Supporting Information

Cascade reaction of alkynols and 1-(2-aminophenyl)prop-2-ynols to form a
 fused 5,5,6-tricyclic system: formation of four bonds in a single reaction

Xiao-Feng Mao, Xiao-Ping Zhu, Liang-Liang Jiang, Deng-Yuan Li and Pei-Nian Liu*

Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China E-mail: liupn@ecust.edu.cn

Table of contents

1. General Information. S2
2. General procedure for the cascade annulation of alkynols with 1-(2-aminophenyl)prop-2-ynols S2
3. Crystal data and structure refinement of product 3a, $\mathbf{3 f}$ and $\mathbf{4}$. S3
4. Analytical data for products. S7
5. Copies of the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of products. S19

1 General Information.

All manipulations were carried out under a nitrogen or argon atmosphere using standard Schlenk techniques, unless otherwise stated. Solvents were distilled under nitrogen from sodium-benzophenone (THF, toluene, dioxane) or calcium hydride (MeCN, $\mathrm{CH}_{3} \mathrm{NO}_{2}$, DMF, DCE). Other chemicals were obtained from commercial sources, and were used without further purification. Chemical shifts (δ, ppm) in the ${ }^{1} \mathrm{H}$ NMR spectra were internally referenced to DMSO-d ${ }^{6}$ ($\delta=39.52 \mathrm{ppm}$). Chemical shifts in ${ }^{13} \mathrm{C}$ NMR spectra were internally referenced to $\mathrm{CDCl}_{3}(\delta=77.16 \mathrm{ppm})$.

2 General procedure for the cascade annulation of alkynols with 1-(2-aminophenyl)prop-2-ynols.

To a mixture of internal alkynol 1a (0.2 mmol) and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide 2a (0.24 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$ was added the Scandium trifluoromethanesulfonate ($0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and HOAc ($0.2 \mathrm{mmol}, 1$ equiv) under Ar. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 hours and the progress was monitored using TLC detection. After completion of present reaction, the solvent was evaporated under reduced pressure. After that the crude product was passed through flash column chromatography on silica gel to afford the desired products.

3. Crystal data and structure refinement of product $3 a, 3 f$ and 4.

Figure S1. The ORTEP diagram of product 3a.
Table S1. Crystal data and structure refinement for 3a.

Identification code	3a
CCDC Number	1552567
Empirical formula	$\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	597.70
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C 2/c
Unit cell dimensions	$\mathrm{a}=35.535(6) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.3152(14) \AA \quad \beta=126.844(3)^{\circ}$.
	$\mathrm{c}=26.015(4) \AA \quad \gamma=90^{\circ}$.
Volume	6151.8(18) \AA^{3}
Z	8
Density (calculated)	$1.291 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.148 \mathrm{~mm}^{-1}$
F(000)	2512
Crystal size	$0.210 \times 0.170 \times 0.140 \mathrm{~mm}^{3}$
Theta range for data collection	1.432 to 25.999°.
Index ranges	$-41<=\mathrm{h}<=43,-10<=\mathrm{k}<=9,-32<=1<=32$
Reflections collected	18014

Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole 0.235 and -0.275 e. \AA^{-3}

Figure S2. The ORTEP diagram of product 3f.
Table S2. Crystal data and structure refinement for $\mathbf{3 f}$.

Identification code
CCDC Number
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

3f

1552568
$\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{ClNO}_{4} \mathrm{~S}$
632.14
296.15 K
$0.71073 \AA$
Orthorhombic
Pbca

$$
\begin{array}{ll}
a=11.9530(11) \AA & \alpha=90^{\circ} . \\
b=16.5209(14) \AA & \beta=90^{\circ} .
\end{array}
$$

Volume
Z
Density (calculated)

Absorption coefficient
F(000)

