Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information For

Nickel-Catalysed Direct Alkylation of Thiophenes via Double C(sp3)-

*H/C(sp2)-H Bond Cleavage: The Importance of KH*₂*PO*₄

Xie Wang,^{a,†} Peipei Xie,^{b,†} Renhua Qiu,^{*,a,c} Longzhi Zhu,^{a,c} Ting Liu,^a You Li,^a Takanori Iwasaki,^c Chak-Tong Au,^d Xinhua Xu,^a Yuanzhi Xia,^{*,b} Shuang-Feng Yin^{*,a} Nobuaki Kambe^c

^aState Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China

^bCollege of Chemistry and Chemical Engineering, Wenzhou University, Wenzhou, 325035, P.R. China

Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan

^dCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411114, P.R. China

^[†] Xie Wang and Peipei Xie contribute equally to this work.

Tel/Fax: +86-731-88821171 renhuaqiu@hnu.edu.cn (Dr. Qiu) xyz@wzu.edun.cn (Dr. Xia) sf_yin@hnu.edu.cn (Dr. Yin)

1	General	S2
2	Functionalized thiophenes and related compounds	S3
3	Structures of Starting Materials	S4
4	Optimization of reaction conditions	S 8
5	Analytical Data for the Products	S10
6	Deuterium Labeling Experiment	S27
7	Computational Details and Results	S32
8	References	S51
9	Copies of ¹ H, ¹³ C NMR Charts for the Compounds	S52

1. General

Instrumentation

All the reactions were carried out under an N₂ atmosphere using standard Schlenk techniques. Glassware was dried in an oven (150 °C) and heated under reduced pressure before use. Flash column chromatography was performed using Qingdao Haiyang silica gel (300-400) with distilled solvents. ¹H NMR (400MHz) spectra were recorded on Bruker Avance 400 spectrometers in CDCl₃ [using (CH₃)₄Si (for ¹H, δ = 0.00) as internal standard]. ¹³C NMR (100 MHz) spectra on Bruker Avance 400 spectrometers in CDCl₃ [using CDCl₃ (for ¹³C, δ = 77.00) as an internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiple. Chemical shifts (δ) are in parts per million relatives to CDCl₃ at 7.26 ppm for ¹H and at 77.16 ppm for ¹³C{¹H}, respectively. The NMR yields were determined by ¹H NMR spectra with dibromomethane as an internal standard.

Chemicals

Unless otherwise noted, all the solvents and commercially available reagents were purchased from commercial sources and used directly without further purification. Starting materials were prepared according to literature procedures.¹

2. Functionalized thiophenes and related compounds

Drugs such as duloxetine and tiaprofenic acid contain thiophene units (Figure S1).¹ Moreover, an alkyl-substituted derivative of shikonin containing the thiophenyl functionality exhibits *in vitro* antitumor activity. The prominence of thiophenes in the biological area is also known, with some being used as mAChR agonists and gelatinase inhibitors. Likewise, in the material sciences, thiophenes are a privileged motif. These sulfur-based aromatic species are key scaffolds of organic solar cell polymers and related functional materials such as JK-225 and JK-188.²

Figure S1. Functional compounds containing thiophene and thiazole units (ref 1-2 see in main text)

3. Structures of Starting Materials

General Procedure for the Preparation of Starting Materials

A solution of LDA (10 mmol) in THF was prepared from diisopropylamine (1.5 mL, 10.7 mmol) and 2.5 M *n*-BuLi in hexane (4.0 mL, 10 mmol) at -78 °C. To this LDA solution, a carboxylic acid ester (10 mmol) was added dropwise at -78 °C and the mixture was stirred at this temperature for 1 h. An alkyl halide (15 mmol) was then added dropwise to the solution at -78 °C [Eq.(1)]. After the addition, the mixture was warmed to room temperature and stirred overnight. Then the mixture was quenched with water at 0 °C, extracted with Et₂O (15 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, and then evaporated in vacuo to give the crude ester.

$$R^{3} - X$$

$$R^{1} - R^{2} - R^{3} - X$$

$$R^{1} - R^{2} - R^{3} - X$$

$$R^{1} - R^{3} - X$$

$$R^{1} - R^{3} - X$$

$$R^{2} - X$$

$$R^{3} - R^{3} -$$

To the ester obtained as above was added a solution of NaOH (2 M, 8.0 mL) and methanol (10 mL). The mixture was stirred overnight at 60 $^{\circ}$ C. After removal of methanol in vacuo, the pH of the mixture was adjusted to 2 with 3.0 M HCl. The mixture was then saturated with NaCl and extracted with Et₂O (15 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, and then evaporated in vacuo to give the crude carboxylic acid, which was used directly for the next step without further purification.

Oxalyl chloride (1.75 mL, 20 mmol) was added slowly to a stirred solution of thus formed carboxylic acid in CH_2Cl_2 (20 mL) and DMF (0.1 mL) at 0 °C. The mixture was stirred for 1 h at 0 °C and another 16 h at room temperature, and evaporated in vacuo. The residue was then dissolved in toluene (5.0 mL), evaporated in vacuo twice, to give the crude acid chloride, which was used directly for the next step without further purification.

The acid chloride obtained as above was added dropwise to a solution of 8-aminoquinoline (1.01 g, 7.0 mmol) and Et_3N (1.7 mL, 12 mmol) in CH_2Cl_2 (12 mL). The mixture was stirred overnight at room temperature. Then the mixture was diluted with CH_2Cl_2 (10 mL), washed successively with water, saturated aqueous NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:60, v/v), to afford the corresponding 8-aminoquinolinyl amides.

Analytical Data for Starting Materials

N-(quinolin-8-yl)pivalamide (1a)

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.43 (s, 9H), 7.43 – 7.55 (m, 3 H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.79 – 8.82 (m, 2 H), 10.28 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 27.76, 40.37, 116.22, 121.23, 121.53, 127.46, 127.94, 134.73, 136.32, 138.83, 148.22, 177.28.

2-methyl-2-phenyl-N-(quinolin-8-yl)propanamide (1b)

This amide was obtained as white solid. Melting point: 100-101 °C. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.78 (s, 6H), 7.25 – 7.35 (m, 2 H), 7.38 – 7.44 (m, 3 H), 7.48 – 7.55 (m, 3 H), 8.06 (d, *J* = 8.0 Hz, 1H), 8.59 (d, *J* = 3.2 Hz, 1H), 8.76 (d, *J* = 7.2 Hz, 1H), 9.87 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 27.02, 48.41, 115.98, 121.26, 121.43, 126.37, 127.02, 127.33, 127.84, 128.79, 134.72, 136.09, 138.69, 144.91, 148.12, 175.82.

2,2-dimethyl-3-phenyl-N-(quinolin-8-yl)propanamide (1c)

This amide was obtained as pale yellow solid. Melting point: $60 \degree C. \delta_H (400 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}) 1.29 (s, 6 \text{ H}), 2.92 (s, 2\text{H}), 7.00 - 7.11 (m, 5\text{H}), 7.23 (dd, <math>J = 8.4, 4.0 \text{ Hz}, 1\text{H}), 7.31 - 7.33 (m, 1 \text{ H}), 7.40 (t, <math>J = 8.0 \text{ Hz}, 1\text{H}), 7.94 (d, J = 8.4 \text{ Hz}, 1\text{H}), 8.58 (d, <math>J = 4.0 \text{ Hz}, 1\text{H}), 8.73 (d, J = 7.6 \text{ Hz}, 1\text{H}), 10.05 (s, 1\text{H}); \delta_C (100 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}) 25.32, 45.01, 46.93, 116.31, 121.42, 121.55, 126.42, 127.43, 127.92, 128.04, 130.32, 134.54, 136.24, 137.98, 138.80, 148.21, 176.08;$

1-methyl-N-(quinolin-8-yl)cyclohexanecarboxamide (1d)

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.36 (s, 3H). 1.51 – 1.66 (m, 8H), 2.18 – 2.22 (m, 2H), 7.40 – 7.54 (m, 3H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.80 – 8.83 (m, 2H), 10.29 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 23.00, 25.87, 26.60, 35.80, 44.38, 116.24, 121.12, 121.50, 127.45, 127.95, 134.82, 136.28, 138.84, 148.22, 176.62;

2-methyl-2-(naphthalen-2-ylmethyl)-*N*-(quinolin-8-yl)butanamide (1e)

This amide was obtained as brown oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.03 (t, J = 7.6 Hz, 3H), 1.40 (s, 3H), 1.62 – 1.70 (m, 1 H), 2.07 – 2.16 (m, 1 H), 2.99, 3.42 (AB, $J_{AB} = 13.2$ Hz, 2 H), 7.31 – 7.37 (m, 4H), 7.47 – 7.49 (m, 1 H), 7.56 (t, J = 8.0 Hz, 1H), 7.64 – 7.71 (m, 4 H), 8.10 (d, J = 8.4 Hz, 1H), 8.59 (d, J = 4.0 Hz, 1H), 8.87 (d, J = 7.6 Hz, 1H), 10.10 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 9.22, 20.36, 32.88, 46.22, 49.21, 116.31, 121.34, 121.45, 125.23, 125.69, 127.40, 127.44, 127.56, 127.88, 128.80, 128.85, 132.21, 133.32, 134.43, 135.56, 136.12, 138.74, 148.10, 175.31.

2,2-diphenyl-N-(quinolin-8-yl)propanamide (1f)

This amide was obtained as white solid. Melting point: 153 °C. δ_{H} (400 MHz; CDCl₃; Me₄Si) 2.18 (s, 3H), 7.30 – 7.42 (m, 11H), 7.46 – 7.55 (m, 2H), 8.08 (d, *J* = 7.2 Hz, 1H), 8.51 (d, *J* = 2.8 Hz, H), 8.87 (d, *J* = 7.2 Hz, 1H), 10.13 (s, 1H); δ_{C} (100 MHz; CDCl₃; Me₄Si) 27.17, 58.45, 116.02, 121.45, 121.58, 126.99, 127.34, 127.82, 128.35, 128.57, 134.51, 136.01, 138.80, 144.95, 148.05, 173.73.

2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide (1g)

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.80 (t, J = 7.2 Hz, 3H), **1.63 (s, 3H)**, 2.04 – 2.24 (m, 2 H), 7.14 – 7.20 (m, 3 H), 7.24 – 7.29 (m, 2 H), 7.35 – 7.40 (m, 3 H), 7.90 (d, J = 8.4 Hz, 1H), 8.46 (d, J = 4.4 Hz, 1H), 8.68 (d, J = 7.6 Hz, 1H), 9.76 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 9.09, **23.02**, 31.76, 52.29, 115.99, 121.24, 121.45, 126.06, 126.85, 126.94, 127.33, 127.86, 128.40, 128.75, 134.75, 136.09, 138.67, 143.91, 148.13, 175.44.

[D₃]-2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide ([D₃]-1g)

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.81 (t, J = 7.2 Hz, 3H). 2.05 – 2.25 (m, 2 H),7.14 – 7.21 (m, 2 H), 7.26 – 7.31 (m, 3 H), 7.36 – 7.41 (m, 3 H), 7.92 (d, J = 8.4 Hz, 1H), 8.48 (d, J = 4.4 Hz, 1H), 8.68 (d, J = 7.6 Hz, 1H), 9.77 (s, 1H), $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 9.06, 31.67, 52.07, 115.99, 121.20, 121.42,

N-(quinolin-8-yl)benzamide (1h)

This amide was obtained as white solid. Melting point: 89-90 °C. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.46-7.50 (m, 1H), 7.54-7.63 (m, 5H), 8.08-8.10 (m, 2H), 8.19 (dd, J = 8.2, 1.4 Hz, 1H), 8.86 (q, J = 2.0 Hz, 1H), 8.95 (dd, J = 7.6, 1.1 Hz, 1H), 10.76 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 116.54, 121.67, 127.29, 127.47, 127.99, 128.78, 131.82, 134.60, 135.17, 136.38, 138.78, 148.28, 165.46.

