Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Lewis acid catalyzed diastereoselective [3+4]-annulation of donor–acceptor cyclopropanes with anthranils: synthesis of tetrahydro-1-benzazepine derivatives†

Zhe-Hao Wang, Huan-Huan Zhang*, Dao-Ming Wang, Peng-Fei Xu and Yong-Chun Luo*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

E-mail: zhanghh@lzu.edu.cn; luoych@lzu.edu.cn

Contents

1. General information	2
2. Experimental procedures	2
2.1 Procedure for the synthesis of compound 11	3
2.2 Procedure for the synthesis of compound 4	.3
2.3 General procedure for the [3+4]-annulation reaction of D-A cyclopropanes with anthranils	4
2.4. Detailed procedure for the preparation of 7a in gram-scale	5
2.5. Procedure for the reductive cleavage of N-O bond in annulation product 7a	5
2.6. Procedure for the synthesis of 2,3-dihydro-1H-1-benzazepine 11	6
3. Characterization data of Products	8
4. ¹ H-NMR and ¹³ C-NMR spectra of the compounds	22
5. X-ray crystallographic data5	55
6. Chiral HPLC chromatograms	59

1. General information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. The ¹H NMR spectra was recorded on 400 MHz or 600 MHz spectrometers, and the ¹³C NMR was recorded on 100 MHz spectrometer. The spectra were recorded in CDCl₃, DMSO-*d*₆ and CD₃OD at room temperature. ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) (δ = 77.00 ppm) or TMS (¹H) (δ = 0 ppm, DMSO-d₆ δ = 2.50 ppm, CD₃OD δ = 3.31 ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), integration, coupling constant (Hz) and assignment. HRMS were performed on FT–ICRMS mass instrument (ESI). Enantiomeric excess values were determined by HPLC with a CHIRALPAK IC-3 column with *i*-PrOH and *n*-hexane.

2. Experimental procedures

Cyclopropanes used in this work were prepared according to the methods reported in literature.¹ Anthranils were synthesized according to the report of S. Fletcher's group.²

^{1.} M. Skvorcova, L. Grigorjeva and A. Jirgensons, Org. Lett., 2015, 17, 2902-2904.

^{2.} J. Chauhan and S. Fletcher, Tetrahedron Lett., 2012, 53, 4951-4954.

2.1 Procedure for the synthesis of compound 11³

11 was synthesis according to the method of literature 3 with a little modification, To a solution of 1-(methoxycarbonyl)-2-phenylcyclopropanecarboxylic acid⁴ (1 mmol, 220mg) in *N*,*N*-dimethylacetamide (5 mL) in the presence of anhydrous potassium carbonate (25 mmol, 3.5g) and tetrabutylammonium bromide (1 mmol, 322mg), *tert*-butyl bromide (48 mmol, 5.4ml) was added dropwise at 0 °C, then the mixture was stirred at 55 °C for overnight. After cooling to room temperature, cold water was added into the reaction, then the mixture extracted with EtOAc. The organic layer was washed with H₂O, brine, dried over MgSO₄, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel petroleum ether/ethyl acetate (v/v = 25:1) to give the desired product **11** in 72% yield.

2.2 Procedure for the synthesis of compound 4

The 4 Å MS (200 mg), Yb(OTf)₃ (0.08 mmol, 0.2 equiv), bis(2,2,2-trifluoroethyl) 2vinylcyclopropane **1j** (0.40 mmol, 1.0 equiv) and 4-methyl-N-3-phenylallylidene) aniline 2^5 (0.80 mmol, 2.0 equiv) were sequentially added into a dry flask equipped with a stirring bar. Then 1,2-dichloroethane (2 mL) was added into the flask, and the reaction mixture was stirred under argon atmosphere at room temperature. After 48h,

^{3.} L. Wang, Y. Murai, T. Yoshida, A. Ishida, K. Masuda, Y. Sakihama, Y. Hashidoko, Y. Hatanaka and M. Hashimoto, *Org. Lett.*, 2015, **17**, 616–619.

^{4.} M. R. Emmett and M. A. Kerr, Org. Lett., 2011, 13, 4180-4183.

^{5.} C. Wang, K. Huang, J. Wang, H. Wang, L. Liu, W. Chang and J. li , *Adv. Synth. Catal.*, 2015, **357**, 2795–2802.

the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to give a mixture of cyclopropane and the result product.

A solution of the mixture (185 mg) in MeOH (5 mL) was carefully triple evacuated/N₂ filled before the addition of 10% palladium on carbon (80 mg, 0.08 mmol). The flask was then triple evacuated/H₂ filled before being stirred under an atmosphere of H₂ at room temperature for 24 hours. The reaction was filtered through a plug of Celite, eluting with EtOAc, and the filtrate concentrated in vacuo to give the crude product. Purification by flash using petroleum ether and ethyl acetate (v/v = 50:1) gave the title compound **4** (118 mg, 63%) as a colorless oil.

2.3 General procedure for the [3+4]-annulation reaction of D-A cyclopropanes with anthranils

The 4 Å MS (100 mg), Sc(OTf)₃ (0.01 mmol, 0.05 equiv), D-A cyclopropanes 1 (0.20 mmol, 1.0 equiv) and anthranils **6a** (0.24 mmol, 1.2 equiv) were sequentially added into a dry flask equipped with a stirring bar. Then 1,2-dichloroethane (1 mL) was added into the flask, and the reaction mixture was stirred under argon atmosphere at room temperature. Upon completion of the reaction (monitored by TLC), the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to give the corresponding product.

2.4. Detailed procedure for the preparation of 7a in gram-scale

The 4 Å MS (2.00 g), Sc(OTf)₃ (0.21 mmol, 0.05 equiv, 0.10 g), D-A cyclopropane **1a** (4.27 mmol, 1.0 equiv, 1.00g) and anthranil **6a** (5.13 mmol, 1.2 equiv, 0.61 g) were sequentially added into a dry flask equipped with a stirring bar, then added 1,2-dichloroethane (20 mL). The reaction mixture was stirred under an atmosphere of argon at room temperature. After 5 hours, cyclopropane **1a** had been exhausted. Then the solvent was removed by rotary evaporator, and the residue was purified by means of silica gel column chromatography with elution consisting of petroleum ether and ethyl acetate (v/v = 8:1). Product **7a** was obtained in 82 % yield (1.23 g, 3.48 mmol).

2.5. Procedure for the reductive cleavage of N-O bond in annulation

product 7a

In this work, in order to cleave N-O bond in annulation product **7a**, two different methods were tried.