Crystal size

Theta range for data collection Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

$$
\mathrm{c}=31.646(3) \AA \quad \gamma=90^{\circ} .
$$

$$
6249.3(9) \AA^{3}
$$

8
$1.344 \mathrm{Mg} / \mathrm{m}^{3}$
$0.232 \mathrm{~mm}^{-1}$
2640
$0.33 \times 0.3 \times 0.28 \mathrm{~mm}^{3}$
2.135 to 30.605°.
$-15<=\mathrm{h}<=17,-23<=\mathrm{k}<=23,-45<=1<=40$
60012
$9594[\mathrm{R}(\mathrm{int})=0.0505]$
100.0 \%

Semi-empirical from equivalents
0.7461 and 0.6800

Full-matrix least-squares on F^{2}
9594 / 0 / 408
1.054
$R 1=0.0692, w R 2=0.1460$
R1 $=0.1270, w R 2=0.1787$
n/a
0.519 and -0.570 e. \AA^{-3}

Figure S3. The ORTEP diagram of product 4.
Table S3. Crystal data and structure refinement for 4
Identification code

CCDC Number	1552569
Empirical formula	$\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{ClNO}_{4} \mathrm{~S}$
Formula weight	632.14
Temperature	296 K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=10.0712(10) \AA \quad \alpha=104.565(2)^{\circ}$
	$b=13.1339(13) \AA \quad \beta=104.140(2)^{\circ}$.
	$\mathrm{c}=13.3013(14) \AA \quad \gamma=101.177(2)^{\circ}$.
Volume	1589.0(3) \AA^{3}
Z	2
Density (calculated)	$1.321 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.228 \mathrm{~mm}^{-1}$
F(000)	660
Crystal size	$0.15 \times 0.1 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	1.663 to 28.311°.
Index ranges	$-13<=\mathrm{h}<=7,-17<=\mathrm{k}<=17,-17<=1<=17$
Reflections collected	13986
Independent reflections	7882 [$\mathrm{R}(\mathrm{int})=0.0267]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6814
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7882 / 0 / 408
Goodness-of-fit on F^{2}	0.982
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0462, \mathrm{wR} 2=0.1067$
R indices (all data)	$\mathrm{R} 1=0.1092, \mathrm{wR} 2=0.1326$
Extinction coefficient	n / a
Largest diff. peak and hole	0.213 and -0.322 e. \AA^{-3}

4. Analytical data for products.

12-(4-Methoxyphenyl)-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4',3':4,5]c yclopenta[1,2-b]indole (3a). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 a was obtained in 68% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: $145-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, d ${ }^{6}$-DMSO, $25{ }^{\circ} \mathrm{C}$): δ 7.47-7.50 (m, 5H), 7.30-7.32 (m, 1H), 7.23-7.26 (m, 3H), 7.06-7.13 (m, 5H), 6.91-6.96 (m, 4H), 6.79-6.85 (m, 2H), 6.46 (d, $J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J$ $=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=16.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=16.36 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=8.80 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.5,143.8,141.7$, $137.5,137.1,135.7,134.9,133.9,130.3,130.0,129.6,129.2,127.9,127.8,127.5,126.9$, 126.1, 124.8, 124.3, 123.8, 117.8, 114.5, 92.8, 74.9, 65.3, 55.8, 55.5, 21.7; HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 597.1974$, found: 597.1973.

12-(4-Methoxyphenyl)-3-methyl-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4',3':4,5]cyclopenta[1,2-b]indole (3b). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)-5-methylphenyl)methanol and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 b was obtained in 56% yield as a white solid after column
chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 192-195 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.45-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.16 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.20(\mathrm{~m}$, 2H), 7.07-7.12 (m, 4H), 6.90-6.95 (m, 2H), $6.83(\mathrm{t}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.08 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73-6.74 (m, 2H), $6.47(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=16.40 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.24 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.84 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.4,143.7,141.7,137.7,137.2,136.4,135.7$, 134.7, 133.9, 132.8, 130.3, 130.1, 129.6, 127.8, 127.4, 127.1, 126.9, 126.4, 125.9, 124.8, 124.7, 123.7, 117.7, 114.4, 92.8, 74.9, 65.2, 55.7, 55.5, 21.6, 21.3; HRMS (EI, TOF): caled for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 611.2130$, found: 611.2131.