2-methyl-N-(quinolin-8-yl)benzamide (1i)

This amide was obtained as white solid. Melting point: 98 °C. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.62 (s, 3H), 7.30 – 7.34 (m, 2H), 7.38 – 7.45 (m, 2H), 7.53 – 7.60 (m, 2H), 7.70 (d, J = 7.6 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 8.77 (d, J = 4.4 Hz, 1H), 8.96 (d, J = 7.6 Hz, 1H), 10.22 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 20.23, 116.53, 121.69, 121.80, 126.04, 127.28, 127.43, 128.03, 130.35, 131.41, 134.77, 136.37, 136.67, 136.70, 138.64, 148.29, 168.22.

4. Optimization of reaction conditions

Optimization of reaction conditions

As a model reaction, the cross-coupling between an aliphatic amide **1a** and thiophene (**2a**) was examined. After extensive screening of reaction conditions, it was realized that the coupling of **1a** and **2a** could take place in the presence of an oxidant using a nickel salt as catalyst and tetrabutylammonium bromide (TBAB). Previously, we highlighted the role of TBAB to improve the reactivity of a Ni catalytic system, presumably because of the increased solubility of reagents and intermediates [Ref. 14 in main text]. As shown in Table 1, no product was observed in the absence of a base. However, when KH₂PO₄ was used as a base and Ag₂CO₃ as an oxidant, the desired product **3a** was obtained in 57% isolated yield (Entry 2). Further studies showed that the use of alternate silver salts resulted in lower yields of **3a** (Table 1 entry 5 and Table S1). Other oxidants such as DTBP (di-*tert*-butyl peroxide) and Cu(OAc)₂ were also assessed (Entries 3-4); However, none of the desired product was obtained. Among the nickel catalysts screened, Ni(OTf)₂ showed the highest catalytic activity, giving **3a** in 64% yield (Table 1 Entries 6-7 and Table S2). The efficiency of the reaction was also significantly affected by the solvent, and DMSO was found to be the best (Table S3).

Table 1. Optimization for alkylation of thiophene^a

Entry	Catalyst	Oxidant	Additive	Yield $(\%)^b$
		(3.0 equiv)	(3.0 equiv)	
1	NiBr ₂	Ag ₂ CO ₃	[Base] ^c	0-7
2	NiBr ₂	Ag ₂ CO ₃	KH ₂ PO ₄	57
3	NiBr ₂	DTBP	KH ₂ PO ₄	0
4	NiBr ₂	Cu(OAc) ₂	KH ₂ PO ₄	0
5	NiBr ₂	[Ag salts]	KH ₂ PO ₄	12-42
6	[Ni]	Ag ₂ CO ₃	KH ₂ PO ₄	40-60
7	Ni(OTf) ₂	Ag ₂ CO ₃	KH ₂ PO ₄	64

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), nickel (0.04 mmol), MesCOOH (0.08 mmol), base (0.4 mmol), TBAB (0.6 mmol), oxidant (0.6 mmol) in solvent (0.5 mL) at 160 °C for 24 h in 10 mL screw-capped vials. ^bIsolated yields. ^cNa₂CO₃, NaHCO₃, K₂CO₃, and K₂HPO₄.

entry	Silver salts	Yield
1	AgNO ₃	12%
2	AgCl	trace
3	AgBr	trace
4	AgF	6%

Table S1: Silver salts

5	Ag ₂ O	23%
6	Ag(OAc)	42%
7	Ag(OTf)	18%

Table S2: Nickel salts

entry	Nickel salts	Yield
1	NiF ₂	48%
2	NiBr ₂	58%
3	NiCl ₂	trace
4	$Ni(acac)_2$	trace
5	Ni(OAc) ₂	52%
6	Ni(PPh ₃) ₂ Cl ₂	40%

Table S3: Solvents

entry	Solvents	Yield
1	DMSO	64%
2	DMF	41%
3	Dioxane	trace
4	Toluene	trace

General Procedure for Nickel-Catalyzed heteroarylation of amide with thiophene

A 10-mL Schlenk tube was charged with amide **1a** (0.2 mmol, 1.0 equiv, 45.6 mg), thiophene **2a** (0.6 mmol, 3 equiv, 50.5 mg), Ni(OTf)₂ (0.04 mmol, 20 mol%, 14.3 mg), MesCOOH (0.08 mmol, 40 mol%, 13.1 mg), KH₂PO₄ (0.4 mmol, 2.0 equiv, 54.4 mg), Ag₂CO₃ (0.6 mmol, 3 .0 equiv, 165.4 mg), TBAB (0.6 mmol, 3.0 equiv, 193.4 mg) and DMSO (0.5 mL). The vial was evacuated and filled with N₂, and stirred at 160 °C for 24 h. The mixture was then cooled to room temperature, diluted with CH₂Cl₂ (2.0 mL), filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:100 ~ 1:60, v/v), to afford the desired product **3a**.

5. Analytical Data for the Products

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiophen-2-yl) propanamide (3a)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), thiophene (50.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 39.7 mg (64%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6H), 3.26 (s, 2H), 6.84 – 6.87 (m, 2 H), 7.07 (d, *J* = 5.2 Hz, 1H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.49 – 7.55 (m, 2 H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.77 (d, *J* = 4.0 Hz, 1H), 8.84 (d, *J* = 8.0 Hz, 1H), 10.23 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.38, 40.85, 45.08, 116.40, 121.43, 121.54, 124.08, 126.60, 126.96, 127.46, 127.93, 134.49, 136.28, 138.81, 139.86, 148.23, 175.68; HRMS (ESI): M+H⁺ found 310.1147; Cl₈H₁₈N₂S₁O₁ requires 310.1140.

3-(5-chlorothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl) propanamide (3b)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2-chlorothiophene (71.1 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 43.3 mg (63%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6H), 3.14 (s, 2H), 6.60 (d, *J* = 3.6 Hz, 1H), 6.66 (d, *J* = 3.6 Hz, 1H), 7.42 – 7.50 (m, 2H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.71 (d, *J* = 8.0 Hz, 1H), 8.82 (d, *J* = 7.6 Hz, 1H), 10.23 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.46, 41.32, 45.00, 116.44, 121.55, 121.58, 125.61, 126.33, 127.44, 127.88, 127.94, 134.37, 136.31, 138.79, 138.94, 148.27, 175.33; HRMS (ESI): M+H⁺ found 344.0758; C₁₈H₁₇N₂S₁O₁Cl₁ requires 344.0750.

3-(5-bromothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl) propanamide (3c)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2-bromothiophene (97.8 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 47.3 mg (61%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6H), 3.17 (s, 2H), 6.59 (d, J = 3.6 Hz, 1H), 6.80 (d, J = 3.6 Hz, 1H), 7.44 (dd, J = 8.4, 4.4

Hz, 1H), 7.50 - 7.57 (m, 2 H), 8.16 (d, J = 8.0 Hz, 1H), 8.78 (d, J = 4.4 Hz, 1H), 8.82 (d, J = 7.2 Hz, 1H), 10.22 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.46, 41.25, 44.97, 110.09, 116.45, 121.55, 121.58, 127.39, 127.44, 127.94, 129.40, 134.37, 136.31, 138.78, 141.87, 148.28, 175.33; HRMS (ESI): M+H⁺ found 388.0241; C₁₈H₁₇N₂S₁O₁Br₁ requires 388.0245.

3-(5-iodothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl) propanamide (3d)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2-iodothiophene (126.0 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 57.6 mg (66%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.45 (s, 6H), 3.22 (s, 2H), 6.53 (d, *J* = 3.2 Hz, 1H), 6.99 (d, *J* = 3.6 Hz, 1H), 7.44 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.50 – 7.57 (m, 2 H), 8.16 (d, *J* = 8.4 Hz, 1H), 8.78 (d, *J* = 4.0 Hz, 1H), 8.81 (d, *J* = 7.2 Hz, 1H), 10.21 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.45, 41.06, 45.02, 71.15, 116.45, 121.54, 121.58, 127.44, 127.93, 128.78, 134.38, 136.31, 136.56, 138.78, 146.39, 148.28, 175.34; HRMS (ESI): M+H⁺ found 436.0097; C₁₈H₁₇N₂S₁O₁I₁ requires 436.0106.

2,2-dimethyl-3-(5-methylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (3e)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2-methylthiophene (58.9 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 45.4 mg (70%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.45 (s, 6H). 2.34 (s, 3H), 3.16 (s, 2H), 6.50 (s, 1H), 6.60 (d, *J* = 3.2 Hz, 1H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.49 – 7.57 (m, 2H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.78 (d, *J* = 4.0 Hz, 1H), 8.84 (d, *J* = 7.2 Hz, 1H), 10.23 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 15.16, 25.36, 41.07, 44.98, 116.41, 121.34, 121.50, 124.63, 126.77, 127.47, 127.93, 134.58, 136.26, 137.52, 138.39, 138.85, 148.18, 175.81; HRMS (ESI): M+H⁺ found 324.1300; C₁₉H₂₀N₂S₁O₁ requires 324.1296.

3-(5-methoxythiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3f)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol),

2-methoxythiophene (68.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 32.0 mg (47%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.45 (s, 6H), 3.07 (s, 2H), 3.75 (s, 3H), 5.94 (d, *J* = 3.6 Hz, 1H), 6.43 (d, *J* = 3.2 Hz, 1H), 7.44 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.49 – 7.57 (m, 2H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.79 (d, *J* = 4.0 Hz, 1H), 8.83 (d, *J* = 7.2 Hz, 1H), 10.23 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.34, 41.51, 45.01, 60.05, 103.15, 116.40, 121.35, 121.50, 124.14, 126.01,127.46, 127.92, 134.54, 136.25, 138.83, 148.19, 164.88, 175.75; HRMS (ESI): M+H⁺ found 340.1237; C₁₉H₂₀N₂S₁O₂ requires 340.1245.

3-(5-acetylthiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3g)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 1-(thiophen-2-yl)ethan-1-one (75.7 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 28.9 mg (41%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.48 (s, 6H), 2.43 (s, 3H), 3.26 (s, 2H), 6.86 (d, *J* = 3.6 Hz, 1H), 7.43 – 7.46 (m, 2H), 7.52 – 7.55 (m, 2H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.77 (d, *J* = 4.0 Hz, 1H), 8.81 (d, *J* = 7.2 Hz, 1H),10.22 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.51, 26.54, 41.37, 45.14, 116.46, 121.61, 121.64, 127.44, 127.92, 128.32, 132.67, 134.27, 136.33, 138.76, 142.98, 148.29, 149.87, 175.00, 190.51; HRMS (ESI): M+H⁺ found 352.1242; C₂₀H₂₀N₂S₁O₂ requires 352.1245.

Ethyl 5-(2,2-dimethyl-3-oxo-3-(quinolin-8-ylamino)propyl)thiophene-2-carboxylate (3h)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), ethyl thiophene-2-carboxylate (93.7 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 48.9 mg (64%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.30 (t, *J* = 7.2 Hz, 3H), 1.48 (s, 6H), 3.25 (s, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 6.83 (d, *J* = 3.6 Hz, 1H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.50 – 7.58 (m, 3H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.77 (d, *J* = 4.0 Hz, 1H), 8.82 (d, *J* = 7.6 Hz, 1H), 10.22 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 14.32. 25.48, 41.14, 45.08, 60.91, 116.46, 121.60, 127.42, 127.91, 132.30, 133.32, 134.30, 136.31, 138.77, 147.89, 148.28, 162.25, 175.12; HRMS (ESI): M+H⁺ found 382.1355; C₂₁H₂₂N₂S₁O₃ requires 382.1351.