Method 1

Annulation product **7a** (106 mg, 0.30 mmol) and methanol (2 mL) were added into a flask with stirring bar. Then, the flask was immersed into the mixture of ice and water. Under stirring, zinc dust (196mg, 3.00 mmol), acetic acid (80μ L, 0.14 mmol), concentrated hydrochloric acid (75μ L, 2.40 mmol) were sequentially added in to the flask. Then the reaction was allowed to warm up to room temperature naturally. When

the annulation product **7a** disappeared (monitored by TLC), the reaction mixture was filtered. The filtrate was neutralized with aqueous ammonia (25%) to pH=8 and extracted with EtOAc for several times. The combined organic layers were dried by anhydrous Na₂SO₄ and concentrated. Then, the crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate, v/v = 4:1) to give the desired product in 70 % yield.

Method 2

Annulatuon product **7a** (212 mg, 0.6 mmol, 1.0equiv) was dissolved in 3 ml each acetic acid and acetic anhydride and then stirred vigorously for 36 hours with activated zinc dust (784 mg, 12 mmol, 20 equiv). The mixture was then filtered (using ethyl acetate to aid in transfers), concentrated under high vacuum, the crude product was purified by silica gel column chromatography using petroleum ether/AcOEt (v/v = 2:1), then using pure AcOEt to give 2,3,4,5-tetrahydro-1H-1-benzaze-pine **9** as a white solid in 80 % yield.

2.6. Procedure for the synthesis of 2,3-dihydro-1H-1-benzazepine 11

To a solution of 2,3,4,5-tetrahydro-1H-1-benzazepine **9** (120 mg, 0.30 mmol) in pyridine (1 mL), 4-dimethylaminopyridine (18 mg, 0.15 mmol) and acetic anhydride (0.24 ml, 4.20 mmol) were added. The reaction mixture was stirred under argon atmosphere at room temperature. Upon completion of the reaction (monitored by TLC), the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel using petroleum ether and ethyl acetate (v/v

= 2:1) to give 2,3-dihydro-1H-1-benzazepine 10 in 90 % yield.

A solution of 2,3-dihydro-1-benzazepine **10** (65.9mg, 0.15 mmol) in a mixture of DMSO (1 mL) and H₂O (0.1 mL) in the presence of NaCl (35.1mg, 0.60 mmol) was heated from 110 to 160°C for a period of 3h and kept at 160°C for 8h with stirring. After being cooled to room temperature, the solution was diluted with saturated aqueous NaHCO₃ (2 mL) and extracted with EtOAc. Then the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel using petroleum ether and ethyl acetate (v/v = 3:1) to give 2,3-dihydro-1-benzazepine **11** in 88 % yield.

3. Characterization data of Products

1-tert-butyl 1-methyl 2-phenylcyclopropane-1,1-dicarboxylate (11)

Purification by flash chromatography on silica gel petroleum
ether/EtOAc (V/V = 25:1) gave the title compound as white solid
(198.5 mg, 0.72 mmol, 72 % yield); mp: 46–48 °C; $R_f = 0.25$ (EtOAc/ petroleum ether, v/v = 1/25); ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.17 (m, 5H), 3.37
(s, 3H), 3.12 (t, J = 8.8 Hz, 1H), 2.09 (dd, J = 8.0 Hz, 5.2 Hz, 1H), 1.65 (dd, J = 8.0 Hz, 5.2
Hz, 1H), 1.48 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.5, 135.0, 128.3, 128.1,
127.1, 82.0, 52.0, 38.5, 31.5, 28.0, 18.5; HRMS calcd for C₁₆H₂₀O₄ [M+Na]⁺: 299.1254, found
for: 299.1253.

Bis(2,2,2-trifluoroethyl) 5-ethyl-2-phenethyl-1-(p-tolyl)pyrrolidine-3,3-dicarboxylate (4)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 50:1) gave the title compound as colorless oil (118.0 mg, 0.22 mmol, 63 % yield); $R_f = 0.27$ (EtOAc/ petroleum ether, v/v = 1/50); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 7.2 Hz,

2H), 7.21–7.17 (m, 1H), 7.13–7.10 (m, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 8.8 Hz, 2H), 4.64–4.60 (m, 1H), 4.58–4.49 (m, 2H), 4.47–4.41 (m, 1H), 4.40–4.31 (m, 1H), 3.47 (ddd, J =16.4 Hz, 9.6 Hz, 2.8 Hz, 1H), 2.78 (dd, J = 13.6 Hz, 7.2 Hz, 1H), 2.73–2.69 (m, 2H), 2.64 (dd, J = 13.6 Hz, 9.6 Hz, 1H), 2.24 (s, 3H), 2.12–2.03 (m, 1H), 1.91–1.82 (m, 1H), 1.76–1.66 (m, 1H), 1.47–1.39 (m, 1H), 0.98 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.3, 145.5, 141.4, 129.7, 128.5, 128.4, 128.3, 128.2, 126.3, 126.0, 112.1, 63.6, 62.5, 61.3, 61.2, 61.1, 61.0, 58.5, 36.9, 35.7, 32.7, 28.3, 20.2, 9.9; HRMS calcd for C₂₇H₃₀F₆NO₄ [M+H]⁺: 546.2074, found for: 546.2075.

Dimethyl 2-phenyl-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarboxylate (7a)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7a as white solid (63.5 mg, 0.18 mmol, 90 % yield); mp:

138–140 °C; $R_f = 0.45$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 1H), 7.34–7.30 (m, 5H), 7.12 (t, J = 7.2 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.13 (d, J = 7.6 Hz, 1H), 5.77 (s, 1H), 5.06 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.90 (s, 3H), 3.77 (s, 3H), 2.66 (dd, J = 14.4 Hz, 3.2 Hz, 1H), 1.84 (dd, J = 13.6 Hz, 12.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 168.4, 148.0, 136.8, 136.6, 128.5, 128.2, 128.1, 128.0, 126.0, 122.7, 116.9, 79.7, 61.2, 55.7, 53.4, 52.8, 24.9; HRMS calcd for C₂₀H₂₀NO₅ [M+H]⁺: 354.1336, found for: 354.1337. The enantiomeric excess of (1*R*, 2*R*, 5*R*)-7**a** was determined to be 99.4 % *ee* by HPLC with an IC-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 13.93 min, minor enantiomer t_R = 33.90 min; [α]^D₂₀ = -165.0 (c = 1.00, CH₂Cl₂).

Dimethyl 2-(2-chlorophenyl)-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarboxylate (7b)

COOMe COOMe COOMe COOMe

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave **7b** as white solid (15.5 mg, 0.04 mmol, 20 % yield); mp: 100–102 °C; $R_f = 0.39$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400

MHz, CDCl₃) δ 7.51 (d, J = 7.2 Hz, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.32–7.29 (m, 1H), 7.15 (dd, J = 15.2 Hz, 7.6 Hz, 2H), 7.10–7.06 (m, 1H), 6.71 (d, J = 7.6 Hz, 1H), 6.14 (d, J = 7.6 Hz, 1H) 5.79 (s, 1H), 5.48 (dd, J = 12.4 Hz, 3.2 Hz, 1H), 3.92 (s, 3H), 3.78 (s, 3H), 2.46 (dd, J = 14.0 Hz, 2.4 Hz, 1H), 1.98–1.92 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.3, 147.6, 136.9, 133.6, 130.2, 129.7, 128.5, 127.9, 126.2, 126.1, 122.8, 117.3, 79.7, 58.6, 55.7, 53.5, 52.9, 24.5; HRMS calcd for C₂₀H₁₉CINO₅ [M+H]⁺: 388.0946, found for: 388.0944.