3-Fluoro-12-(4-methoxyphenyl)-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4 ',3':4,5]cyclopenta[1,2-b]indole (3c). The compound was prepared from (5-fluoro-2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N -(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 c was obtained in 68% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 191-193 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25^{\circ} \mathrm{C}$): δ 7.47-7.49 (m, 5H), 7.31-7.35 (m, 1H), 7.24-7.26 (m, 3H), 7.09-7.13 (m, 4H), 6.91-6.96 (m, 1H), 6.78-6.85 (m, 5H), $6.45(\mathrm{~d}, J=7.52 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J$ $=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=16.84 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=8.76 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 162.0(\mathrm{~d}, J=247.2$ $\mathrm{Hz}), 159.6,143.8,141.7,137.3,137.1(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 136.8,135.7$, 133.7, 131.9, 130.2, 129.8, 129.7, 128.1 (d, $J=7.9 \mathrm{~Hz}$), 127.9, 127.7, 126.9, 125.4, 124.8, 123.7, 117.8, 114.6, $113.6(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 110.9(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 92.9,74.8,65.1,55.8,55.5,21.6 ;{ }^{19}$ F NMR (376 MHz, $\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): δ 112.7; HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{FNO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}$: 615.1880, found: 615.1876.

12-(4-Methoxyphenyl)-6a-phenyl-7-tosyl-3-(trifluoromethyl)-6a,6b,7,11b-tetrahydro-5H-isoc hromeno[$\left.4^{\prime}, 3^{\prime}: 4,5\right]$ cyclopenta[1,2-b]indole (3d). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)-5-(trifluoromethyl)phenyl)methanol and N -(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3d was obtained in 41% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 212-215 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, d^{6}-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.48-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.11-7.16 (m, 4H), 6.93-6.97 (m, 1H), 6.81-6.86 (m, 2H), $6.47(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J$ $=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.92 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=16.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=8.84 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.8,143.9,141.7$, 140.3, 136.7, 135.7, 135.4, 133.3, 132.6, 131.8, 130.1, 129.7, 129.5, 129.3, 128.9, 128.1, $127.8,126.9,125.1(\mathrm{q}, J=273.2 \mathrm{~Hz}), 124.9,122.9,121.4,117.8,114.7,92.8,74.8,65.0,60.5$, 55.9, 55.5, 21.6, 21.2; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 62.9$; HRMS (EI, TOF): caled for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 665.1848$, found: 665.1843 .

2-Fluoro-12-(4-methoxyphenyl)-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4 ',3':4,5]cyclopenta[1,2-b]indole (3e). The compound was prepared from (4-fluoro-2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 e was obtained in 45% yield as a white solid after column
chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 198-200 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, d^{6}-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.48-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 4 \mathrm{H})$, 6.98-7.03 (m, 3H), 6.92-6.96 (m, 2H), 6.79-6.85 (m, 2H), $6.42(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J$ $=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=16.28 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.20 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.88 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 160.8(\mathrm{~d}, J=241.8$ $\mathrm{Hz}), 159.8,143.8,141.6,139.0,136.9,135.7,133.5,131.9,130.8,130.7,130.5,130.1,129.7$, $129.2,128.0,127.7,126.9,125.9(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.9,123.7,117.8,115.1(\mathrm{~d}, J=21.9 \mathrm{~Hz})$, 114.7, 112.4 (d, $J=22.9 \mathrm{~Hz}$), $92.5,74.7,64.8,55.9,55.5,21.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta 115.4 ;$ HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 615.1880$, found: 615.1878.