3-(benzo[b]thiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3k)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), benzo[b]thiophene (80.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 52.6 mg (73%) as pale viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.52 (s, 6H), 3.34 (s, 2H), 7.07 (s, 1H), 7.17 – 7.24 (m, 2H), 7.40 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.50 – 7.61 (m, 3H), 7.67 (d, *J* = 7.6 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.69 (d, *J* = 4.0 Hz, 1H), 8.86 (d, *J* = 7.6 Hz, 1H), 10.26 (s, 1H), $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.67, 41.69, 45.07, 116.50, 121.47, 121.51, 121.95, 122.83, 123.53, 123.63, 123.93, 127.45, 127.95, 134.54, 136.22, 138.85, 139.93, 140.04, 141.28, 148.21, 175.51; HRMS (ESI): M+H⁺ found 360.1299; C₂₂H₂₀N₂S₁O₁ requires 360.1296.

2,2-dimethyl-N-(quinolin-8-yl)-3-(thieno[3,2-b]thiophen-2-yl)propanamide (31)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), thieno[3,2-b]thiophene (84.1 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 36.6 mg (50%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.51 (s, 6H), 3.30 (s, 2H), 7.02 (s, 1H), 7.09 (d, *J* = 5.2 Hz, 1H), 7.23 (d, *J* = 5.2 Hz, 1H), 7.41 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.49 – 7.58 (m, 2H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.72 (d, *J* = 4.0 Hz, 1H), 8.85 (d, *J* = 7.6 Hz, 1H), 10.25 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.57, 42.11, 45.20, 116.45, 119.14, 119.32, 121.51, 121.55, 125.72, 127.44, 134.46, 127.92, 136.26, 138.51, 138.65, 138.78, 142.70, 148.23, 175.54; HRMS (ESI): M+H⁺ found 366.0859; C₂₀H₁₈N₂S₂O₁ requires 366.0861.

2,2-dimethyl-3-(5-phenylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (3m)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2-phenylthiophene (96.1 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 47.9 mg (62%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.50 (s, 6H), 3.24 (s, 2H), 6.80 (d, J = 3.2 Hz, 1H), 7.06 (d, J = 3.2 Hz, 1H), 7.17 – 7.21 (m, 1H), 7.26 – 7.29 (m, 2H), 7.41 (dd, J = 8.0, 4.0 Hz, 1H), 7.46 – 7.55 (m, 4H), 8.13 (d, J = 8.4 Hz, 1H), 8.75 (d, J = 4.0 Hz, 1H), 8.85 (d, J = 7.2 Hz, 1H), 10.25 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.44, 41.16, 45.10, 116.43,

121.44, 121.52, 122.69, 125.53, 127.03, 127.44, 127.93, 128.04, 128.72, 134.50, 134.54, 136.25, 138.82, 139.67, 142.92, 148.23, 175.62; HRMS (ESI): M+H⁺ found 386.1449; C₂₄H₂₂N₂S₁O₁ requires 386.1453.

3-(4-bromothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3n)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 3-bromothiophene (97.8 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 55.1 mg (71%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6H). 3.20 (s, 2H), 6.77 (s, 1H), 6.96 (s, 1H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.50-7.57 (m, 2H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.78 (d, *J* = 4.0 Hz, 1H), 8.81 (d, *J* = 7.6 Hz, 1H), 10.22 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.44, 40.90, 45.06, 108.87, 116.45, 121.59, 121.71, 127.43, 127.93, 129.51, 134.33, 136.31, 138.78, 141.58, 148.29, 175.22; HRMS (ESI): M+H⁺ found 388.0244; C₁₈H₁₇N₂S₁O₁Br₁ requires 388.0245

3-(4,5-dibromothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (30)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2,3-dibromothiophene (145.1 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 56.7 mg (61%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.47 (s, 6H). 3.13 (s, 2H), 6.67 (s, 1H), 7.45 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.51 – 7.58 (m, 2H), 8.16 (d, *J* = 8.4 Hz, 1H), 8.79 – 8.81 (m, 2H), 10.21 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.55, 41.31, 44.99, 112.86, 116.52, 121.63, 121.70, 127.42, 127.94, 128.85, 129.68, 134.23, 136.34, 138.76, 141.97, 148.34, 175.01; HRMS (ESI): M+H⁺ found 465.9355; C₁₈H₁₆N₂S₁O₁Br₂ requires 465.9350.

3-([2,2'-bithiophen]-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3p)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2,2'-bithiophene (99.7 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 37.6 mg (48%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃;

Me₄Si) 1.49 (s, 6H), 3.21 (s, 2H), 6.73 (d, J = 3.2 Hz, 1H), 6.92 – 6.94 (m, 2H), 7.01 (d, J = 3.2 Hz, 1H), 7.12 (d, J = 5.2 Hz, 1H), 7.42 (dd, J = 8.0, 4.0 Hz, 1H), 7.49 – 7.58 (m, 2H), 8.14 (d, J = 8.4 Hz, 1H), 8.76 (d, J = 4.0 Hz, 1H), 8.84 (d, J = 7.2 Hz, 1H), 10.24 (s, 1H); δ_{C} (100 MHz; CDCl₃; Me₄Si) 25.45, 41.03, 45.09, 116.43, 121.49, 121.55, 123.18, 123.39, 123.81, 127.43, 127.62, 127.76, 127.93, 134.44, 136.04, 136.27, 137.67, 138.80, 139.29, 148.25, 175.55; HRMS (ESI): M+H⁺ found 392.1019; C₂₂H₂₀N₂S₂O₁ requires 392.1017.

3-([2,2'-bithiophen]-5-yl)-2-([2,2'-bithiophen]-5-ylmethyl)-2-methyl-N-(quinolin-8-yl)propanamide (3p')

This amide was obtained 17.8 mg (16%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.55 (s, 3H), 3.05, 3.55 (AB, $J_{AB} = 14.4$ Hz, 4H), 6.76 (d, J = 3.6 Hz, 2H), 6.91 – 6.94 (m, 4H), 7.00 (d, J = 3.6 Hz, 2H), 7.12 (d, J = 5.2 Hz, 2H), 7.37 (dd, J = 8.0, 4.0 Hz, 1H), 7.50 – 7.59 (m, 2H), 8.11 (d, J = 8.0 Hz, 1H), 8.67 (d, J = 4.0 Hz, 1H), 8.87 (d, J = 7.6 Hz, 1H), 10.15 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 22.63, 40.11, 49.84, 116.62, 121.52, 121.69, 123.27, 123.46, 123.90, 127.36, 127.63, 127.88, 128.14, 134.15, 136.14, 136.31, 137.54, 138.32, 138.75, 148.25, 173.84; HRMS (ESI): M+H⁺ found 556.0778; C₃₀H₂₄N₂S₄O₁ requires 556.0771.

3-([2,2':5',2"-terthiophen]-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3q)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2,2':5',2"-terthiophene (149.0 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 50.2 mg (53%) as white solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.50 (s, 6H), 3.22 (s, 2H), 6.74 (d, *J* = 3.6 Hz, 1H), 6.91– 6.92 (m, 2H), 6.98–7.00 (m, 2H), 7.12 (d, *J* = 3.2 Hz, 1H), 7.18 (d, *J* = 5.2 Hz, 1H), 7.42 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.50–7.56 (m, 2H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.76 (d, *J* = 4.4 Hz, 1H), 8.84 (d, *J* = 7.6 Hz, 1H), 10.25 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 24.44, 40.07, 44.09, 115.43, 120.47, 120.53, 122.34, 122.49, 122.70, 123.19, 123.27, 126.41, 126.79, 126.86, 126.92, 133.44, 134.61, 134.75, 135.24, 135.51, 136.23, 137.80, 138.53, 147.23, 161.69, 174.47; HRMS (ESI): M+H⁺ found 474.0897; C₂₆H₂₂N₂S₃O₁ requires 474.0894.

3-(benzo[b]thiophen-2-yl)-2-methyl-2-phenyl-N-(quinolin-8-yl)propanamide (4a)

Following the general procedure, reaction was conducted using 2-methyl-2-phenyl-N-(quinolin-8-yl)propanamide (58.1 mg, 0.2 mmol), benzo[b]thiophene (80.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 56.5 mg (67%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.83 (s, 3H), 3.66, 3.95 (AB, J_{AB} = 14.4 Hz, 2H), 6.91 (s, 1H), 7.17 – 7.26 (m, 2H), 7.32 – 7.47 (m, 5H), 7.52 – 7.65 (m, 5H), 8.07 (d, J = 8.0 Hz, 1H), 8.56 (d, J = 4.4 Hz, 1H), 8.81 (d, J = 7.6 Hz, 1H), 9.92 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 22.85, 40.89, 52.57, 116.15, 121.47, 121.91, 122.75, 123.50, 123.86, 124.20, 127.21, 127.32, 127.58, 127.85, 128.90, 134.57, 136.09, 138.66, 139.52, 140.13, 141.03, 142.35, 148.16, 174.53; HRMS (ESI): M+H⁺ found 422.1454; C₂₇H₂₂N₂S₁O₁ requires 422.1453.

1-(benzo[b]thiophen-2-ylmethyl)-N-(quinolin-8-yl)cyclohexanecarboxamide (4b)

Following the general procedure, reaction was conducted using 1-methyl-N-(quinolin-8-yl)cyclohexane-1-carboxamide (53.7 mg, 0.2 mmol), benzo[b]thiophene (80.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 45.6 mg (57%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.59 – 1.74 (m, 8H), 2.27 – 2.30 (m, 2H), 3.30 (s, 2H), 6.99 (s, 1H), 7.14 – 7.21 (m, 2H), 7.34 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.48 – 7.57 (m, 3H), 7.62 (d, *J* = 7.6 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.53 (d, *J* = 4.0 Hz, 1H), 8.84 (d, *J* = 7.6 Hz, 1H), 10.18 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 22.96, 25.84, 34.05, 40.68, 49.33, 116.54, 121.34, 121.41, 121.82, 122.74, 123.41, 123.60, 123.82, 127.39, 127.86, 134.46, 136.05, 138.77, 139.91, 139.97, 140.28, 148.10, 174.46; HRMS (ESI): M+H⁺ found 400.1611; C₂₅H₂₄N₂S₁O₁ requires 400.1609.

3-(benzo[b]thiophen-2-yl)-2,2-diphenyl-N-(quinolin-8-yl)propanamide (4c)

Following the general procedure, reaction was conducted using 2,2-diphenyl-N-(quinolin-8-yl)propanamide (70.5 mg, 0.2 mmol), benzo[b]thiophene (80.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 68.7 mg (71%) as white solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 4.12 (s, 2H), 6.58 (s, 1H), 7.07 – 7.14 (m, 2H), 7.18 (s, 1H), 7.22 – 7.24 (m, 6H), 7.37 – 7.45 (m, 7H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 8.40 (d, *J* = 4.4 Hz, 1H), 8.77 (d, *J* = 7.6 Hz, 1H), 10.12 (s, 1H), $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 40.58, 64.01, 116.15, 121.46, 121.55, 121.83, 122.72, 123.37, 123.65, 125.03, 127.30, 127.39, 127.84, 128.40, 129.34, 134.56, 135.99, 138.73, 139.34, 140.33, 141.24, 141.86, 148.12, 172.13; HRMS (ESI): M+H⁺ found 484.1611; C₃₂H₂₄N₂S₁O₁ requires 484.1609.