Dimethyl 2-(4-chlorophenyl)-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarboxylate (7c)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7c as white solid (58.2 mg, 0.15 mmol, 75 % yield); mp: 100–102 °C; $R_f = 0.43$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H),

7.25 (d, *J* = 9.2 Hz, 2H), 7.13 (td, *J* = 7.2 Hz, 0.8 Hz, 1H), 7.03 (td, *J* = 7.6 Hz, 1.2 Hz, 1H),

6.16 (d, J = 7.6 Hz, 1H), 5.76 (s, 1H), 5.02 (dd, J = 12.0 Hz, 3.2 Hz, 1H), 3.90 (s, 3H), 3.77 (s, 3H), 2.64 (ddd, J = 14.0 Hz, 3.6 Hz, 1.6 Hz, 1H), 1.77 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.3, 147.8, 136.5, 135.4, 134.1, 129.8, 128.6, 128.4, 128.1, 128.0, 126.2, 122.9, 116.8, 79.7, 60.6, 55.6, 53.5, 52.9, 24.9; HRMS calcd for C₂₀H₁₉ClNO₅ [M+H]⁺: 388.0946, found for: 388.0945.

Dimethyl 2-(4-bromophenyl)-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarbo -xylate (7d)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7d as white solid (71.8 mg, 0.17 mmol, 83 % yield); mp: 146–148 °C; $R_f = 0.48$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 7.2 Hz, 1H), 7.19 (d, J

= 8.4 Hz, 2H), 7.13 (t, J = 7.2 Hz, 1H), 7.05–7.01 (m, 1H), 6.16 (d, J = 7.6 Hz, 1H), 5.76 (s, 1H), 4.99 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.90 (s, 3H), 3.77 (s, 3H), 2.63 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.77 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.3, 147.8, 136.6, 135.9, 131.4, 130.1, 128.1, 126.2, 122.8, 122.3, 116.8, 79.7, 60.6, 55.6, 53.4, 52.9, 24.8; HRMS calcd for C₂₀H₁₉BrNO₅ [M+H]⁺: 432.0441, found for: 432.0439.

Dimethyl 2-(p-tolyl)-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarboxylate (7e)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7e as white solid (58.7 mg, 0.16 mmol, 80 % yield); mp: 142–144 °C; $R_f = 0.47$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 1H), 7.19–7.09 (m, 5H), 7.01 (td, J = 7.6 Hz, 1.2 Hz, 1H), 6.16 (d, J = 7.6 Hz, 1H), 5.76 (s, 1H), 5.02 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 2.62 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 2.36 (s, 3H), 1.82 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 148.1, 137.9, 136.6, 133.8, 128.9, 128.4, 127.9, 126.0, 122.7, 117.0, 79.7, 61.0, 55.7, 53.4, 52.8, 24.9, 21.2; HRMS calcd for C₂₁H₂₂NO₅ [M+H]⁺: 368.1492, found for: 368.1493.

Dimethyl 2-(4-methoxyphenyl)-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarbo-

xylate (7f)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 6:1) gave **7f** as white solid (28.4 mg, 0.07 mmol, 37 % yield); mp: 122–124 °C; $R_f = 0.32$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 1H), 7.20 (d, J = 8.4 Hz, 2H), 7.13–

7.09 (m, 1H), 7.02 (td, J = 7.6 Hz, 1.2 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 6.16 (d, J = 7.6 Hz, 1H), 5.75 (s, 1H), 5.00 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H), 2.61 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.80 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 168.5, 159.4, 148.0, 136.7, 129.7, 129.0, 127.9, 126.0, 122.7, 117.0, 113.5, 79.7, 60.8, 55.7, 55.2, 53.4, 52.8, 25.1; HRMS calcd for C₂₁H₂₂NO₆ [M+H]⁺: 384.1442, found for: 384.1447.

Dimethyl 2-vinyl-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarboxylate (7g)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7g as white solid (35.2 mg, 0.12 mmol, 58 % yield); mp: 62–64 °C; $R_f = 0.32$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H

NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 6.8 Hz, 1H), 7.24–7.13 (m, 2H), 6.95 (d, J = 7.6 Hz, 1H), 5.80–5.70 (m, 1H), 5.69 (s, 1H), 5.25 (dt, J = 10.4 Hz, 1.2 Hz, 1H), 5.18 (dt, J = 17.6 Hz, 1.2 Hz, 1H), 4.45–4.38 (m, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 2.42 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.38 (dd, J = 14.0 Hz, 11.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.3, 148.1, 136.5, 134.7, 128.1, 126.1, 122.9, 118.9, 116.6, 79.6, 60.2, 55.3, 53.3, 52.7, 25.8; HRMS calcd for C₁₆H₁₈NO₅ [M+H]⁺: 304.1179, found for: 304.1178.

dimethyl 2-ethyl-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarboxylate (7h)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave **7h** as yellow oil (47.6 mg, 0.16 mmol, 78 % yield); $R_f = 0.40$ (EtOAc/ petroleum ether, v/v = 1/6); ¹H NMR (400 MHz, CDCl₃) δ

7.37 (d, *J* = 7.2 Hz, 1H), 7.23 (dd, *J* = 7.6 Hz, 0.8 Hz, 1H), 7.18–7.12 (m, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 5.66 (s, 1H), 3.86 (s, 3H), 3.71 (s, 3H), 2.34 (ddd, *J* = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.50–1.39 (m, 1H), 1.23–1.14 (m, 1H), 1.12–1.10 (m, 2H), 1.09–1.07 (m, 3H) ppm; ¹³C

NMR (100 MHz, CDCl₃) δ 168.6, 168.5, 148.1, 136.9, 128.2, 125.9, 123.0, 116.4, 79.6, 60.1, 55.8, 53.2, 52.6, 27.6, 26.0, 10.6; HRMS calcd for C₁₆H₂₀NO₅ [M+H]⁺: 306.1336, found for: 306.1337.

