; found 267.0895.

1,2-dimethoxy-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3ab)

The title compound 3ab was prepared according to GP2 and was purified by chromatography (EtOAc) to give the product as a faint yellow solid($38.8 \mathrm{mg}, 76 \%$ yield) . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,164.5,158.2,157.8,151.5,149.3,142.5,113.9,113.2$, 107.0, 103.6, 103.3, 79.6, 62.6, 56.1, 24.6. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right): 313.0950$; found 313.0942 .

3-fluoro-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-on (3ac)

The title compound 3ac was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid ($29.8 \mathrm{mg}, 62 \%$ yield) . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (dd, $J=8.0,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=10.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.6\left(\mathrm{~d}, \mathrm{~J}_{C-F}=2.0 \mathrm{~Hz}\right), 166.3,159.0\left(\mathrm{~d}, \mathrm{~J}_{C-F}=3.1 \mathrm{~Hz}\right), 156.3\left(\mathrm{~d}, \mathrm{~J}_{C-F}=256.8 \mathrm{~Hz}\right), 152.9,140.8$ $\left(\mathrm{d}, \mathrm{J}_{C-F}=14.6 \mathrm{~Hz}\right), 119.8\left(\mathrm{~d}, \mathrm{~J}_{C-F}=3.8 \mathrm{~Hz}\right), 118.2\left(\mathrm{~d}, \mathrm{~J}_{C-F}=5.0 \mathrm{~Hz}\right), 116.0,115.9\left(\mathrm{~d}, \mathrm{~J}_{C-F}=12.1 \mathrm{~Hz}\right)$, 106.4, 104.2, 81.3, 24.4. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{NF}\left(\mathrm{M}^{+}\right)$: 271.0654; found 271.0648.

2-chloro-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3ad)

The title compound 3ad was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (37 mg , 64% yield).${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ $(\mathrm{d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3$, 166.0, 158.9, 153.4, 150.9, 138.5, 126.0, 123.6, 117.2, 116.5, 105.6, 103.6, 81.4, 24.4. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{NCl}\left(\mathrm{M}^{+}\right): 287.0349$; found 287.0356 .

6-bromo-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3ae)

The title compound 3ae was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone $5: 4: 1$) to give the product as a faint yellow solid (47.1mg, 71% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=8.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.0,166.2,155.1,154.0,148.7,131.9,127.3$, 121.5, 118.9, 117.0, 104.8, 100.7, 81.4, 24.4. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{NBr}\left(\mathrm{M}^{+}\right): 330.9844$; found 330.9841 .

6-iodo-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3af)

The title compound 3af was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone $5: 4: 1$) to give the product as a faint yellow solid $(56.1 \mathrm{mg}$, 74% yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 1 \mathrm{H})$, $1.73(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.1,166.1,158.4,158.0,149.1,132.0,127.0,121.3$, 118.9, 116.7, 104.8, 81.3, 73.5, 24.3. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{NI}\left(\mathrm{M}^{+}\right) 378.9705$; found 378.9705.

8-ethyl-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3b)

The title compound 3b was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (35.8 mg , 67% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J$ $=8.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,166.9,158.8,152.4,150.4,131.8$, 127.0, 122.0, 118.0, 116.1, 105.4, 105.3, 83.9, 30.2, 22.9, 7.8. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 267.0895; found 267.0898.

8,8-diethylfuro[$\left.3^{\prime}, 4^{\prime}: 5,6\right]$ pyrano $[2,3,4-d e]$ quinolin-10(8H)-one (3c)

The title compound 3c was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (33.7 mg , 60% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.69$ (dd, J $=8.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dq}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{dq}, J=14.7,7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,167.3,158.8,152.4,150.4$, $131.9,127.0,121.9,116.0,106.7,105.3,87.0,77.2,28.9,7.6$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$ 281.1052; found 281.1051 .

8-isopropyl-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3d)

The title compound 3d was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (37.7 mg , 67% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J$ $=8.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0,167.1,158.8,152.4,150.3$,
131.9, 126.9, 122.0, 118.0, 116.0, 105.4, 105.3, 86.1, 34.6, 21.3, 17.2, 16.8. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 281.1052; found 281.1052.

8-methyl-8-propylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3e)

The title compound 3e was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (35.4 mg , 63% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.66$ $(\mathrm{s}, 3 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.8,166.9,158.8,152.4,150.5,146.9,131.8,127.1,122.1,116.1,105.4,105.2,83.7$, 39.1, 23.3, 16.8, 14.0. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right): 281.1052$; found 281.1055.