3-([2,2'-bithiophen]-5-yl)-2,2-diphenyl-N-(quinolin-8-yl)propanamide (4d)

Following the general procedure, reaction was conducted using 2,2-diphenyl-N-(quinolin-8-yl)propanamide (70.5 mg, 0.2 mmol), 2,2'-bithiophene (99.7 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 60.9 mg (59%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 3.99 (s, 2H). 6.19 (d, *J* = 3.2 Hz, 1H), 6.69 (d, *J* = 3.2 Hz, 1H), 6.82 – 6.84 (m, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 7.01 (d, *J* = 4.4 Hz, 1H), 7.17 – 7.27 (m, 7H), 7.36 (d, *J* = 7.2 Hz, 5H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 8.43 (d, *J* = 2.4 Hz, 1H), 8.74 (d, *J* = 7.6 Hz, 1H), 10.10 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 39.96, 64.18, 116.15, 121.47, 121.52, 122.66, 123.03, 123.60, 127.28, 127.35, 127.58, 127.85, 128.40, 129.05, 129.39, 134.56, 136.00, 136.43, 137.99, 138.73, 139.33, 141.93, 148.14, 172.11; HRMS (ESI): M+H⁺ found 516.1322; C₃₂H₂₄N₂S₂O₁ requires 516.1330.

3-([2,2':5',2"-terthiophen]-5-yl)-2,2-diphenyl-N-(quinolin-8-yl)propanamide (4e)

Following the general procedure, reaction was conducted using 2,2-diphenyl-N-(quinolin-8-yl)propanamide (70.5 mg, 0.2 mmol), 2,2':5',2"-terthiophene (149.0 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 49.0 mg (41%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 4.07 (s, 2H), 6.27 (d, *J* = 3.6 Hz, 1H), 6.76 (d, *J* = 3.2 Hz, 1H), 6.89 (d, *J* = 3.6 Hz, 1H), 6.97 (d, *J* = 4.0 Hz, 2H), 7.10 (d, *J* = 3.6 Hz, 1H), 7.16 (d, *J* = 4.8 Hz, 1H), 7.38 – 7.25 (m, 7H), 7.44 (d, *J* = 7.6 Hz, 5H), 7.52 (t, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 8.52 (d, *J* = 4.0 Hz, 1H), 8.82 (d, *J* = 7.6 Hz, 1H), 10.19 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 40.02, 64.19, 116.15, 121.48, 121.54, 122.63, 123.46, 123.58, 124.21, 124.23, 127.29, 127.39, 127.83, 128.42, 129.18, 129.38, 134.55, 135.40, 136.01, 136.14, 136.88, 137.33, 138.72, 139.63, 141.92, 148.15, 172.08; HRMS (ESI): M+H⁺ found 598.1211; C₃₆H₂₆N₂S₃O₁ requires 598.1207.

N-(quinolin-8-yl)-2-(thiophen-2-yl)benzamide (5a)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)benzamide (49.6 mg, 0.2 mmol), thiophene (50.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 56.8 mg (86%) as white solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si)

6.89 (t, J = 4.2 Hz, 1H). 7.22 – 7.23 (m, 2H), 7.38 (dd, J = 8.4, 4.0 Hz, 1H), 7.45 – 7.60 (m, 5H), 7.81 (d, J = 7.2 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 8.62 (d, J = 4.0 Hz, 1H), 8.87 (d, J = 7.2 Hz, 1H), 9.98 (s, 1H); δ_C (100 MHz; CDCl₃; Me₄Si) 116.54, 121.54, 121.74, 126.33, 127.14, 127.35, 127.61, 127.85, 128.06, 128.88, 130.35, 130.90, 132.43, 134.62, 136.12, 136.50, 138.49, 141.07, 147.98, 167.80; HRMS (ESI): M+H⁺ found 330.0826; C₂₀H₁₄N₂S₁O₁ requires 330.0827.

2-(5-bromothiophen-2-yl)-N-(quinolin-8-yl)benzamide (5b)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)benzamide (49.6 mg, 0.2 mmol), 2-bromothiophene (97.8 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired 64.3 mg (79%) as white solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 6.83 (d, *J* = 3.6 Hz, 1H), 6.95 (d, *J* = 4.0 Hz, 1H), 7.41 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.47 – 7.59 (m, 5H), 7.82 (d, *J* = 6.8 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.67 (d, *J* = 4.0 Hz, 1H), 8.85 (d, *J* = 7.2 Hz, 1H), 10.04 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 112.90, 116.67, 121.63, 121.95, 127.33, 127.53, 127.88, 128.53, 129.06, 130.51, 130.56, 130.74, 131.57, 134.47, 136.18, 136.31, 138.49, 142.59, 148.14, 167.33; HRMS (ESI): M+H⁺ found 407.9928; C₂₀H₁₃N₂S₁O₁Br₁ requires 407.9932.

2-(5-phenylthiophen-2-yl)-N-(quinolin-8-yl)benzamide (5c)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)benzamide (49.6 mg, 0.2 mmol), 2-phenylthiophene (96.1 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 68.2 mg (84%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.07 (d, *J* = 3.6 Hz, 1H), 7.17 (d, *J* = 3.6 Hz, 1H), 7.22 – 7.26 (m, 1H), 7.30 – 7.33 (m, 3H), 7.47 – 7.56 (m, 6H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 7.2 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 8.55 (d, *J* = 4.1 Hz, 1H), 8.88 (d, *J* = 7.5 Hz, 1H), 10.08 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 116.63, 121.51, 121.81, 123.86, 125.69, 127.32, 127.51, 127.86, 128.10, 128.17, 128.82, 129.06, 130.44, 130.66, 132.33, 134.19, 134.63, 136.08, 136.21, 138.51, 140.38, 145.27, 148.05, 167.81; HRMS (ESI): M+H⁺ found 406.1143; C₂₆H₁₈N₂S₁O₁ requires 406.1140.

2-([2,2'-bithiophen]-5-yl)-N-(quinolin-8-yl)benzamide (5d)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)benzamide (49.6 mg, 0.2 mmol), 2,2'-bithiophene (99.7 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 65.1 mg (79%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 6.93 – 6.97 (m, 2H), 7.07 (d, J = 3.6 Hz, 1H), 7.11 (d, J = 3.6 Hz, 1H), 7.16 (d, J = 4.8 Hz, 1H), 7.32 (dd, J = 8.4, 4.4 Hz, 1H), 7.45 – 7.61 (m, 5H), 7.84 (d, J = 7.6 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 4.4 Hz, 1H), 8.89 (d, J = 7.6 Hz, 1H), 10.09 (s, 1H), $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 116.65, 121.55, 121.86, 123.75, 124.45, 124.49, 127.30, 127.77, 127.87, 127.94, 128.17, 129.09, 130.46, 130.63, 132.02, 134.61, 136.08, 136.22, 137.17, 138.33, 138.51, 139.90, 148.08, 167.68, HRMS (ESI): M+H⁺ found 412.0709; C₂₄H₁₆N₂S₂O₁ requires 412.0704.

2-([2,2':5',2"-terthiophen]-5-yl)-*N*-(quinolin-8-yl)benzamide (5e)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)benzamide (49.6 mg, 0.2 mmol), 2,2':5',2"-terthiophene (149.0 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 78.1 mg (79%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 6.92 – 6.93 (m, 1H), 6.97 – 7.03 (m, 3H), 7.10 – 7.14 (m, 2H), 7.20 – 7.21 (m, 1H), 7.34 – 7.36 (m, 1H), 7.48 – 7.61 (m, 5H), 7.83 – 7.84 (m, 1H), 8.09 – 8.11 (m, 1H), 8.59 – 8.60 (m, 1H), 8.86 – 8.88 (m, 1H), 10.08 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 115.64, 123.39, 123.26, 122.67, 120.84, 120.55, 123.49, 126.29, 126.86, 127.01, 127.19, 128.10, 129.46, 129.59, 130.93, 133.55, 134.92, 135.08, 135.17, 135.25, 136.05, 136.97, 137.49, 138.98, 147.06, 166.62. HRMS (ESI): M+H⁺ found 494.0586; C₂₈H₁₈N₂S₃O₁ requires 494.0581.

2-(benzo[b]thiophen-2-yl)-6-methyl-N-(quinolin-8-yl)benzamide (5f)

Following the general procedure, reaction was conducted using 2-methyl-N-(quinolin-8-yl)benzamide (52.7 mg, 0.2 mmol), benzo[b]thiophene (80.5 mg, 0.6 mmol),Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO,

Purification by flash column chromatography gave the desired product 53.6 mg (68%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.53 (s, 3H), 7.16 – 7.22 (m, 2H), 7.31 – 7.33 (m, 2H), 7.40 – 7.56 (m, 5H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 7.2 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 8.61 (d, *J* = 4.4 Hz, 1H), 8.88 (d, *J* = 7.6 Hz, 1H), 9.89 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 19.66, 116.91, 121.52, 121.88, 122.03, 123.28, 123.76, 124.12, 124.16, 127.26, 127.90, 128.09, 129.32, 130.44, 131.92, 134.38, 136.00, 136.14, 136.91, 138.49, 140.22, 140.34, 141.69, 148.14, 168.10; HRMS (ESI): M+H⁺ found 394.1143; C₂₅H₁₈N₂S₁O₁ requires 394.1140.

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiazol-5-yl)propanamide (6a)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), thiazole (51.1 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 29.2 mg (47%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.47 (s, 6 H), 3.27 (s, 2 H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.50 – 7.57 (m, 2H), 7.65 (s, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.58 (s, 1H), 8.76 (d, *J* = 4.0 Hz, 1H), 8.81 (d, *J* = 7.2 Hz, 1H), 10.22 (s, 1H). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.48, 37.73, 44.93, 116.45, 121.63, 121.68, 127.41, 127.93, 134.13, 134.24, 136.33, 138.74, 142.81, 148.32, 152.71, 175.09; HRMS (ESI): M+H⁺ found 311.1097; C₁₇H₁₇N₃S₁O₁ requires 311.1092.

3-(2-bromothiazol-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (6b)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2-bromothiazole (98.4 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 24.1 mg (31%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.47 (s, 6H), 3.19 (s, 2H), 7.32 (s, 1H), 7.45 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.52 – 7.58 (m, 2H), 8.17 (d, *J* = 8.4 Hz, 1H), 8.78 – 8.80 (m, 2H), 10.23 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.65, 38.20, 44.78, 116.54, 121.65, 121.78, 127.40, 127.96, 134.16, 135.42, 136.36, 138.75, 141.84, 148.36, 174.91; HRMS (ESI): M+H⁺ found 389.0199; C₁₇H₁₆N₃S₁O₁Br₁ requires 389.0197.

2,2-dimethyl-3-(2-methylthiazol-5-yl)-N-(quinolin-8-yl)propanamide (6c)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol),

2-methylthiazole (59.5 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 35.1 mg (54%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6H), 2.55 (s, 3H), 3.18 (s, 2H), 7.35 (s, 1H), 7.43–7.57 (m, 3H), 8.14–8.16 (m, 1H), 8.77–8.82 (m, 2H), 10.22 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 19.08, 25.48, 38.06, 44.81, 116.46, 121.60, 127.44, 127.93, 133.67, 134.32, 136.33, 138.77, 141.44, 148.29, 165.65, 175.26; HRMS (ESI): M+H⁺ found 325.1253; C₁₈H₁₉N₃S₁O₁ requires 325.1249.