2-Chloro-12-(4-methoxyphenyl)-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4',3':4,5]cyclopenta[1,2-b]indole (3f). The compound was prepared from (4-chloro-2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 f was obtained in 63% yield as a white solid after column chromatography (eluent = petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 214-216 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.48-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{~d}, J=2.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.92-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=7.56 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ $(\mathrm{d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=16.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.80$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.8,143.9$, $141.6,139.1,136.8,135.7,133.5,133.2,131.8,131.7,130.8,130.1,129.7,129.2,128.0$, $127.8,127.7,126.9,125.9,125.7,124.9,123.8,117.8,114.7,92.6,74.7,64.9,55.9,55.5,21.6 ;$ HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{ClNO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}$: 631.1584, found: 631.1578 .

12-(4-(Octyloxy)phenyl)-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4',3':4,5] cyclopenta[1,2-b]indole (3g). The compound was prepared from (2-((4-(octyloxy)phenyl)ethynyl)phenyl)methanol and

N -(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 g was obtained in 60% yield as a white solid after column chromatography (eluent = petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); $\mathrm{Mp}: 171-173{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, d^{6}-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.45-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.92-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.92 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (d, $J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=16.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=16.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.72$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.48 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 2 \mathrm{H})$, 1.23-1.32 (m, 8H), 0.85-0.89 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.2,143.8$, 141.7, 137.6, 137.2, 135.8, 134.8, 133.9, 132.7, 132.6, 130.3, 129.7, 129.6, 129.2, 129.1, $129.0,127.9,127.8,127.7,127.5,126.9,126.2,126.1,124.8,124.3,123.8,117.8,115.0,92.8$, $74.9,68.3,65.2,65.1,55.8,31.9,29.5,29.4,29.3,26.2,22.8,21.6,14.3$; HRMS (EI, TOF): caled for $\mathrm{C}_{45} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 695.3069$, found: 695.3060.

12-(4-(Benzyloxy)phenyl)-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4', 3':4, 5]cyclopenta[1,2-b]indole (3h). The compound was prepared from (2-((4-(benzyloxy)phenyl)ethynyl)phenyl)methanol and N -(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the
general procedure. The product 3 h was obtained in 57% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); $\mathrm{Mp}: 189-192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, d^{6}-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.50-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=2.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}$, $3 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.64 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.12(\mathrm{~m}$, $3 \mathrm{H}), 6.93-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=8.80 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19$ (s, 2H), 4.91 (d, $J=16.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=16.32 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=8.72 \mathrm{~Hz}$, 1H), 2.28 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 158.7,143.8,141.7,137.4,137.1$, $136.8,135.7,134.8,133.8,132.8,130.3,130.2$. 129.6, 129.1, 128.8, 128.3, 127.9, 127.8, 127.7, 127.5, 126.9, 126.1, 124.8, 124.3, 123.8, 117.8, 115.4, 92.7, 74.9, 70.3, 65.2, 55.7, 21.6; HRMS (EI, TOF): caled for $\mathrm{C}_{44} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 673.2287$, found: 673.2285.

6a-(4-Fluorophenyl)-12-(4-methoxyphenyl)-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4', $\left.3^{\prime}: 4,5\right]$ cyclopenta[1,2-b]indole (3i). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and

N-(2-(3-(4-fluorophenyl)-1-hydroxyprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 i was obtained in 57% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 207-210 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.48-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=7.80 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24-7.26 (m, 3H), 7.08-7.13 (m, 4H), 6.93-6.99 (m, 4H), 6.83-6.88 (m, 2H), $6.46(\mathrm{~d}, J=7.48$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=16.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.44 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ $162.3(\mathrm{~d}, J=244.3 \mathrm{~Hz}), 159.6,143.9,141.6,137.7,135.6,134.7,133.8,133.0,132.9(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 132.5,130.2,129.8,129.7,128.9,128.1,127.9,126.9,126.2(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 124.9$, $124.3,123.8,117.8,114.5,92.3,74.8,65.1,55.7,55.5,21.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}$): $\delta 115.2$; HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{FNO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 615.1880$, found: 615.1882.