Dimethyl 7-chloro-2-phenyl-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarboxylate (7i)

COOMe COOMe COOMe Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave 7i as colorless oil (58.1 mg, 0.15 mmol, 75 % yield); $R_f = 0.50$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR

(400 MHz, CDCl₃) δ 7.39 (d, J = 2.0 Hz, 1H), 7.34–7.28 (m, 5H), 6.98 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.03 (d, J = 8.4 Hz, 1H), 5.73 (s, 1H), 5.06 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 2.68 (dd, J = 14.0 Hz, 2.4 Hz, 1H), 1.85 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 168.2, 146.8, 138.7, 136.4, 131.4, 128.4, 128.3, 128.0, 123.5, 117.8, 79.7, 61.1, 55.4, 53.5, 53.0, 24.8; HRMS calcd for C₂₀H₁₉ClNO₅ [M+H]⁺: 388.0946, found for: 388.0945.

Dimethyl 7-chloro-2-(4-fluorophenyl)-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)dicarboxylate (7j)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave **7j** as white solid (72.2 mg, 0.18 mmol, 89 % yield); mp: 100–102 °C; $R_f = 0.53$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 2.0 Hz, 1H), 7.28 (dd, J

= 8.8 Hz, 5.2 Hz, 2H), 7.06–6.98 (m, 3H), 6.04 (d, J = 8.0 Hz, 1H), 5.73 (s, 1H), 5.02 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.90 (s, 3H), 3.79 (s, 3H), 2.67 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.79 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 168.1, 163.8, 146.5, 138.7, 132.3 (d, J = 3.0 Hz), 131.6, 130.1 (d, J = 8.0 Hz), 128.1, 123.6, 117.7, 115.2 (d, J = 22.0 Hz), 79.6, 60.5, 55.3, 53.6, 53.0, 24.9; HRMS calcd for C₂₀H₁₈ClFNO₅ [M+H]⁺: 406.0852, found for: 406.0849.

Dicarboxylate (7k)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7k as white solid (74.3 mg, 0.18 mmol, 88 % yield); mp: 146–148 °C; $R_f = 0.51$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 2.0 Hz, 1H), 7.32 (dd, J= 6.8 Hz, 2.0 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 7.00 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 6.06 (d, J = 10.4 Hz, 2H), 7.00 (dd, J = 10.4 Hz, 2H), 7.00 (8.0 Hz, 1H), 5.72 (s, 1H), 5.02 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.90 (s, 3H), 3.79 (s, 3H), 2.67 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.78 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 168.1, 146.5, 138.7, 135.0, 134.3, 131.7, 129.7, 128.5, 128.1,

123.6, 117.7, 79.6, 60.5, 55.3, 53.6, 53.0, 24.8; HRMS calcd for $C_{20}H_{18}Cl_2NO_5$ [M+H]⁺: 422.0557, found for: 422.0558.

Dimethyl 2-(4-bromophenyl)-7-chloro-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)dicarboxylate (7l)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave 71 as white solid (75.6 mg, 0.16 mmol, 81 % yield); mp: 108–110 °C; $R_f = 0.55$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 2.0

Hz, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.01 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.07 (d, J = 8.4 Hz, 1H), 5.72 (s, 1H), 5.00 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.90 (s, 3H), 3.78 (s, 3H), 2.65 (dd, J = 14.0 Hz, 2.4 Hz, 1H), 1.78 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 168.1, 146.5, 138.6, 135.5, 131.7, 131.5, 130.1, 128.2, 123.6, 122.5, 117.7, 79.6, 60.5, 55.3, 53.6, 53.0, 24.7; HRMS calcd for C₂₀H₁₈BrClNO₅ [M+H]⁺: 466.0051, found for: 466.0054.

Dimethyl 7-chloro-2-(p-tolyl)-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarboxylate (7m)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave 7m as white solid (55.5 mg, 0.14 mmol, 69 % yield); mp: 126–128 °C; $R_f = 0.55$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 2.0 Hz, 1H), 7.18–7.13 (m, 4H), 6.99 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 6.06 (d, J = 8.4 Hz, 1H), 5.72 (s, 1H), 5.02 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 2.65 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 2.36 (s, 3H), 1.83 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.2, 146.8, 138.7, 138.1, 133.4, 131.4, 129.0, 128.3, 128.0, 123.5, 117.9, 79.6, 60.9, 55.4, 53.5, 53.0, 24.8, 21.2; HRMS calcd for C₂₁H₂₁ClNO₅ [M+H]⁺: 402.1103, found for: 402.1102.

Dimethyl 7-methoxy-2-phenyl-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarboxylate (7n)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave **7n** as white solid (57.5 mg, 0.15 mmol, 75 % yield); mp: 118–120 °C; $R_f = 0.34$ (EtOAc/ petroleum ether, v/v

= 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.28 (m, 5H), 6.95 (d, *J* = 2.4 Hz, 1H), 6.51 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 6.05 (d, *J* = 8.4 Hz, 1H), 5.72 (s, 1H), 5.02 (dd, *J* = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.77 (s, 3H), 2.65 (ddd, *J* = 14.0 Hz, 3.6 Hz, 1.6 Hz, 1H), 1.85 (dd, *J* = 14.0 Hz, 12.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 158.1, 140.9, 138.2, 137.0, 128.5, 128.2, 128.1, 117.3, 112.3, 109.5, 79.9, 61.4, 55.7, 55.6, 53.4, 52.8, 24.8; HRMS calcd for C₂₁H₂₂NO₆ [M+H]⁺: 384.1442, found for: 384.1444.

Dimethyl 2-(4-chlorophenyl)-7-methoxy-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)dicarboxylate (70)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave **70** as colorless oil (61.0 mg, 0.15 mmol, 73 % yield); $R_f = 0.36$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR: (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.8 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 2H),

6.95 (d, J = 2.4 Hz, 1H), 6.52 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.07 (d, J = 8.4 Hz, 1H), 5.71 (s, 1H), 4.98 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.77 (s, 3H), 2.63 (ddd, J = 14.0 Hz, 8.4 Hz, 2.4 Hz 1H), 1.78 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.3, 158.2, 140.6, 138.1, 135.6, 134.0, 129.8, 128.4, 117.2, 112.3, 109.6, 79.9, 60.8, 55.7, 55.5, 53.5, 52.9, 24.8; HRMS calcd for C₂₁H₂₁ClNO₆ [M+H]⁺: 418.1052,

found for: 418.1054.

Dimethyl 2-(4-bromophenyl)-7-methoxy-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)dicarboxylate (7p)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7**p** as colorless oil (68.4 mg, 0.15 mmol, 74 % yield); $R_f = 0.48$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H),

6.95 (d, J = 2.4 Hz, 1H), 6.53 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.08 (d, J = 8.4 Hz, 1H), 5.71 (s, 1H), 4.96 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 3.76 (s, 3H), 2.63 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.78 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.3, 158.2, 140.6, 138.1, 136.1, 131.3, 130.2, 122.2, 117.2, 112.3, 109.6, 79.9, 60.8, 55.7, 55.5, 53.5, 52.9, 24.8; HRMS calcd for C₂₁H₂₁BrNO₆ [M+H]⁺: 462.0547, found for: 462.0544.