3-(2,4-dimethylthiazol-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (6d)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2,4-dimethylthiazole (67.9 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 41.4 mg (61%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6H), 2.32 (s, 3H), 2.51 (s, 3H), 3.13 (s, 2H), 7.45 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.50 – 7.58 (m, 2H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.78 (d, *J* = 4.0 Hz, 1H), 8.82 (d, *J* = 7.2 Hz, 1H), 10.23 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 15.30, 18.92, 25.35, 37.42, 45.53, 116.43, 121.56, 121.59, 126.49, 127.46, 127.93, 134.39, 136.32, 138.78, 148.27, 149.33, 163.14, 175.37; HRMS (ESI): M+H⁺ found 339.1407; C₁₉H₂₁N₃S₁O₁ requires 339.1405.

3-(2-isopropyl-4-methylthiazol-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (6e)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), 2-isopropyl-4-methylthiazole (84.7 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 51.4 mg (70%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.22 (d, *J* = 6.8 Hz, 6H), 1.47 (s, 6H), 2.32 (s, 2H), 3.07 – 3.12 (m, 1H), 3.12 (s, 2H), 7.43 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.49–7.55 (m, 2H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.76 (d, *J* = 4.0 Hz, 1H), 8.81 (d, *J* = 7.2 Hz, 1H), 10.20 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 15.38, 23.06, 25.29, 33.07, 37.43, 45.51, 116.44, 121.53, 121.56, 125.48, 127.44, 127.92, 130.93, 134.39, 136.30, 138.78, 148.25, 149.10, 175.12, 175.45; HRMS (ESI): M+H⁺ found 367.1719; C₂₁H₂₅N₃S₁O₁ requires 367.1718.

3-(benzofuran-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (6f)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), benzofuran (70.9 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 44.7 mg (65%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.52 (s, 6 H), 3.22 (s, 2H), 6.49 (s, 1H), 7.10 – 7.16 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.39 – 7.43 (m, 2H), 7.49 – 7.57 (m, 2H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.69 (d, *J* = 4.0 Hz, 1H), 8.83 (d, *J* = 7.6 Hz, 1H), 10.26 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.50, 39.22, 44.49, 104.93, 110.84, 116.38, 120.38, 121.47, 121.53, 122.37, 123.27, 127.40, 127.91, 128.80, 134.51, 136.23, 138.78, 148.22, 154.74, 155.98, 175.54; HRMS (ESI): M+H⁺ found 344.1528; C₂₂H₂₀N₂O₂ requires 344.1525.

Methyl 5-(2,2-dimethyl-3-oxo-3-(quinolin-8-ylamino)propyl)furan-2-carboxylate (6g)

Following the general procedure, reaction was conducted using N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), methyl furan-2-carboxylate (75.7 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 35.9 mg (51%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.48 (s, 6H), 3.14 (s, 2H), 3.78 (s, 3H), 6.22 (d, *J* = 3.2 Hz, 1H), 7.03 (d, *J* = 3.2 Hz, 1H), 7.45 (dd, *J* = 8.0, 4.4 Hz, 1H), 7.50–7.55 (m, 2 H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.78–8.81 (m, 2H), 10.24 (s, 1H), $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.40, 39.00, 44.65, 51.62, 110.34, 116.38, 119.28, 121.54, 121.60, 127.39, 127.92, 128.85, 130.91, 134.37, 136.29, 138.79, 143.31, 148.30, 157.85, 159.15, 175.16; HRMS (ESI): M+H⁺ found 352.1427; C₂₀H₂₀N₂O₄ requires 352.1423.

Further applications of alkyl-substituted iodothiophene

2,2-dimethyl-3-(5-(phenylethynyl)thiophen-2-yl)-N-(quinolin-8-yl)propanamide (7)

A 10-mL Schlenk tube was charged with 3-(5-iodothiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (131.2 mg, 0.3 mmol), ethynylbenzene (61.3 mg, 0.6 mmol), Pd(PPh₃)₂Cl₂ (10.5 mg, 0.015 mmol), CuI (2.8 mg, 0.015 mmol), Et₃N (151.8 mg, 1.5 mmol) in DMF 1 ml. The vial was evacuated and filled with N₂, and stirred at 110 °C for 6 h. Purification by flash column chromatography gave the desired product 60.7 mg (74%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.48 (s, 6H), 3.23 (s, 2H), 6.74 (d, *J* = 3.6 Hz, 1H), 7.04 (d, *J* = 3.6 Hz, 1H), 7.29 – 7.30 (m, 3H), 7.42 – 7.45 (m, 3H), 7.52 – 7.56 (m, 2H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.79 (d, *J* = 4.4 Hz, 1H), 8.84 (d, *J* = 7.2 Hz, 1H), 10.25 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.48, 41.08, 45.14, 82.97, 92.53, 116.44, 121.54, 121.59, 121.86, 123.08, 127.17, 127.45, 127.94, 128.20, 128.30, 131.32, 131.85, 134.41, 136.30, 138.80, 142.42, 148.29, 175.36; HRMS (ESI): M+H+ found 410.1461; C₂₆H₂₂N₂O₁S₁ requires 410.1453.

2,2-dimethyl-N-(quinolin-8-yl)-3-(5-styrylthiophen-2-yl)propanamide (8)

A 10-mL Schlenk tube was charged with 3-(5-iodothiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (131.2 mg, 0.3 mmol), styrene (62.5 mg, 0.6 mmol), Pd(PPh₃)₂Cl₂ (21.0 mg, 0.03 mmol), Na₂CO₃ (63.6 mg, 0.6 mmol) in DMF 1 ml. The vial was evacuated and filled with N₂, and stirred at 150 °C for 12 h. Purification by flash column chromatography gave the desired product 51.1 mg (62%) as yellow viscous oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.41 (s, 6H), 3.14 (s, 2H), 6.64 – 6.74 (m, 3H), 6.99 (d, *J* = 8.0 Hz, 1H), 7.10 – 7.14 (m, 1H), 7.17 – 7.23 (m, 2H), 7.29 – 7.35 (m, 3H), 7.41 – 7.50 (m, 2H), 8.05 (d, *J* = 8.0 Hz, 1H), 8.69 (d, *J* = 2.8 Hz, 1H), 8.78 (d, *J* = 7.2 Hz, 1H), 10.18 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.49, 41.25, 45.13, 99.98, 116.42, 121.51, 121.58, 121.98, 126.12, 126.16, 127.35, 127.42, 127.46, 127.68, 127.93, 128.64, 134.48, 136.29, 138.81, 139.44, 141.69, 148.28, 175.61; HRMS (ESI): M+H+ found 412.1613; C₂₆H₂₄N₂O₁S₁ requires 412.1609.

Product Distribution

3-(5-bromothiophen-2-yl)-2,2-diphenyl-N-(quinolin-8-yl) propanamide (9)

Following the general procedure, reaction was conducted using 2,2-diphenyl-*N*-(quinolin-8-yl)propanamide (70.5 mg, 0.2 mmol), 2-bromothiophene (97.8 mg, 0.6 mmol), Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO, Purification by flash column chromatography gave the desired product 68.6 mg (67%) as yellow solid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 4.07 (s, 2H), 6.05 (d, *J* = 3.2 Hz, 1H), 6.82 (d, *J* = 3.6 Hz, 1H), 7.26 – 7.35 (m, 7H), 7.39 – 7.47 (m, 5H), 7.52 (t, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 8.53 (d, *J* = 4.4 Hz, 1H), 8.80 (d, *J* = 7.6 Hz, 1H), 10.15 (s, 1H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 40.22, 64.02, 116.12, 121.49, 121.55, 127.28, 127.41, 127.83, 128.43, 129.27, 130.00, 134.47, 135.68, 136.02, 141.79, 146.34, 148.15, 172.01; HRMS (ESI): M+H⁺ found 512.0549; C₂₈H₂₁N₂O₁S₁Br₁ requires 512.0558.

The structure of compound **9** was confirmed by single crystal X–ray diffraction (CCDC 1529734). CCDC 1529734 (**9**) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Selected data of Single Crystal X-ray Diffractions of 9

_chemical_formula_sum	'C28 H21 Br N2 O S'			
_chemical_formula_moiety	'C28 H21 Br N2 O S'			
_chemical_formula_weight	513.45			
_space_group_crystal_system	triclinic			
_space_group_name_H-M_alt	'P -1'			
_space_group_name_Hall	'-P 1'			
_space_group_IT_number	2			
_cell_length_a	8.1995(4)			
_cell_length_b	15.8435(9)			
_cell_length_c	19.7549(11)			
_cell_angle_alpha	113.343(3)			
_cell_angle_beta	98.556(4)			
_cell_angle_gamma	90.398(4)			
_cell_volume	2323.9(2)			
_cell_formula_units_Z	4			
_cell_measurement_temperature	296			

1.467
1048.00
3.435
296
'Cu K\a'
1.54178
31012
0.0433
89.710
2.470
89.710
0.983
0.983
-10
10
-20
17
-22
25
10541
5858
F^2^>2.0\s(F^2^)

_refine_special_details

;

Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2^. R-factor (gt) are based on F. The threshold expression of $F^2^2 > 2.0$ sigma(F^2^) is used only for calculating R-factor (gt).

;	
_refine_ls_structure_factor_coef	Fsqd
_refine_ls_R_factor_all	0.1132
_refine_ls_R_factor_gt	0.0491
_refine_ls_wR_factor_ref	0.1494
_refine_ls_wR_factor_gt	0.1193
_refine_ls_hydrogen_treatment	mixed
_refine_ls_number_reflns	10466
_refine_ls_number_parameters	603
_refine_ls_goodness_of_fit_ref	1.018
_refine_ls_weighting_scheme	calc
_refine_ls_weighting_details	
$W = 1/[\sqrt{6^2}(6^2) + (0.07)]$	$34P^{-2+0.0301P}$ where P=(Fo ^{-2+2Fc⁻²)/3'}
_atom_sites_solution_hydrogens	geom
_atom_sites_solution_primary	direct

_atom_sites_solution_secondary	difmap
_refine_ls_shift/su_max	0.001
_refine_diff_density_max	1.07
_refine_diff_density_min	-0.91

6. Deuterium Labeling Experiment

Synthesis of $[D_1]$ -benzo[b]thiophene

[**D**₁]-benzo[*b*]thiophene was synthesized according to reported procedure.^J *n*-BuLi (1.55 M solution in hexane, 24 mL, 37.2 mmol, 1.5 equiv) was added dropwise to a solution of benzo[*b*]thiophene (3.3 g, 24.8 mmol, 1.0 equiv) in dry THF (67 mL) at -78 °C. The resulting mixture was stirred for 2 h at -78 °C and D₂O (10 mL) was added. The white suspension was warmed to room temperature and stirred for an additional hour. H₂O was added (20 mL) and the product was extracted with Et₂O (3 x 30 mL). The combined organic phases were washed with brine, dried over MgSO₄ and the solvent was removed under reduced pressure. Flash column chromatography on silica gel (eluent: pentane) gave the [**D**₁]-benzo[*b*]thiophene as a white crystalline solid in 84% yield (2.8 g, >99% deuteration). ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.92 (m, 1H), 7.83-7.85 (m, 1H), 7.33-7.40 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.60, 139.55, 126.06 (t, 28.1 Hz), 124.16, 124.12, 123.66, 123.59, 122.47. HRMS(DART) *m/z* [M+H]⁺, calcd for C₈H₃D₁S₁ 135.02530; Found 135.02449.