6a-(4-Chlorophenyl)-12-(4-methoxyphenyl)-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4',3':4,5]cyclopenta[1,2-b]indole (3j). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and

N-(2-(3-(4-chlorophenyl)-1-hydroxyprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 j was obtained in 60% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate 10:1 v/v); Mp: 207-209 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25{ }^{\circ} \mathrm{C}$): $\delta 7.47-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.13$ (m, 4H), 6.93-7.01 (m, 4H), 6.83-6.88 (m, 2H), $6.46(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=8.80 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93$ (d, $J=16.52 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (d, $J=16.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (s, $3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 159.6,143.9,141.5,137.9,135.9$, 135.6, 134.6, 133.7, 133.4, 132.4, 130.2, 129.7, 128.9, 128.2, 127.9, 126.9, 126.3, 126.2, 124.9, 124.3, 123.8, 117.9, 114.5, 92.4, 74.7, 65.2, 55.7, 55.5, 21.6; HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{ClNO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 631.1584$, found: 631.1585.

12-(4-Methoxyphenyl)-6a-(p-tolyl)-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4', $\left.3^{\prime}: 4,5\right]$ cyclopenta[1,2-b]indole (3k). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-(p-tolyl)prop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 k was obtained in 53% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 211-213 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.45-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.12(\mathrm{~m}$, $4 \mathrm{H}), 6.90-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.76 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=8.80 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{~d}, J=16.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=9.04 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.5,143.7,141.7$, $137.2,136.9,135.8,134.9,134.0,133.9,132.9,130.3,130.1,129.6,129.2,127.8,127.7$, 126.9, 126.1, 126.0, 124.7, 124.3, 123.7, 117.9, 114.5, 92.7, 74.9, 65.2, 55.8, 55.5, 21.6, 21.2; HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 611.2130$, found: 611.2132.

12-(4-Methoxyphenyl)-7-tosyl-6a-(4-(trifluoromethyl)phenyl)-6a,6b,7,11b-tetrahydro-5H-iso chromeno $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ cyclopenta[1,2-b]indole (31). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)phenyl)-4-methylbenzenesulfo namide following the general procedure. The product 31 was obtained in 63% yield as a white solid after column chromatography (eluent = petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp : $183-185{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25^{\circ} \mathrm{C}$): $\delta 7.49-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~d}, J=8.40 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{t}, J=7.52 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.56 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J$ $=16.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=16.36 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.68 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.7,143.9,141.6,141.4,138.2,135.5,134.5$, 133.7, 132.1, 130.2, 129.7, 129.6, 128.8, 128.2, 126.9, 126.6 (q, $J=278.4 \mathrm{~Hz}$), 126.4, 126.2, $124.3,123.8,117.9,114.6,92.4,74.8,65.3,55.7,55.5,21.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}$): $\delta 65.2$; HRMS (EI, TOF): caled for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 665.1848$, found: 665.1855 .

6a-(4-Ethylphenyl)-12-(4-methoxyphenyl)-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4' ,3':4,5]cyclopenta[1,2-b]indole (3m). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and

N-(2-(3-(4-butylphenyl)-1-hydroxyprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 m was obtained in 58% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate 10:1 v/v); Mp: 193-195 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}, 25{ }^{\circ} \mathrm{C}$): $\delta 7.46-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{~d}, J=7.88 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.84-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=7.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=8.68 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=16.36 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61(\mathrm{~d}, J=16.24 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.45(\mathrm{~m}, 2 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.24 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ 159.5, 143.7, 142.0, 141.7, 137.1, 135.8, 134.9, 134.1, 132.8, $130.3,130.2,129.6,129.2,127.7,126.9,126.1,124.8,124.3,123.6,117.9,114.5,92.6,74.9$, $65.2,55.6,55.5,35.3,33.6,22.2,21.6,14.1$; HRMS (EI, TOF): caled for $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}$: 653.2600, found: 653.2599 .