8-(tert-butyl)-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3f)

The title compound 3f was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (31.7 mg , 54% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.68$ (t, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.3,167.2,158.7,152.4,150.4,131.9,127.0,122.1,118.0,116.1,105.6,105.3,88.4,37.5,25.4$, 19.3. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right): 295.1208$; found 295.1211 .

8-isobutyl-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3g)

The title compound $\mathbf{3 g}$ was prepared according to GP2 and was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid ($41.3 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.99$ (dd, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.0,166.9,158.8,152.5,150.4,131.9,127.0,122.1$, 118.0, 116.2, 105.3, 105.2, 83.7, 45.4, 24.4, 24.1, 24.0, 23.6. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 295.1208 ; found 295.1205.

8,8-diphenylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3h)

The title compound $\mathbf{3 h}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (38.5 mg , 51% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 1 \mathrm{H})$, $7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.4,166.5,158.8,152.5,150.3,137.3,131.9,129.5,129.0,127.5,127.1,121.9,116.6,105.8,87.5$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 377.1052 ; found 377.1056.

8-methyl-8-phenylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3i)

The title compound 3i was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (33.4 mg , 53% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,159.3,153.0,150.6,139.9,138.8,136.5,131.0,129.8,129.6$, 129.3, 126.3, 122.9, 119.7, 117.5, 105.8, 85.4, 23.9. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right): 315.0895$; found 315.0895.

8-methyl-8-(p-tolyl)furo[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3j)

The title compound $\mathbf{3 j}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (30.3 mg , 46% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (dd, $J=8.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.5,159.3$, 153.0, 150.6, 139.9, 139.9, 138.7, 133.4, 131.0, 129.9, 129.6, 126.3, 122.9, 119.7, 117.5, 105.8, 85.4, 23.9, 21.3. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right): 329.1052$; found 329.1051 .

10'H-spiro[cyclopentane-1,8'-furo[3',4':5,6]pyrano[2,3,4-de]quinolin]-10'-one (3k)

The title compound $\mathbf{3 k}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (34.6 $\mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-1.76(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,166.8$, 159.0, 152.4, 150.5, 131.9, 127.0, 122.2, 116.0, 105.4, 105.3, 90.9, 36.5, 25.2. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$279.0895; found 279.0899.

10'H-spiro[cyclohexane-1,8'-furo[3',4':5,6]pyrano[2,3,4-de]quinolin]-10'-one (31)

The title compound 31 was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (42.2 $\mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.68(\mathrm{dd}, J=8.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,166.9,158.9,152.4,150.3,131.8,126.9,122.2,118.1,116.0$, 105.3, 104.4, 82.9, 33.3, 24.4, 21.7. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 293.1052; found 293.1057.

5,6-diphenylpyrano[2,3,4-de]quinoline (4a)

The title compound $\mathbf{4 a}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (60.4 $\mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,152.3,150.1,149.2,134.8,133.4$, 131.4, 130.7, 129.3, 129.1, 128.9, 128.1, 127.9, 125.2, 119.5,118.5 116.2, 103.2. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ON}\left(\mathrm{M}^{+}\right) 321.1154$; found 321.1153 .

5,6-di-p-tolylpyrano[2,3,4-de]quinoline (4b)

The title compound 4b was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (66.4 mg 95% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ 7.42 (m, 1H), $7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.13$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (d, $J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6$, $152.1,150.0,149.1,138.8,137.6,131.8,131.6,131.3,130.6,130.5,129.9,128.8,128.6,124.7$, $118.8,118.3,116.0,103.0,21.4,21.3$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ON}\left(\mathrm{M}^{+}\right): 349.1467$; found 349.1470 .

5,6-bis(4-(tert-butyl)phenyl)pyrano[2,3,4-de]quinoline (4c)

The title compound $\mathbf{4 c}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (81.5 $\mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,152.0,151.1,149.8$, $149.0,131.8,131.7,131.5,130.5,130.3,128.6,126.2,124.8,124.6,119.0,118.4,116.3,103.1,34.8$, 34.7, 31.5, 31.2. HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{ON}\left(\mathrm{M}^{+}\right)$: 433.2400; found 433.2403.

5,6-bis(4-methoxyphenyl)pyrano[2,3,4-de]quinoline (4d)

The title compound $\mathbf{4 d}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (70.2 $\mathrm{mg}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.9,159.79,159.3,152.1,150.0,149.1,132.0,131.9,131.5,130.5,127.1$, $125.9,124.6,118.3,118.0,115.9,114.8,113.4,103.1,55.4,55.3$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ON}_{3}\left(\mathrm{M}^{+}\right)$: 381.1359 ; found 381.1356 .