Dimethyl 7-methoxy-2-(p-tolyl)-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarboxylate (7q)

COOME Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7**q** as white solid (57.2 mg, 0.14 mmol, 72 % yield); mp: 138–140 °C; $R_f = 0.38$ (EtOAc/ petroleum ether, v/v

= 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.18–7.12 (m, 4H), 6.94 (d, *J* = 2.0 Hz, 1H), 6.52 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 6.08 (d, *J* = 8.4 Hz, 1H), 5.71 (s, 1H), 4.98 (dd, *J* = 12.0 Hz, 3.2 Hz, 1H), 3.88 (s, 3H), 3.77 (s, 6H), 2.62 (dd, *J* = 14.0 Hz, 2.8 Hz, 1H), 2.35 (s, 3H), 1.86–1.80 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 158.0, 141.0, 138.2, 137.8, 134.0, 128.9, 128.4, 117.4, 112.3, 109.4, 79.9, 61.2, 55.7, 55.6, 53.4, 52.8, 24.9, 21.2; HRMS calcd for C₂₂H₂₄NO₆ [M+H]⁺: 398.1598, found for: 398.1600.

Dimethyl 7-bromo-2-phenyl-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarbo-

xylate (7r)

MeO

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave

7r as colorless oil (73.5 mg, 0.17 mmol, 85 % yield); $R_f = 0.46$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J =1.6 Hz, 1H), 7.35–7.28 (m, 5H), 7.13 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 5.98

(d, J = 8.0 Hz, 1H), 5.73 (s, 1H), 5.06 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 2.68 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.85 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 168.1, 147.3, 139.0, 136.3, 130.9, 128.4, 128.3, 128.2, 126.3, 119.1, 118.2, 79.5, 61.0, 55.3, 53.4, 52.9, 24.7; HRMS calcd for C₂₀H₁₉BrNO₅ [M+H]⁺: 432.0441, found for: 432.0440. the enantiomeric excess of (1*R*, 2*R*, 5*R*)-7**r** was determined to be 93.7 % ee by HPLC with an IC-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; minor enantiomer t_R = 7.78 min, major enantiomer t_R = 16.36 min. [α]^D₂₀ = -241.0 (c = 1.00, CH₂Cl₂).

Dimethyl 7-bromo-2-(4-chlorophenyl)-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)dicarboxylate (7s)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave **7s** as white solid (80.3 mg, 0.17 mmol, 86 % yield); mp: 130–132 °C; $R_f = 0.52$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 1.6 Hz, 1H), 7.33–7.30

(m, 2H), 7.24 (d, J = 8.4 Hz, 2H), 7.15 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.01 (d, J = 8.0 Hz, 1H), 5.72 (s, 1H), 5.02 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 2.67 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.79 (dd, J = 14.0 Hz, 12.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 168.0, 147.0, 138.9, 134.9, 134.2, 131.0, 129.7, 128.5, 126.4, 119.3, 118.1, 79.4, 60.3, 55.2, 53.5, 53.0, 24.7; HRMS calcd for C₂₀H₁₈BrClNO₅ [M+H]⁺: 466.0051, found for: 466.0056.

Dimethyl 7-bromo-2-(4-bromophenyl)-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)dicarboxylate (7t)

1/5; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 1.6 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.19– 7.14 (m, 3H), 6.02 (d, J = 8.0 Hz, 1H), 5.72 (s, 1H), 5.00 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.90 (s, 3H), 3.78 (s, 3H), 2.67 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.78 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 168.1, 147.0, 139.0, 135.5, 131.5, 131.3, 131.1, 130.2, 130.1, 126.5, 122.5, 119.4, 118.1, 79.5, 60.5, 55.3, 53.6, 53.1, 24.7; HRMS calcd for C₂₀H₁₈Br₂NO₅ [M+H]⁺: 511.1296, found for: 511.1284.

Dimethyl 7-bromo-2-(p-tolyl)-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarboxylate (7u)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave 7u as white solid (75.0 mg, 0.17 mmol, 84 % yield); mp: 138–140 °C; $R_f = 0.58$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 2.0 Hz, 1H), 7.18–7.12 (m, 5H), 6.00 (d, J = 8.0 Hz, 1H), 5.72 (s, 1H), 5.01 (dd, *J* = 12.0 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 2.65 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 2.35 (s, 3H), 1.83 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm;¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.2, 147.4, 139.1, 138.1, 133.4, 130.9, 129.0, 128.3, 126.3, 119.0, 118.4, 79.5, 60.9, 55.4, 53.5, 53.0, 24.9, 21.2; HRMS calcd for C₂₁H₂₁BrNO₅ [M+H]⁺: 446.0598, found for: 446.0596.

Dimethyl 5-methyl-2-phenyl-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarboxylate (7v)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 9:1) gave 7v as white solid (44.1 mg, 0.12 mmol, 60 % yield); mp: 118–120 °C; $R_f = 0.58$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400

MHz, CDCl₃) δ 7.40 (d, *J* = 7.2 Hz, 1H), 7.36–7.29 (m, 5H), 7.13 (t, *J* = 7.2 Hz, 1H), 6.99 (td, J = 7.6 Hz, 1.2 Hz, 1H), 6.11 (d, J = 7.6 Hz, 1H), 5.41 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.86 (s, 3H), 3.71 (s, 3H), 2.52 (dd, J = 14.0 Hz, 3.6 Hz, 1H), 1.90 (s, 3H), 1.81 (dd, J = 14.0 Hz, 12.0Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 169.3, 148.4, 140.3, 137.2, 128.4, 128.2, 128.1, 127.5, 126.0, 123.2, 116.7, 84.2, 60.8, 57.9, 52.8, 52.5, 27.9, 19.4; HRMS calcd for C₂₁H₂₂NO₅ [M+H]⁺: 368.1492, found for: 368.1490.

Dimethyl 6-phenyl-6,7-dihydro-5,9-epoxy[1,3]dioxolo[4',5':4,5]benzo[1,2-*b*]azepine-8,8(9*H*)-dicarboxylate (7w)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave **7w** as white solid (35.7 mg, 0.09 mmol, 45 % yield); mp: 134–136 °C; $R_f = 0.33$ (EtOAc/ petroleum ether, v/v = 1/5); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.29 (m, 5H), 6.86 (s, 1H), 5.91 (d, J = 1.6 Hz, 2H), 5.66 (s, 1H), 5.65 (s, 1H), 5.00 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 2.68 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.90 (dd, J = 14.0 Hz, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 168.5, 147.1, 145.6, 142.3, 136.8, 129.0, 128.4, 128.3, 128.2, 103.8, 101.7, 99.6, 80.1, 61.0, 55.5, 53.4, 52.9, 24.8; HRMS calcd for C₂₁H₂₀NO₇ [M+H]⁺: 398.1234, found for: 398.1236.