Two sets of reactions were carried out in a parallel manner. In each case, 10-mL Schlenk tube was charged with **1a** (45.6 mg, 0.2 mmol), **benzo[b]thiophene** or **[D₁]-benzo[b]thiophene** (0.6 mmol), respectively. Ni(OTf)₂ (14.3 mg, 0.04 mmol), MesCOOH (13.1 mg, 0.08 mmol), KH₂PO₄ (54.4 mg, 0.4 mmol), Ag₂CO₃(165.4 mg, 0.6 mmol), TBAB (193.4 mg, 0.6 mmol) in 0.5 mL DMSO. The vial was evacuated and filled with N₂, and stirred at 160 °C for 5 h. The mixture was then cooled to room temperature, diluted with CH₂Cl₂ (2 mL), filtered through a celite pad, and concentrated in vacuo. The yield of **3k** was determined by ¹H NMR of the crude product using Triphenylmethane as internal standard.

A 10-mL Schlenk tube was charged with **1g** (45.6 mg, 0.15 mmol), [**D**₃]-**1g** (46.1 mg, 0.15 mmol), benzothiophene (120.8 mg, 0.9 mmol), Ni(OTf)₂ (21.4 mg, 0.06 mmol), MesCOOH (19.7 mg, 0.12 mmol), KH₂PO₄ (81.6 mg, 0.6 mmol), TBAB (290.1 mg, 0.9 mmol), Ag₂CO₃ (248.1 mg, 0.9 mmol) and DMSO (0.7 mL). The vial was evacuated and filled with N₂, and stirred at 160 °C for 1 h. The mixture was then cooled to room temperature, diluted with CH₂Cl₂ (2 mL), filtered through a celite pad, analyzed by GC-MS, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:100 ~ 1:20, v/v), to afford the heteroarylated product. The ratio of **3** and [**D**₂]-**3** was determined by ¹H NMR.

The mixture of **9** and **[D₂]-9**: $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) **3.69–3.95 (m, 1.64 H),** 6.77 (s, 1H), 7.17 – 7.24 (m, 2 H), 7.33 – 7.41 (m, 4 H), 7.45 – 7.49 (m, 3 H), 7.52 – 7.58 (m, 2 H), 7.63 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 8.57 (d, *J* = 3.2 Hz, 1H), 8.79 (d, *J* = 7.6 Hz, 1H), 9.84 (s, 1H);

Radical Trapping Experiment

A 10-mL Schlenk tube was charged with N-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), TEMPO (31.2 mg, 0.2 mmol, 1.0 equiv) or BHT (44.1 mg, 0.2 mmol, 1.0 equiv) or 1,4-benzoquinone (21.6 mg, 0.2 mmol, 1.0 equiv) under standard reaction conditions. The vial was evacuated and filled with N₂, and stirred at 160 °C for 24 h. The mixture was then cooled to room temperature, diluted with CH_2Cl_2 (2 mL), filtered through a celite pad, analyzed by GC-MS, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:100 ~ 1:20, v/v), to afford the heteroarylated product **3a** (yield = 17% to 69%).

7 Computational Details and Results

7.1 Computational Details

All calculations were carried out by using the Gaussian 09 suite of computational programs.^(d) All stationary points along the reaction coordinate were fully optimized at the DFT level using the B3LYP hybrid functional.^(e-g) The 6-31G(d) basis set was applied for all atoms except Ni, which was described by the Lanl2dz basis set and effective core potential implemented. Frequencies were analytically computed at the same level of theory to get the thermodynamic corrections and to confirm whether the structures are minima (no imaginary frequency) or transition states (only one imaginary frequency). Intrinsic reaction coordinate (IRC) calculations were carried out to confirm that all transition state structures connect the proposed reactants and products. The solvation effect was examined by performing single-point self-consistent reaction field (SCRF) calculations at the M06/6-311+G(d,p)/SDD(Ni) level^(h-i) based on the SMD solvation model for gas-phase optimized structures. DMSO was used as the solvent, corresponding to the original experimental conditions. The relative free energies corrected by solvation effects calculations are used for discussion. For species that has more than one conformer, only the one having the lowest energy value is used for discussion.

7.2 Calculated Energies

Species	Eoa	Haash	Gaage	Eq	Geale	
	E0	11298	0298	L	0,501	
Ni(OTf) ₂	-2092.110893	-2092.09307	-2092.158818	-2092.1698056	-2093.76205760	
K₂HPO₄	-671.695459	-671.686967	-671.728652	-671.7335791	-671.924173088	
Ni(H ₂ PO ₄) ₂	-1456.354307	-1456.340154	-1456.394304	-1456.4331242	-1458.08383046	
KOTf	-989.596166	-989.585759	-989.634065	-989.6242858	-989.785776271	
1a	-727.619214	-727.602959	-727.662278	-727.8957368	-727.565927809	
A-IN1	-2184.001702	-2183.971880	-2184.061640	-2184.360296	-2185.71054678	
A-TS1	-2183.996522	-2183.967114	-2184.055606	-2184.3486933	-2185.69601244	
A-IN2	-2184.007046	-2183.977311	-2184.065586	-2184.36368	-2185.70733779	
A-TS2	-2183.962495	-2183.933554	-2184.019491	-2184.3138823	-2185.67213098	
A-IN3	-2183.967344	-2183.937662	-2184.025477	-2184.3228397	-2185.68134469	
B-IN1	-2819.741629	-2819.707118	-2819.809804	-2820.0792855	-2821.40377708	
B-TS1	-2819.716514	-2819.682169	-2819.784365	-2820.0509918	-2821.36104719	
B-IN2	-2819.712081	-2819.677360	-2819.780448	-2820.0492372	-2821.38509182	
B-TS2	-2819.671826	-2819.637791	-2819.739730	-2820.0034767	-2821.34316210	
B-IN3	-2819.719330	-2819.684494	-2819.790282	-2820.0549795	-2821.37630760	
A-IN1'	-2009.286932	-2009.267214	-2009.335032	-2009.4344019	-2011.01528206	
A-TS1'	-2009.262854	-2009.243883	-2009.309602	-2009.4052425	-2010.97969967	
A-IN2'	-2009.278526	-2009.258960	-2009.326234	-2009.4254368	-2011.00408305	
B-IN1'	-2645.046859	-2645.023128	-2645.103246 -2645.1738781		-2040./0889488	
B-TS1'	-2645.014552	-2644.991363	-2645.070851	-2645.1364579	-2040.00393999	
B-IN2'	-2645.013082	-2644.989292	-2645.070056	-2645.1387915	-2040.00818555	
IN4	-895.733293	-895.716880	-895.775734	-895.98703	-897.550545828	
TS2'	-1448.630499	-1448.608832	-1448.679774	-1448.9481982	-1430.22033708	
IN5	-1448.681914	-1448.659839	-1448.733113	-1449.0048248	-1430.27309240	
IN6	-1539.262089	-1539.238567	-1539.315507	-1539.315507	-1340.90208910	
A-TS3	-2092.166077	-2092.137422	-2092.225256	-2092.5219694	-2093.79637501	
A/B-IN7	-1448.070685	-1448.048954	-1448.121746	-1448.3819703	-1449.04997701	
A/B-TS4	-1448.053639	-1448.032431	-1448.103566	-1448.3640661	-1449.04008333	
A/B-IN8	-1448.112484	-1448.091363	-1448.161738	-1448.4257466	-1449.70444000	
A-IN9	-2211.021502	-2210.990440	-2211.085016	-2211.3554856	-2212.0/332039	
A-TS5	-2763.928567	-2763.891974	-2763.997984	-2764.3236999	-2/03.//031803	
A-IN10	-2763.950234	-2763.912806	-2764.020335	-2764.3521061	-2/03./9140032	
A-TS6	-2763.927166	-2763.890228	-2763.997081	-2764.3277737	-2/03.//433013	
A-IN11	-2763.986921	-2763.950344	-2764.054397	-2764.3899526	-2703.83831300	

Table	S4	Energies	(in Hartre	e) calculated	d at SMF	D-B3LYF	P/RSII//R	3LVP/BS1	level
Iavic	ют.	Lincigius	viii manuv	<i>c i</i> carculated	u al DIVIL	1-03611		J L I I / D S I	

A-IIVII | -2703.980921 | -2703.9
 ^a Sum of electronic and zero-point energies
 ^b Sum of electronic and thermal enthalpies
 ^c Sum of electronic and thermal free energies
 ^d Electronic energies
 ^e Single point energies in solution

Scheme 4. Computational Results in large scale figures as shown in main text

34 / 98

Figure 3. Geometric Structures for Key Intermediates and Transition States (Distances are in Angstrom)