5,6-bis(2-fluorophenyl)pyrano[2,3,4-de]quinoline (4e)

The title compound $\mathbf{4 e}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (57.9
$\mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-111.8(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{~F})$, $112.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.6\left(\mathrm{~d}, J_{C-F}=248.7 \mathrm{~Hz}\right), 160.0\left(\mathrm{~d}, J_{C-F}\right.$ $=252.6 \mathrm{~Hz}), 159.7,152.1,149.8,146.7,132.2\left(\mathrm{~d}, J_{C-F}=3.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-F}=8.3 \mathrm{~Hz}\right), 131.5,131.2$ $\left(\mathrm{d}, J_{C-F}=2.2 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{C-F}=8.1 \mathrm{~Hz}\right), 129.7,125.5,124.5\left(\mathrm{~d}, J_{C-F}=3.6 \mathrm{~Hz}\right), 123.9\left(\mathrm{~d}, J_{C-F}=3.6\right.$ $\mathrm{Hz}), 121.6\left(\mathrm{~d}, J_{C-F}=16.3 \mathrm{~Hz}\right), 121.4\left(\mathrm{~d}, J_{C-F}=14.9 \mathrm{~Hz}\right), 118.4,116.6,116.0,115.9\left(\mathrm{~d}, J_{C-F}=24.4 \mathrm{~Hz}\right)$, 115.9 (d, $J_{C-F}=19.1 \mathrm{~Hz}$), 103.4. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{OF}_{2} \mathrm{~N}\left(\mathrm{M}^{+}\right): 357.0960$; found 357.0959.

5,6-bis(3-fluorophenyl)pyrano[2,3,4-de]quinoline (4f)

The title compound $\mathbf{4 f}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (57.2 $\mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=14.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=14.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.93(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.4,-112.5 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.5 (d, $J_{C-F}=248.7 \mathrm{~Hz}$), 162.3 (d, $J_{C}-$ $\left.{ }_{F}=247.1 \mathrm{~Hz}\right), 159.2,152.5,150.0,148.0\left(\mathrm{~d}, J_{C-F}=2.7 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 135.1\left(\mathrm{~d}, J_{C-F}=8.2\right.$ Hz), 131.4, $131.2\left(\mathrm{~d}, J_{C-F}=8.5 \mathrm{~Hz}\right), 130.5,129.6\left(\mathrm{~d}, J_{C-F}=8.2 \mathrm{~Hz}\right), 126.5\left(\mathrm{~d}, J_{C-F}=3.1 \mathrm{~Hz}\right), 125.8$, $124.8\left(\mathrm{~d}, J_{C-F}=3.1 \mathrm{~Hz}\right), 119.1\left(\mathrm{~d}, J_{C-F}=2.0 \mathrm{~Hz}\right), 118.3,117.6\left(\mathrm{~d}, J_{C-F}=21.6 \mathrm{~Hz}\right), 116.5,116.4,116.1(\mathrm{~d}$, $\left.J_{C-F}=21.2 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d}, J_{C-F}=23.7 \mathrm{~Hz}\right), 115.5\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 103.3$. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{OF}_{2} \mathrm{~N}\left(\mathrm{M}^{+}\right): 357.0960$; found 357.0956 .

5,6-bis(4-fluorophenyl)pyrano[2,3,4-de]quinolone (4g)

The title compound $\mathbf{4 g}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (57.9 $\mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.63$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.85$ $(\mathrm{m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.8$, $113.0{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $162.8\left(\mathrm{~d}, J_{C-F}=251.5 \mathrm{~Hz}\right), 161.5\left(\mathrm{~d}, J_{C-F}=249.0 \mathrm{~Hz}\right), 159.4,152.2$, $149.9,148.6,132.5\left(\mathrm{~d}, J_{C-F}=8.1 \mathrm{~Hz}\right), 131.4,131.1,131.0,130.4\left(\mathrm{~d}, J_{C-F}=3.6 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{C-F}=3.5\right.$ Hz), 125.3, 118.5, 118.2, $116.6\left(\mathrm{~d}, J_{C-F}=21.6 \mathrm{~Hz}\right), 116.2,115.2\left(\mathrm{~d}, J_{C-F}=21.8 \mathrm{~Hz}\right.$), 103.2. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{OF}_{2} \mathrm{~N}\left(\mathrm{M}^{+}\right): 357.0960$; found 357.0961

5,6-bis(4-chlorophenyl)pyrano[2,3,4-de]quinoline (4h)

The title compound $\mathbf{4 h}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (73.4 $\mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.81(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,152.5,150.1,148.4,135.2,134.3,133.0,132.1,131.6$, 131.4, 130.7, 130.4, 129.9, 128.5, 125.7, 118.8, 116.3, 103.4. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NCl}_{2}(\mathrm{M}$ ${ }^{+}$): 389.0374; found 389.0378.