4-benzyl4-methyl 2-phenyl-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarboxylate (7x, 7x²)

Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 8:1) gave 7x and 7x' as colorless oil (68.6 mg, 0.16 mmol, 80 % yield); $R_f = 0.40$ (EtOAc/ petroleum ether, v/v = 1/5); the minor product ¹H

NMR (600 MHz, CD₃OD) δ 7.31–7.29 (m, 8H), 7.20–7.19 (m, 2H), 7.03 (t, *J* = 7.8 Hz, 1H), 7.00–6.98 (m, 1H), 6.03 (d, *J* = 7.8 Hz, 1H), 5.69 (s, 1H), 5.33 (d, *J* = 12.6 Hz, 1H), 5.25 (d, *J* = 4.2 Hz, 1H), 5.11 (d, *J* = 12.0 Hz, 1H), 4.95 (dd, *J* = 12.6 Hz, 3.6 Hz, 1H), 3.75 (d, *J* = 0.6 Hz, 3H), 2.55 (d, *J* = 13.8 Hz, 1H), 1.83 (dd, *J* = 13.8 Hz, 12.6 Hz, 1H) ppm; the major product ¹H NMR (600 MHz, CD₃OD) δ 7.41–7.33 (m, 7H), 7.20–7.19 (m, 3H), 7.12 (t, *J* = 7.8 Hz, 1H), 6.98–6.94 (m, 1H), 6.05 (d, *J* = 7.8 Hz, 1H), 5.72 (s, 1H), 5.33 (d, *J* = 12.6 Hz, 1H), 5.27 (d, *J* = 4.8 Hz, 1H), 5.11 (d, *J* = 12.0 Hz, 1H), 4.97 (dd, *J* = 12.0 Hz, 3.6 Hz, 1H), 3.64 (d, *J* = 0.6 Hz, 3H), 2.55 (d, *J* = 13.8 Hz, 1H), 1.83 (dd, *J* = 13.8 Hz, 12.6 Hz, 1H) ppm; HRMS calcd for C₂₆H₂₄NO₅ [M+H]⁺: 430.1649, found for: 430.1650.

4-tert-butyl 4-methyl 2-phenyl-2,3-dihydro-1,5-epoxybenzo[b]azepine-4,4(5H)-dicarbo-

Xylate (7y)

Compound **7y** was prepared according to the procedure for the [3+4]annulation reaction of D-A cyclopropanes with anthranils in 0.5 mmol scale, Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 20:1) gave **7y** as white solid (20.8 mg, 0.05 mmol,

10 % yield); mp: 110–112 °C; $R_f = 0.34$ (EtOAc/ petroleum ether, v/v = 1/20); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.2 Hz, 1H), 7.33–7.30 (m, 5H), 7.10 (td, J = 7.6 Hz, 1.2 Hz, 1H), 6.99 (td, J = 7.6 Hz, 1.2 Hz, 1H), 6.13 (d, J = 7.6 Hz, 1H), 5.70 (s, 1H), 5.08 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 3.76 (s, 3H), 2.59 (ddd, J = 14.0 Hz, 3.6 Hz, 1.2 Hz, 1H), 1.77 (dd, J = 13.6 Hz, 12.0 Hz, 1H), 1.55 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 166.8, 148.1, 137.1, 137.0, 128.5, 128.1, 128.0, 127.8, 125.9, 122.7, 116.8, 83.0, 79.9, 61.2, 56.2, 52.5, 27.9, 24.8; HRMS calcd for C₂₃H₂₆NO₅ [M+H]⁺: 396.1805, found for: 396.1808.

4-tert-butyl 4-methyl 2-phenyl-2,3-dihydro-1,5-epoxybenzo[*b*]azepine-4,4(5*H*)-dicarbo-Xylate (7y²)

Compound 7y was prepared according to the procedure for the [3+4]annulation reaction of D-A cyclopropanes with anthranils in 0.5 mmol sacle, Purification by flash chromatography on silica gel petroleum ether/EtOAc (V/V = 20:1) gave 7y as colorless oil (3.4 mg, 0.01 mmol,

2 % yield); $R_f = 0.27$ (EtOAc/ petroleum ether, v/v = 1/20); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.6 Hz, 1H), 7.34–7.32 (m, 5H), 7.11 (td, J = 7.2 Hz, 1.2 Hz, 1H), 7.00 (td, J =7.6 Hz, 0.8 Hz, 1H), 6.14 (d, J = 7.6 Hz, 1H), 5.72 (s, 1H), 5.03 (dd, J = 12.4 Hz, 3.6 Hz, 1H), 3.89 (s, 3H), 2.58 (ddd, J = 14.0 Hz, 3.6 Hz, 1.6 Hz, 1H), 1.81 (dd, J = 14.0 Hz, 12.0 Hz, 1H), 1.47 (s, 9H) ppm; HRMS calcd for C₂₃H₂₆NO₅ [M+H]⁺: 396.1805, found for: 396.1803.

Dimethyl 2-(2-((2-formylphenyl)amino)-2-phenylethyl)malonate (8)

7.33 (m, 4H), 7.27–7.26 (m, 1H), 7.25–7.23 (m, 1H), 6.68 (t, *J* = 7.6 Hz, 1H), 6.55 (d, *J* = 8.4

Hz, 1H), 4.60 (dd, J = 14.4 Hz, 7.2 Hz, 1H), 3.76 (s, 3H), 3.69 (s, 3H), 3.53 (t, J = 7.6 Hz, 1H), 2.55–2.42 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 169.4, 169.2, 149.6, 141.6, 136.6, 135.8, 128.9, 127.6, 126.3, 118.8, 115.6, 112.0, 55.0, 52.7, 52.6, 48.9, 37.0; HRMS calcd for C₂₀H₂₂NO₅ [M+H]⁺: 356.1492, found for: 356.1491.

Dimethyl 1-acetyl-5-hydroxy-2-phenyl-2,3-dihydro-1H-benzo[*b*]azepine-4,4(5*H*)-dicarboxylate (9)

White solid (191.0 mg, 0.48 mmol, 80 % yield); mp: 182-184 °C; $R_f = 0.19$ (EtOAc/ petroleum ether, v/v = 1/1); ¹H NMR (600 MHz, DMSO- d_6) δ 7.52(d, J = 7.8 Hz, 1H), 7.49–7.45 (m, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.33– 7.31 (m, 4H), 7.23–7.20 (m, 1H), 6.04 (d, J = 5.4 Hz, 1H), 5.65 (dd, J =

12.6 Hz, 1.8 Hz, 1H), 5.36 (d, J = 5.4 Hz, 1H), 3.74 (s, 3H), 3.52 (s, 3H), 2.31 (d, J = 14.4 Hz 1H), 1.64 (s, 3H), 1.36 (dd, J = 15.0 Hz, 12.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 170.0, 169.4, 144.3, 139.0, 135.5, 130.6, 130.5, 129.4, 128.4, 127.7, 127.0, 126.4, 74.5, 60.1, 54.7, 53.0, 52.8, 36.5, 23.3; HRMS calcd for C₂₂H₂₄NO₆ [M+H]⁺: 398.1598, found for: 398.1600.