7.3 Cartesian Coordinates for All Species

Ni(OTf)2				С	2.65048100	3.24877900	-2.21805500
S	1.93343000	1.94986800	-2.21213700	F	2.53738100	3.98188100	-1.10497500
0	2.58373100	1.46729600	-0.91007300	F	2.14437100	3.94110600	-3.24476200
0	0.48492100	2.11031000	-1.73543000	F	3.94679400	3.01592700	-2.45203200
С	-0.13278300	2.27245100	3.28997500	S	1.74188800	1.64852700	-2.01989500
F	-1.38358400	2.59437800	3.59844200	0	1.91725700	0.91343600	-3.30148400
F	0.44812300	3.27788000	2.63691000	0	2.37892400	0.95397100	-0.86877900
F	0.55398600	1.98887000	4.39045600	0	0.32300100	2.01103000	-1.75670600
S	-0.15687400	0.76198700	2.18659400	K	0.30784700	-0.86564400	-1.70797700
0	1.29181200	0.60462300	1.70907000				
0	-0.77375900	-0.31792800	2.92262700	la C	-1.41120000	-0.80751400	-2.13781300
0	-0.80892200	1.24456000	0.88576000	C	-2 66109100	-1 15788800	-2.97750300
Ni	0.88740100	1.35753600	-0.01273400	н	-3 57537500	-1 07139700	-2 37965000
0	2.55312400	3.02791000	-2.94852300	н	-2 77234300	-0.51352500	-3 85697900
С	1.90745100	0.43849000	-3.31448900	н	-2 58957700	-2 19156900	-3 33589600
F	3.15785800	0.11384700	-3.62156000	ſ	-0.14306700	-0.89754100	-3.01718300
F	1.22228200	0.72301000	-4.41574300	н	-0.19436200	-0.24361000	-3 89/99000
F	1.32387300	-0.56526200	-2.66136200	u u	0.75250500	0.62576600	2 44727800
K ₂ HPO ₄	0.38840200	0 40348700	0 22462800	н	-0.01377300	-1 92439300	-3 37889700
r	-0.58840200	0.72767600	0.25405800	ſ	1 20121200	1 70100200	0.06275500
0	1.06529500	0.73767600	0.28586400	C .	-1.29131200	-1.79109200	-0.90275500
	-0./1023100	-0.35432100	-1.26201300	п	-0.41903200	1 74281500	-0.34407900
н	-0.04709800	-0.03480900	-1.89546800	п	-2.17208200	-1.74381300	-0.51595500
	-1.2629/100	1.79341500	0.06593000	п	-1.19191200	-2.81423000	-1.54557200
н	-0.62396500	2.52319600	0.09381000	C	-1.54501700	0.02343400	-1.50055800
0	-1.12622800	-0.5031/500	1.19062800	U	-1.32/80500	0.85253300	-0.35745700
K	-2.20182300	-2.24974500	-0.21361200	N	-1.68291000	1.61300200	-2.50896100
Ni(H ₂ PO ₄) ₂				н	-1.69225600	1.36082100	-3.49259100
Ni	1.06143400	1.51026400	0.06663900	c	-1.82361500	2.99015300	-2.32533400
Р	1.58526800	1.65744500	-2.34334800	C	-1.94955900	3.75532500	-3.53633200
0	2.45097800	1.07293300	-1.20682400	С	-1.84905800	3.64203500	-1.10267900
0	2.40924300	2.74568800	-3.20580400	С	-2.09833700	5.17346900	-3.46227500
Н	2.97756900	3.29033600	-2.63472600	С	-1.99737900	5.04779500	-1.05295900
0	0.34199900	2.17182700	-1.60070200	Н	-1.75491800	3.06355300	-0.19462900
0	1.15462700	0.64655300	-3.50495200	С	-2.03572600	3.76767700	-5.83775200
Н	1.82152500	0.56806900	-4.20733700	С	-2.21762500	5.86936400	-4.69191700
Р	0.50389900	1.31440100	2.46553300	С	-2.11980900	5.80836400	-2.19388600
0	-0.32787200	1.95808000	1.33611600	Н	-2.01344900	5.52941500	-0.07896200
0	1.78714100	0.87555300	1.74206800	С	-2.18726300	5.17358900	-5.87879800
0	-0.15623500	0.06770200	3.21835700	Н	-2.33245600	6.95079000	-4.68005900
Н	-0.73471700	0.32992300	3.95376100	Н	-2.23281300	6.88791300	-2.14004100
0	0.68882200	2.32972200	3.70723600	Н	-2.27675500	5.68055900	-6.83467500
Н	0.82081800	3.24259600	3.39904500	Н	-2.00902500	3.19585600	-6.76435000
KOTf				Ν	-1.92091000	3.07889100	-4.71837100
A-IN1				Н	4.29037200	-3.49254200	-0.93413300
-------	-------------	-------------	-------------	---------	-------------	-------------	-------------
С	-1.07065200	3.01101000	-1.32495500	0	3.43538200	-1.84835900	0.75334100
С	0.34909600	2.99045900	-1.94513900	0	3.76491700	-0.50983900	-1.47112600
Н	1.08636400	2.54312100	-1.27629800	Н	3.31149400	0.29712700	-1.14232100
Н	0.35296100	2.43349400	-2.88918900	A-1	81		
Н	0.65182900	4.02167300	-2.15993300	С	-1.02721000	2.92558300	-1.43975500
С	-2.05131600	3.64101900	-2.33499000	С	-0.06084600	2.30601200	-2.47710500
Н	-2.08033300	3.07578800	-3.26960700	Н	0.74235900	1.73366700	-2.00622400
Н	-3.07009900	3.68005700	-1.93437100	Н	-0.59459100	1.65600400	-3.18026100
Н	-1.72996700	4.66474700	-2.55471300	Н	0.40835600	3.11044800	-3.05582300
С	-1.07246900	3.83549800	-0.01932600	С	-2.03958400	3.81770800	-2.18785700
Н	-2.06475800	3.83801900	0.45017800	Н	-2.60887200	3.24822600	-2.92687500
Н	-0.33878700	3.48224600	0.71041400	Н	-2.75685900	4.27246500	-1.49757700
Н	-0.82666200	4.87508700	-0.26249400	Н	-1.50075900	4.62059700	-2.70354500
С	-1.53507800	1.56504000	-1.08721300	С	-0.24380100	3.79733100	-0.43696500
0	-2.28817400	0.97625800	-1.82521600	Н	-0.89554800	4.18892200	0.35243900
Ν	-1.05376100	0.83529700	0.11632700	Н	0.57783500	3.25640900	0.02865600
С	-2.10658600	0.00207600	0.67204600	Н	0.18471600	4.65434800	-0.96910400
С	-2.11776900	-1.33592200	0.22583800	С	-1.83341500	1.80977500	-0.73607000
С	-3.09029300	0.45056700	1.52210200	0	-3.01744000	1.66012400	-0.97565400
С	-3.17174200	-2.21711800	0.58153600	Ν	-1.18748600	0.93095100	0.22262700
С	-4.12627700	-0.43276600	1.92088300	С	-2.14565800	-0.01633400	0.74441600
Н	-3.08098000	1.47646500	1.87757000	С	-2.09651900	-1.30704000	0.17642600
С	-1.00743700	-2.97831300	-0.99689800	С	-3.10066800	0.25411600	1.69923400
С	-3.11238800	-3.53103200	0.04941100	С	-3.04729200	-2.30931300	0.50570800
С	-4.18356000	-1.72692800	1.44892000	С	-4.03259100	-0.74715800	2.07269400
Н	-4.89363800	-0.06909800	2.59714600	Н	-3.15489300	1.24118800	2.14694400
С	-2.04865600	-3.90024600	-0.74553100	С	-0.95823800	-2.71704100	-1.29493300
Н	-3.90402900	-4.23845000	0.28188900	С	-2.92404500	-3.55063800	-0.16770400
Н	-4.99404800	-2.38745400	1.74358500	С	-4.02711300	-1.99396400	1.48294800
Н	-1.97786200	-4.89902400	-1.16215900	Н	-4.77689000	-0.51252000	2.82777700
Н	-0.11144700	-3.23980500	-1.54895000	С	-1.90118800	-3.74428400	-1.07312000
Ν	-1.04963700	-1.74259000	-0.52514900	Н	-3.63591800	-4.34503900	0.04129000
Ni	0.38634500	-0.46475300	-0.44444700	Н	-4.76052000	-2.74478700	1.76285700
Р	1.90100400	1.17018300	1.44768700	Н	-1.78639100	-4.68565700	-1.59934600
0	1.77346400	0.74233900	-0.06503800	Н	-0.08984000	-2.84914800	-1.92982300
0	3.20629500	2.13629800	1.36213000	Ν	-1.06141200	-1.54366300	-0.68858000
Н	3.41337500	2.51189500	2.23357900	Ni	0.28529400	-0.19960700	-0.46907500
0	2.29707000	-0.09862500	2.31856500	Р	1.66145700	1.26897100	1.69084200
Н	2.80292100	-0.79934900	1.78070700	0	1.67266800	0.98356400	0.15925700
0	0.68865200	1.86317700	2.01139200	0	2.64181000	2.51096500	1.99003500
Н	-0.58065300	1.42062700	0.84222800	Н	3.45687600	2.20804500	2.42305600
Р	3.07925500	-1.75351500	-0.70904300	0	2.25811400	0.06669400	2.50730300
0	1.55464500	-1.76516600	-1.06738400	Н	2.55368000	-0.74242800	1.90672800
0	3.68363800	-3.01396200	-1.52217700	0	0.24081400	1.68327700	2.13511700
				57 / 38			

Н	-0.49347100	1.45522000	1.25731700	Н	2.86580800	2.72795100	2.55992000
Р	2.95170600	-1.53223600	-0.53568200	0	2.69761900	0.10656800	2.30758100
0	1.55979300	-1.37057200	-1.20546600	Н	3.36973500	-0.96546500	1.47723500
0	3.67426600	-2.75443600	-1.30212300	0	0.37898300	1.08391800	2.54532200
Н	4.10217500	-3.32645400	-0.64428500	Н	-0.34924200	1.64457600	2.16901700
0	2.96557500	-1.79405700	0.95844100	Р	3.13951900	-1.41497000	-0.65394200
0	3.86448500	-0.27197500	-0.96659300	0	1.64646200	-1.68595200	-0.77873500
Н	3.33350100	0.53025500	-0.77589300	0	3.93250200	-2.44931400	-1.57566100
A-IN2				Н	4.78699900	-2.69490100	-1.18343100
С	-0.80673700	2.93856300	-1.19842600	0	3.75125700	-1.63026900	0.77722600
С	-0.17710400	2.18414200	-2.38022400	0	3.52649500	0.02743600	-1.21210200
Н	0.79956400	1.76805600	-2.11793900	Н	2.87128900	0.67699600	-0.84025300
Н	-0.81922600	1.37098600	-2.73206300	A-1	82		
Н	-0.02683800	2.88103900	-3.21362200	C	-0.32409000	2.73704000	1.60381400
С	-2.17401500	3.52092200	-1.65427000	С	0.71521400	1.61991800	1.79545800
Н	-2.86208900	2.72676400	-1.96840200	Н	1.45383500	1.40401600	0.50777300
Н	-2.64500500	4.09074700	-0.84745500	Н	1.70000400	2.01856700	2.07583900
Н	-2.01991000	4.18997500	-2.50879400	Н	0.44760300	0.98156200	2.65148500
С	0.11124900	4.08858800	-0.74364300	С	0.26907800	3.96074700	0.86725200
Н	-0.33437000	4.63348900	0.09254500	Н	0.66868600	3.69689500	-0.11606800
Н	1.08519800	3.70844900	-0.42145600	Н	-0.50329500	4.72332200	0.72784800
Н	0.26967800	4.78858600	-1.57244300	Н	1.08447400	4.39408600	1.45850200
С	-1.16729800	2.04872700	0.00525800	с	-0.88710400	3.20075200	2.96387800
0	-1.44611900	2.57500500	1.09210700	Н	-1.67650400	3.94358500	2.81469400
Ν	-1.29157100	0.68084200	-0.19923100	Н	-1.31352900	2.36005500	3.52449300
С	-2.35601900	-0.04634300	0.31672900	Н	-0.09037400	3.64533700	3.57156800
С	-2.26087300	-1.44058200	0.02613100	С	-1.50025800	2.21298500	0.76127300
С	-3.51867300	0.39980000	0.94140700	0	-2.53847800	2.84578100	0.61448300
С	-3.31829100	-2.35162300	0.28874400	Ν	-1.25143400	0.97404000	0.17178700
С	-4.56709400	-0.50769600	1.21783900	с	-2.25134600	0.23292400	-0.48595400
Н	-3.62114700	1.44272500	1.21358200	С	-1.93059700	-1.14792100	-0.61700000
С	-0.88921400	-3.11509200	-0.85711300	С	-3.45523500	0.68013600	-1.01760100
С	-3.09541600	-3.70270700	-0.07801800	С	-2.79408300	-2.06087100	-1.28246900
С	-4.49558000	-1.85029900	0.90070500	С	-4.31671300	-0.22949400	-1.67768900
Н	-5.46101200	-0.12288300	1.70165400	Н	-3.72790300	1.72051400	-0.91602900
С	-1.89757400	-4.07891300	-0.65117300	С	-0.38373900	-2.82184900	-0.12143500
Н	-3.87614700	-4.43771700	0.10120600	С	-2.37182200	-3.41182500	-1.34623200
Н	-5.31424200	-2.52670100	1.12692400	С	-4.00967600	-1.56609100	-1.82050400
Н	-1.70928400	-5.10828300	-0.93703500	Н	-5.24928600	0.15197100	-2.08438300
Н	0.08106000	-3.36609600	-1.26892000	С	-1.17727600	-3.78980100	-0.77009700
Ν	-1.07561800	-1.84396400	-0.52616100	Н	-3.00058400	-4.14222600	-1.84927200
Ni	0.22331500	-0.43889900	-0.41066600	Н	-4.68346200	-2.24646900	-2.33319600
Р	1.73617600	1.09715800	1.70448900	Н	-0.83422800	-4.81828500	-0.80401600
0	1.43294100	0.94064400	0.17274400	Н	0.55742900	-3.07799300	0.34843600
0	2.33268200	2.60633200	1.75648500	N 20 / 22	-0.74838100	-1.54884000	-0.05131500
				38 / 98			