6a-(4-(tert-Butyl)phenyl)-12-(4-methoxyphenyl)-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochrom eno[4',3':4,5]cyclopenta[1,2-b]indole (3n). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and

N-(2-(3-(4-(tert-butyl)phenyl)-1-hydroxyprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamid
e following the general procedure. The product 3 n was obtained in 53% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 206-208 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25{ }^{\circ} \mathrm{C}$): $\delta 7.45-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=7.88 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.24 (m, 3H), 7.06-7.13 (m, 4H), 6.93-6.96 (m, 2H), 6.87-6.91 (m, 2H), 6.81-6.85 (m, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.24 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J$ $=16.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=16.24 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}$, 3 H), $1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 159.5,150.2,143.7,141.8,137.0$, $135.9,135.0,134.3,133.8,132.6,130.3,129.6,129.2,127.7,127.6,126.1,126.0,124.8$, $124.4,123.5,118.0,114.5,92.4,75.0,65.2,55.5,34.5,31.4,21.6$; HRMS (EI, TOF): caled for $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 653.2600$, found: 653.2595 .

12-(4-Methoxyphenyl)-6a-phenyl-7-tosyl-10-(trifluoromethyl)-6a,6b,7,11b-tetrahydro-5H-iso chromeno[4',3':4,5]cyclopenta[1,2-b]indole (30). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)-4-(trifluoromethyl)phenyl)-4-methylbenzenesulfon amide following the general procedure. The product 3 o was obtained in 50% yield as a white solid after column chromatography (eluent = petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp: 189-192 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25{ }^{\circ} \mathrm{C}$): $\delta 7.52-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 6 \mathrm{H})$, 7.08-7.15 (m, 5H), 6.93-6.94 (m, 3H), $6.66(\mathrm{~d}, J=7.92 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H})$, $4.93(\mathrm{~d}, J=16.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=16.36 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 2.28 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.7,144.2,142.2,137.6,136.8$, $136.3,135.5,134.9,133.3,130.3,129.9,129.6,128.1,127.9,127.5$ (q, $J=287.2 \mathrm{~Hz}$), 126.9, $126.3,124.4,124.1,121.7,114.7,114.5,92.8,75.1,65.3,55.6,55.5,21.7,{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 62.4$; HRMS (EI, TOF): caled for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 665.1848$, found: 665.1847.

12-(4-Methoxyphenyl)-10-methyl-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno [4',3':4,5]cyclopenta[1,2-b]indole (3p). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)-4-methylphenyl)-4-methylbenzenesulfonamide following the general procedure. The product 3 p was obtained in 67% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate 10:1 v/v); Mp: 196-198 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $25{ }^{\circ} \mathrm{C}$): $\delta 7.46-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.12$ (m, 4H), 7.05-7.07 (m, 2H), 6.91-6.94 (m, 2H), 6.75 (d, $J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (d, $J=8.20 \mathrm{~Hz}$, $1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=8.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=16.48 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=16.48 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{~d}, J=8.84 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 159.5,143.6,139.3,137.6,137.1,135.7,134.9,134.5,133.9,132.7,130.3$, 129.6, 129.2, 128.6, 127.7, 127.4, 127.0, 126.1, 126.0, 124.3, 124.2, 117.5, 114.4, 92.7, 75.0, 65.2, 55.7, 55.5, 21.6, 21.3; HRMS (EI, TOF): caled for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 611.2130$, found: 611.2125.