Dimethyl 5-acetoxy-1-acetyl-2-phenyl-2,3-dihydro-1H-benzo[*b*]azepine-4,4(5*H*)-dicarboxylate (10)

White solid (118.5 mg, 0.27 mmol, 90 % yield); mp: 190-192 °C; $R_f = 0.37$ (EtOAc/ petroleum ether, v/v = 1/1); ¹H NMR (600 MHz, DMSO- d_6) δ 7.63–7.59 (m, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 7.37–7.32 (m, 4H), 7.25 (t, J = 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 7.37–7.32 (m, 4H), 7.25 (t, J = 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 7.37–7.32 (m, 4H), 7.25 (t, J = 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 7.37–7.32 (m, 4H), 7.25 (t, J = 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 7.37–7.32 (m, 4H), 7.25 (t, J = 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 7.37–7.32 (m, 4H), 7.25 (t, J = 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 7.2 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H), 5.67 (dd, J = 15.0 Hz, 1H), 6.45 (s, 1H)

12.6 Hz, 1.8 Hz, 1H), 3.77 (s, 3H), 3.58 (s, 3H), 2.43 (d, J = 14.4 Hz, 1H), 1.91 (s, 3H), 1.60 (s, 3H), 1.53 (d, J = 12.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 169.0, 168.8, 167.7, 144.3, 139.1, 132.2, 131.9, 130.2, 130.1, 129.0, 128.5, 128.0, 127.1, 126.3, 125.8, 74.6, 58.3, 54.7, 53.0, 52.8, 36.6, 23.4, 20.4; HRMS calcd for C₂₄H₂₆NO₇ [M+H]⁺: 440.1704, found for: 440.1707.

Colorless oil (42.5 mg, 0.13mmol, 88 % yield); $R_f = 0.53$ (EtOAc/ petroleum ether, v/v = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.37–7.30 (m, 5H), 7.27–7.18 (m, 3H), 7.09 (d, J = 6.4 Hz, 1H), 6.24 (dd, J =

10.8 Hz, 5.2 Hz, 1H), 3.86 (s, 3H), 3.20 (dd, J = 15.6 Hz, 5.2 Hz, 1H), 2.71 (ddd, J = 15.6 Hz, 10.8 Hz, 1.2 Hz, 1H), 1.73 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 167.2, 140.2, 139.9, 138.4, 134.8, 133.0, 130.9, 130.7, 129.4, 128.3, 127.9, 127.4, 127.1, 64.6, 52.3, 31.1, 23.2; HRMS calcd for C₂₀H₂₀NO₃ [M+H]⁺: 322.1438, found for: 322.1437.

4. ¹H-NMR and ¹³C-NMR spectra of the compounds

¹H-NMR (400 MHz, CDCl₃) spectra of compound 11

 $^1\text{H-NMR}$ (400 MHz, CDCl₃) spectra of compound 4

¹³C-NMR (150 MHz, CDCl₃) spectra of compound 4

H-H COSY (600 MHz, CDCl₃) spectra of compound 4

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7a**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound 7a

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7b**

$^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound **7b**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound 7c

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7d**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7d**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound 7e

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7f**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7f**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7g**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7h**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound 7i

¹H-NMR (400 MHz, CDCl₃) spectra of compound 7j

¹³C-NMR (100 MHz, CDCl₃) spectra of compound 7j

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7k**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound 7k

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7**I

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7**I

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7m**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7n**

¹H-NMR (400 MHz, CDCl₃) spectra of compound **70**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **70**

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7p**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7p**

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7q**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7q**

¹H-NMR (400 MHz, CDCl₃) spectra of compound **7r**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound **7r**

¹H-NMR (400 MHz, CDCl₃) spectra of compound 7s

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound 7s

¹H-NMR (400 MHz, CDCl₃) spectra of compound 7t

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound 7t

¹H-NMR (400 MHz, CDCl₃) spectra of compound 7u

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound 7u

 $^1\text{H-NMR}$ (400 MHz, CDCl₃) spectra of compound 7v

 $^{13}\text{C-NMR}$ (100 MHz, CDCl3) spectra of compound 7v

 $^1\text{H-NMR}$ (400 MHz, CDCl₃) spectra of compound $\mathbf{7w}$

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound 7w

¹H-NMR (600 MHz, CD₃OD) spectra of the mixture of **7x** and **7x'**

¹³C-NMR (100 MHz, CDCl₃) spectra of the mixture of **7x** and **7x**'

 1 H-NMR (400 MHz, CDCl₃) spectra of compound 7y

 $^{13}\text{C-NMR}$ (100 MHz, CDCl3) spectra of compound $7\mathbf{y}$

¹H-NMR (400 MHz, CDCl₃) spectra of compound $7y^{,}$

¹H-NMR (400 MHz, CDCl₃) spectra of compound **8**

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound $\boldsymbol{8}$

¹H-NMR (600 MHz, DMSO-*d*₆) spectra of compound **9**

¹³C-NMR (100 MHz, CDCl₃) spectra of compound 9

¹H-NMR (600 MHz, DMSO-*d*₆) spectra of compound **10**

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound 10

¹H-NMR (400 MHz, CDCl₃) spectra of compound 11

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectra of compound 11

5. X-ray crystallographic data

$\begin{array}{c} C_{1} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{1} \\ C_{2} \\$		CCDC 15409	COOMe COOMe 957		
Bond precision:	C-C = 0.0047 A	Wavele	ngth=0.71073		
Cell:	a=16.8611(8)	b=7.7647(3)	c=27.0984(13)		
	alpha=90	beta=98.764(5)	gamma=90		
Temperature:	293 K				
	Calculated	Reporte	d		
Volume	3506.3(3)	3506.3(3)		
Space group	P 2/n	P 1 2/n	1		
Hall group	-P 2yac	-P 2yac			
Moiety formula	$C_{20}H_{19}NO_5$	$C_{20}H_{19}N$	NO_5		
Sum formula	$C_{20}H_{19}NO_5$	$C_{20}H_{19}N$	NO_5		
Mr	353.36	353.36 353.36			
Dx,g cm ⁻³	1.339) 1.339			
Z	8	8			
Mu (mm ⁻¹)	0.097	0.097			
F000	1488.0	1488.0			
F000'	1488.80				
h, k, lmax	20, 9, 33	20, 9, 3	3		
Nref	6924	6901			
Tmin,Tmax	0.980, 0.986	0.914, 1	.000		
Tmin'	0.980				
Correction method= # Reported T Limits: Tmin= 0.914 Tmax= 1.000					
AbsCorr = MULTI-SCAN					
Data completeness= 0.997		Theta(max)= 26.020			
R(reflections)= 0.0660(3855)		wR2(reflections)= 0.1784(6901)			
S = 1.009]	Npar= 473			
Displacement ellipsoids are drawn at 30% probability level					