5,6-bis(4-bromophenyl)pyrano[2,3,4-de]quinoline (4i)

The title compound $4 \mathbf{i}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (43.1 $\mathrm{mg}, 41 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.48 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.19-7.07$ (m, 4H), $6.80(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,152.4,150.0,148.4,133.4$, 133.2, 132.8, 132.4, 132.0, 131.4, 130.6, 129.0, 125.6, 123.6, 122.5, 118.9, 118.3, 116.3, 103.3. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{OBr}_{2} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 476.9358 ; found 476.9361

5,6-bis(4-(trifluoromethyl)phenyl)pyrano[2,3,4-de]quinoline (4j)

The title compound $\mathbf{4} \mathbf{j}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (75.0 $\mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7,-62.97 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 159.3 , $152.3,149.7,148.2,138.1,136.3,131.6,131.2,131.1\left(\mathrm{q}, J_{C-F}=33.6 \mathrm{~Hz}\right), 130.5\left(\mathrm{q}, J_{C-F}=33.0 \mathrm{~Hz}\right)$, $129.4,126.6\left(\mathrm{q}, J_{C-F}=3.7 \mathrm{~Hz}\right), 125.9,125.2\left(\mathrm{q}, J_{C-F}=3.8 \mathrm{~Hz}\right), 123.8\left(\mathrm{q}, J_{C-F}=273.4 \mathrm{~Hz}\right), 124.0\left(\mathrm{q}, J_{C-}\right.$ $F=273.5 \mathrm{~Hz}$), 119.7, 118.3, 116.7, 103.3. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{13} \mathrm{OF}_{6} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: 457.0896; found 457.0899 .

5,6-diethylpyrano[2,3,4-de]quinoline (4k)

The title compound $\mathbf{4 k}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (41.0 $\mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.40(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,153.2,151.3,149.7,131.8$, 130.1, 123.5, 115.5, 113.1, 102.9, 23.9, 19.8, 12.9, 12.6. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ON}\left(\mathrm{M}^{+}\right)$: 225.1148; found 225.1147.

5,6-dipropylpyrano[2,3,4-de]quinoline (41)

The title compound 41 was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (39.5 $\mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.79$ $-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.96(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6$, $152.2,151.8,150.3,131.4,130.3,124.0,118.7,114.5,113.1,102.8,32.5,28.7,21.4,21.2,14.4,14.0$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ON}\left(\mathrm{M}^{+}\right): 253.1461$; found 253.1465 .

5,6-dibutylpyrano[2,3,4-de]quinoline (4m)

The title compound $\mathbf{4 m}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (34.3 $\mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.36(\mathrm{~m}, 6 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 3 \mathrm{H})$, $1.59-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.28(\mathrm{~m}, 11 \mathrm{H}), 1.00-0.86(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.5,152.3,151.7,150.4,131.4,130.4,129.3,124.1,114.5,113.0,102.9,32.2,31.6,30.6,27.9$, 27.6, 26.7, 22.7, 22.6, 14.2, 14.1. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ON}\left(\mathrm{M}^{+}\right): 309.2087$; found 309.2086.

5,6-di(thiophen-2-yl)pyrano[2,3,4-de]quinoline (4n)

The title compound $\mathbf{4 n}$ was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (30.0 $\mathrm{mg}, 45 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,152.4,149.7,146.2,135.0,134.4,131.9,131.6,129.9$, 129.2, 128.7, 128.6, 128.5, 127.0, 125.2, 116.6, 110.4, 103.3. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{ONS}_{2}$ $\left(\mathrm{M}^{+}\right): 333.0277$; found 333.0280 .

3. References

[1] (a) L. Ye, W. He, L. Zhang, J. Am. Chem. Soc. 2010, 132, 8550;
(b) M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and Paul A. Grieco, Org. Lett. 2002, 4, 3199;
(c) R. M. Carlson, J. R. Peterson, B. J. Hoop, K. J. Jensen, Synthetic Communications, 1982, 12, 977;
(d) S. Yu, N. Keiichi, K. Tanaka, J. Am. Chem. Soc. 2010, 132, 7896;
(e) H.-T. zhu, L.-J. wang, K.-G. Ji, X.-Y. Liu and Y.-M. Liang, Chem. Asian J. 2012, 7, 1862 ;

4. NMR Spectra

2 ac

2b

2 e

3ab

$3 a c$

3ad

$3 a e$

3b

3c

$3 e$

3g

3h

3k

4a

4b

4c

$4 e$

$\stackrel{\infty}{\circ} \stackrel{0}{\dot{=}}$

4j