12-(4-Methoxyphenyl)-8-methyl-6a-phenyl-7-tosyl-6a,6b,7,11b-tetrahydro-5H-isochromeno[4',3':4,5]cyclopenta[1,2-b]indole (3q). The compound was prepared from (2-((4-methoxyphenyl)ethynyl)phenyl)methanol and N-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)-6-methylphenyl)-4-methylbenzenesulfonamide
following the general procedure. The product 3 q was obtained in 40% yield as a white solid after column chromatography (eluent $=$ petroleum ether/ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$); Mp : 215-217 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}, 25{ }^{\circ} \mathrm{C}$): $\delta 7.25-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.13$ $(\mathrm{m}, 4 \mathrm{H}), 7.04(\mathrm{t}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=$ $7.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.64 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=16.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=16.28 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta 159.5,143.9,140.9,138.3,137.8,137.2,134.7,134.5,133.5,132.8,130.3$, 130.1, 129.4, 129.1, 127.9, 127.7, 127.4, 126.2, 126.1, 126.0, 124.2, 120.8, 114.4, 91.7, 75.5, 65.0, 55.5, 55.3, 21.7, 19.3; HRMS (EI, TOF): caled for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 611.2130$, found: 611.2132 .

N-(2-(1-(6-chloro-3-(4-methoxyphenyl)-1H-isochromen-4-yl)-3-phenylprop-2-yn-1-yl)phenyl)-4-methylbenzenesulfonamide (4). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.75-7.78(\mathrm{~m}, 3 \mathrm{H})$, $7.50(\mathrm{~d}, J=1.92 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.08$ (m, 2H), 7.01-7.04 (m, 1H), 6.98 (d, $J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.95(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{~d}, J=12.52$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 161.6,155.4,143.5,136.1,135.1,133.5,132.3,132.1,131.7,129.6$, 129.4, 128.9, 128.7, 128.5, 128.4, 127.7, 126.7, 126.4, 125.3, 125.1, 125.0, 123.7, 122.7, 122.6, 114.1, 109.4, 87.9, 87.1, 69.0, 55.6, 34.9, 21.5; HRMS (EI, TOF): caled for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{ClNO}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}: 631.1584$, found: 631.1574 .

5. Copies of the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of products.

${ }^{1} \mathrm{H}$ NMR of product 3 a .

${ }^{13} \mathrm{C}$ NMR of product 3a.

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 b}$.

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 b}$.

${ }^{1}$ H NMR of product 3 c

${ }^{13} \mathrm{C}$ NMR of product 3c

${ }^{19}$ F NMR of product 3c

${ }^{1} \mathrm{H}$ NMR of product $3 \mathbf{d}$

${ }^{13} \mathrm{C}$ NMR of product $3 \mathbf{d}$

${ }^{19} \mathrm{~F}$ NMR of product 3d

${ }^{1}$ H NMR of product $3 \mathbf{e}$

${ }^{13} \mathrm{C}$ NMR of product $3 \mathbf{e}$
 $\dot{\sim}$

${ }^{19}$ F NMR of product $3 \mathbf{e}$

${ }^{1}$ H NMR of product $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 f}$

${ }^{1}$ H NMR of product 3 g

${ }^{13} \mathrm{C}$ NMR of product 3 g

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR of product 3 h

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR of product $3 \mathbf{3}$

${ }^{19} \mathrm{f}$ NMR of product $\mathbf{3 i}$

${ }^{1}$ H NMR of product $\mathbf{3 j}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 k}$

${ }^{1}$ H NMR of product 31

${ }^{13} \mathrm{C}$ NMR of product 31

${ }^{19}$ F NMR of product 31

${ }^{1} \mathrm{H}$ NMR of product $3 \mathbf{m}$

${ }^{13} \mathrm{C}$ NMR of product 3 m

${ }^{1} \mathrm{H}$ NMR of product $3 \mathbf{n}$

${ }^{13} \mathrm{C}$ NMR of product 3 n

${ }^{1} \mathrm{H}$ NMR of product 30

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 o}$

${ }^{19} \mathrm{~F}$ NMR of product 30

${ }^{1}$ H NMR of product 3p

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 p}$

${ }^{1}$ H NMR of product $\mathbf{3 q}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR of intermediate 4

${ }^{13} \mathrm{C}$ NMR of intermediate 4