X-ray Crystallographic Data of Compound 7a

X-ray Crystallographic Data of Compound 7r

$B_{r-1} \xrightarrow{C_{14}} \underbrace{C_{15}}_{C_{16}} \underbrace{C_{15}}_{C_{16}} \underbrace{C_{13}}_{C_{16}} \underbrace{C_{16}}_{C_{16}} \underbrace{C_{16}}_{C$		Br CCDC 1539625		
Bond precision:	C-C = 0.0082 A	Wave	length=0.71073	
Cell:	a=6.8280(3)	b=11.7422(5)	c=23.4879(10)	
	alpha=90	beta=90	gamma=90	
Temperature:	293 K			
	Calculated	Repor	rted	
Volume	1883.16(14)	1883.	16(13)	
Space group	P 21 21 21	P 21 2	21 21	
Hall group	P 2ac 2ab	P 2ac	2ab	
Moiety formula	$C_{20}H_{18}BrNO_5$	$C_{20}H_{18}BrNO_5$		
Sum formula	$C_{20}H_{18}BrNO_5$	$C_{20}H_{18}BrNO_5$		
Mr	432.25	432.2	6	
Dx,g cm ⁻³	1.525	1.525		
Z	4	4		
Mu (mm ⁻¹)	2.214	2.214		
F000	880.0	880.0		
F000'	879.27			
h, k, lmax	8, 14, 28	8, 14,	28	
Nref	3715[2155]	3367		
Tmin,Tmax	0.643, 0.733	0.736	, 1.000	
Tmin'	0.608			
Correction method= # R	eported T Limits: Tn	nin= 0.736 Tmax=	1.000	
AbsCorr = MULTI-SCA	N			
Data completeness= 1.56	5/0.91	Theta(max)=	= 26.022	
R(reflections) = 0.0513(2)	2403) v	wR2(reflections)= 0.1013(3367)		
S = 1.049	1	Npar= 246		
Displacement ellipsoids	are drawn at 30% pr	obability level		

X-ray Crystallographic Data of Compound 7y

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		CC	COOMe COOtBu N N DC 1559038		
Bond precision:	C-C = 0.0036 A	Wave	elength=0.71073		
Cell:	a=11.8383(9)	b=13.1551(10)	c=13.6364(10)		
	alpha=78.762(7)	beta=85.450(6)	gamma=89.969(6)		
Temperature:	173 K				
	Calculated	Repo	rted		
Volume	2076.1(3)	2076.	1(3)		
Space group	P -1	P -1			
Hall group	-P 1	-P 1			
Moiety formula	C ₂₃ H ₂₅ NO ₅ C ₂₃ H ₂₅ NO ₅		25NO5		
Sum formula	$C_{23}H_{25}NO_5$	$C_{23}H_{23}$	₂₅ NO ₅		
Mr	395.44	395.4	4		
Dx,g cm ⁻³	1.265	1.265			
Z	4	4			
Mu (mm ⁻¹)	0.089	0.089)		
F000	840.0	840.0)		
F000'	840.43				
h, k, lmax	14, 16, 16	14, 10	6, 16		
Nref	8194	8179			
Tmin,Tmax	0.984, 0.988	0.885	, 1.000		
Tmin'	0.981				
Correction method= # Reported T Limits: Tmin= 0.885 Tmax= 1.000					
AbsCorr = MULTI-SCAN	1				
Data completeness= 0.998		Theta(max)= 26.020			
R(reflections) = 0.0599(54)	44)	wR2(reflections)= 0.1546(8179)			
S = 1.054		Npar= 531			
Displacement ellipsoids are drawn at 30% probability level					

X-ray Crystallographic Data of Compound 9

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	4 C15	Ac N- HO CCDC15	COOMe COOMe 40954
Bond precision:	C-C = 0.0037 A	Wave	elength=0.71073
Cell:	a=10.9730(4)	b=15.1158(5)	c=25.0975(8)
	alpha=90	beta=90	gamma=90
Temperature:	293 K		
	Calculated	Repo	rted
Volume	4162.8(2)	4162.	.8(2)
Space group	P b c a	Pbc	a
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	$C_{22}H_{23}NO_6$	$C_{22}H_{23}NO_{6}$	
Sum formula	$C_{22}H_{23}NO_6$	C ₂₂ H ₂₃ NO ₆	
Mr	397.41	397.4	1
Dx,g cm ⁻³	1.268	1.268	8
Ζ	8	8	
Mu (mm ⁻¹)	0.093	0.093	
F000	1680.0	1680.	.0
F000'	1680.92		
h, k, lmax	13, 18, 30	13, 13	8, 30
Nref	4105	4097	
Tmin,Tmax	0.976, 0.983	0.741	, 1.000
Tmin'	0.976		
Correction method= # Re	eported T Limits: Tr	min= 0.741 Tmax=	1.000
AbsCorr = MULTI-SCA	N		
Data completeness= 0.99	8	Theta(max)=26	.020
R(reflections) = 0.0562(2)	2441)	wR2(reflections)= (0.1458(4097)
S = 1.066		Npar= 266	
Displacement ellipsoids a	are drawn at 30% pr	obability level	

6. Chiral HPLC chromatograms

Chiral HPLC chromatogram of (S)-1a

Dool	ak Processed Channel	Retention Time	Peak Area	Peak Area	Peak Height
Реак		(min)	(mAU*s)	(%)	(mAU)
1	DAD 230.4 nm	16.044	148.80299	0.22	7
2	DAD 230.4 nm	19.153	6.79036e4	99.78	2495

Chiral HPLC chromatogram of (1R, 2R, 5R)-7a

Peak	Processed Channel	Retention Time	Peak Area	Peak Area	Peak Height
		(min)	(mAU*s)	(%)	(mAU)
1	DAD 210.4 nm	13.927	6.74633e4	99.71	2313
2	DAD 210.4 nm	33.904	198.21735	0.29	5

Chiral HPLC chromatogram of (1R, 2R, 5R)-7r

Peak	Processed Channel	Retention Time	Peak Area	Peak Area	Peak Height
		(min)	(mAU*s)	(%)	(mAU)
1	DAD 210.4 nm	8.242	2.57073e4	49.04	2222
2	DAD 210.4 nm	16.720	2.67155e4	50.96	997

Peak	Processed Channel	Retention Time	Peak Area	Peak Area	Peak Height
		(min)	(mAU*s)	(%)	(mAU)
1	DAD 210.4 nm	7.784	5.41861e4	96.84	3042
2	DAD 210.4 nm	16.358	1767.09070	3.16	66