Ni	0.18705700	-0.06269400	0.77664900	Н	-4.61602600	-2.21604000	-2.39678600
0	3.04275100	-1.98836600	-0.60352800	Н	-0.77882800	-4.78612400	-0.86612000
0	1.65386200	-1.14981400	1.43600100	Н	0.59535300	-3.06071700	0.31705000
0	3.77232900	-2.46132400	1.76032200	Ν	-0.70373100	-1.52153000	-0.06885800
Р	1.93375500	1.22301100	-1.85495400	Ni	0.18092400	0.00789700	0.86762800
0	2.16932500	-0.21213900	-2.25522600	0	2.98387900	-2.06804500	-0.52023800
0	0.44610200	1.75123800	-2.10210400	0	1.72219000	-1.01811100	1.51247200
Н	-0.18211300	1.48169100	-1.38624800	0	3.78133000	-2.43718800	1.83520000
0	2.81249900	2.22699400	-2.75371800	Р	1.85565600	1.14600200	-1.98367700
Н	3.20428800	1.74135300	-3.49820200	0	2.06666200	-0.31154100	-2.25676600
0	2.30571100	1.55649500	-0.35714400	0	0.37719300	1.69970100	-2.02835900
Р	3.03251900	-1.37758800	0.85253800	Н	-0.20407700	1.43932200	-1.24917100
0	3.98277400	-0.10120300	0.89266600	0	2.64194300	2.08240900	-3.01601100
Н	3.55221800	0.66737600	0.42211600	Н	3.01954100	1.54754800	-3.73400200
Н	4.65161400	-2.69388200	1.41806000	0	2.47165200	1.61736700	-0.55488100
Н	2.70731300	-1.33506700	-1.31944100	Р	3.05083800	-1.37078000	0.90289700
A-IN3				0	4.09649800	-0.16264600	0.81781300
С	-0.38639200	2.73518800	1.69525700	Н	3.73917700	0.59894800	0.30259600
С	0.60299800	1.57917500	1.93409300	Н	4.64757200	-2.70922000	1.48881400
Н	1.78731400	1.55838800	0.17012800	Н	2.61722700	-1.46651300	-1.24324100
Н	1.64679700	1.92393800	1.99224600	R-IN1			
Н	0.41226000	1.08278000	2.89674500	С	-2.12974100	-0.91724900	2.52351400
С	0.26947500	3.92633200	0.95817200	С	-2.05894000	0.60228900	2.30761000
Н	0.69317900	3.63572200	-0.00930500	Н	-1.09604000	0.91793300	1.89626300
Н	-0.46995300	4.71202900	0.77278600	Н	-2.86967300	0.97479000	1.67213600
Н	1.07775200	4.34635100	1.56875500	Н	-2.15680000	1.09453800	3.28114800
С	-0.98473400	3.24734400	3.02195600	С	-3.47002800	-1.28904900	3.20127100
Н	-1.74989000	4.00596400	2.82999700	Н	-4.32805600	-0.96249600	2.60075400
Н	-1.45162900	2.42990600	3.58404300	Н	-3.54525100	-2.36848700	3.35417000
Н	-0.19770700	3.68373200	3.64806500	Н	-3.53268700	-0.79256700	4.17513500
С	-1.54425900	2.23151600	0.81462900	С	-0.95051600	-1.36458100	3.43154400
0	-2.59024700	2.84990600	0.66738000	Н	-0.98573000	-2.44368900	3.60524000
Ν	-1.24952500	1.01326500	0.19514000	Н	0.01685600	-1.10763400	2.99233300
С	-2.22695900	0.25779700	-0.48526200	Н	-1.03663200	-0.84977100	4.39486000
С	-1.88410700	-1.11940600	-0.63753600	С	-2.02250000	-1.77187400	1.25431500
С	-3.43021500	0.69927700	-1.02341300	0	-2.20334300	-2.96161500	1.24205400
С	-2.73872600	-2.02642400	-1.32596700	Ν	-1.65301200	-1.15167400	-0.06616000
С	-4.27691300	-0.20564000	-1.70743000	Н	-1.39238700	-1.96699700	-0.65647200
Н	-3.71475900	1.73484700	-0.90597200	С	-2.72192200	-0.38855600	-0.69242900
С	-0.34240700	-2.79351700	-0.15513500	С	-2.33602200	0.86204900	-1.21933700
С	-2.31299100	-3.37564600	-1.40661800	С	-4.02215900	-0.82464100	-0.82420700
С	-3.95396100	-1.53592100	-1.86829100	С	-3.27546900	1.68469300	-1.89605100
Н	-5.20966300	0.17333200	-2.11638900	С	-4.97136100	-0.00315800	-1.48349500
С	-1.12446900	-3.75856100	-0.82344600	Н	-4.31470900	-1.79469100	-0.43420800
Н	-2.93651200	-4.09936100	-1.92587800	C	-0.60010500	2.37521600	-1.56846100

С	-2.79510000	2.91354700	-2.41733500	С	-2.26068800	0.95574000	-1.18812700
С	-4.61280800	1.22014200	-2.00870100	С	-3.97016500	-0.62870600	-0.59226100
Н	-5.99320800	-0.35617200	-1.57997600	С	-3.19287500	1.75477200	-1.90177400
с	-1.46865500	3.24971200	-2.25842100	С	-4.91054300	0.17125100	-1.28253600
Н	-3.47793000	3.57529200	-2.94332800	Н	-4.29092300	-1.55393900	-0.12340400
Н	-5.34543400	1.83853700	-2.51921500	С	-0.48451000	2.39260700	-1.67888600
Н	-1.07092000	4.17819000	-2.65281700	С	-2.68329300	2.92231000	-2.52388300
Н	0.44964000	2.59963000	-1.42911800	С	-4.54775400	1.33481200	-1.93208100
N	-1.02453600	1.22676100	-1.05945800	Н	-5.94648100	-0.15492700	-1.30816600
с	2.04383100	3.16923600	0.97380700	С	-1.34392900	3.23370900	-2.41562500
F	0.73281400	3.46072700	1.09460600	Н	-3.35652300	3.56457600	-3.08576300
F	2.46966500	3.66741500	-0.19838000	Н	-5.28156600	1.93059500	-2.46613000
F	2.70632100	3.75984100	1.96578200	Н	-0.93186200	4.11984300	-2.88596600
s	2.29086500	1.32299600	1.03428500	Н	0.57199200	2.59946200	-1.57052000
0	3.73093400	1.11776900	0.96574800	Ν	-0.93830800	1.29590500	-1.08336700
0	1.52376500	0.88540900	2.20622400	С	2.15293500	3.23741000	0.88022900
0	1.58080500	0.93761900	-0.29302000	F	0.84949000	3.55905900	0.96060700
s	1.18165200	-2.82416600	-0.44639800	F	2.62417400	3.69599500	-0.28975500
0	0.03392000	-2.96181600	-1.37568600	F	2.80550100	3.83081000	1.87781500
0	0.97975000	-1.61266800	0.49587200	s	2.36028100	1.38909500	0.98361000
Ni	0.02712600	-0.12444500	-0.17634500	0	3.79870000	1.15313800	0.96878900
0	1.65318700	-3.98952200	0.28584800	0	1.54626300	0.97576600	2.13478500
C	2 59170900	-2 26923200	-1 53290800	0	1 68866000	0 96776200	-0 35005500
F	2 19327600	-1 24037700	-2 29688300	S	1 28820000	-2 79919500	-0 32545700
F	2.95249300	-3 28045300	-2.32716000	0	-0.04498300	-3 08149200	-1 14056000
F	3 62725700	-1 89320400	-0 79065900	0	1 10418900	-1 57584100	0 51172300
				Ni	0.07694100	-0 01459400	-0 14625900
B-TS1	-2 26092200	-0 98193800	2 57539000	0	1 84793400	-3 97092100	0 30693900
C	-2 46657500	0.53757300	2 46474300	C	2 38965800	-2 32218400	-1 76474700
н	-1 55732800	1.04220700	2 12122800	F	1 83024400	-1 31744100	-2 43678000
н	-3.29201600	0.80436700	1 79868800	F	2.52662000	-3 37659000	-2 56213700
н	-2 70339000	0.93629400	3 45775000	F	3 56441100	-1 95374900	-1 27914200
n C	-3 55906500	-1 66840200	3.05751000	1	5.50441100	-1.)5574900	-1.27714200
u u	4 40215700	1 45222000	2 20026500	B-IN2	5.07327100	1 59771600	5 01605600
	-4.40213700	-1.45522700	2.37020300	C .	-3.07327100	-1.38771000	5.12120200
n	-3.42700400	1 20025200	4.05580600	F	-0.38333400	-1.34233300	6.01564500
п	-5.821//100	-1.30035300	4.05580600	F	-4.43934600	-0.95490200	5.1542(000
	-1.1301/000	-1.2539/200	3.603/4400	r	-4.87253600	-2.90559100	5.15426900
н	-0.95788800	-2.32/32300	3./1532000	\$	-4.43360400	-1.00821600	3.3/243900
п	-0.19150700	-0.//8/4200	5.29941200	Ŭ	-2.97931200	-1.51499000	3.41962500
н	-1.42102800	-0.83904300	4.57563900	0	-5.21484900	-1./5580200	2.37103900
с	-1.80176700	-1.67395000	1.26909900	0	-4.72240800	0.46392100	3.40792800
0	-1.51935300	-2.86355300	1.28165200	С	-6.10321200	4.96906300	0.22439900
Ν	-1.58505200	-0.95627100	0.05114000	F	-5.99041500	6.21963400	-0.21772200
Н	-0.80957900	-2.61207900	-0.67187000	F	-7.35418300	4.76438800	0.65927500
С	-2.63412500	-0.24665200	-0.53175300	ғ 40 / 98	-5.86483300	4.12333800	-0.79237000
				-			

S	-4.88480600	4.67265700	1.60203100		0	-2.77582400	-1.38362700	3.24927700
0	-5.27135800	3.24014300	2.05497900		0	-4.87821900	-0.05589100	3.40014300
0	-3.56423900	4.67449500	0.94956500		с	-5.50328900	4.89009900	0.39232000
0	-5.19829300	5.66018800	2.62538500	1	F	-5.16960400	6.13801900	0.08725800
Ni	-4.16052000	1.83271100	1.49000600	1	F	-6.83046600	4.76315400	0.41046200
С	-1.16460500	1.29513300	2.24420500	I	F	-4.99089900	4.05126700	-0.51068800
С	-0.12897000	2.08012100	1.39280400	:	s	-4.85238500	4.46176900	2.09122900
Н	0.62800000	1.41596500	0.96157500		0	-5.31768200	3.05595400	2.34830500
Н	-0.61395100	2.62698400	0.57727400		0	-3.31998000	4.39980300	1.84485000
Н	0.38244300	2.80669300	2.03257100		0	-5.29353600	5.50025600	2.99829900
С	-2.21564200	2.26518700	2.80009600	1	Ni	-4.11435600	1.61944400	1.68101100
Н	-2.62582000	2.91153300	1.99025800		с	-1.26665000	1.29398200	2.23918500
Н	-2.97574500	1.74996000	3.40082500		с	-0.41579700	2.27166800	1.38199400
Н	-1.75339100	3.01444200	3.45205300	1	Н	0.42336500	1.75939900	0.89772500
С	-0.45414500	0.57828200	3.41517100	I	Н	-1.01958500	2.75158400	0.60457200
Н	-1.14925700	-0.07305700	3.95027400	1	Н	-0.00456300	3.05345500	2.02994500
Н	-0.05418700	1.33074300	4.10205700		с	-2.48056000	2.01752100	2.84338200
С	-1.81718900	0.28654900	1.30612800	I	Н	-3.00393300	3.31988000	2.08667100
0	-1.09409900	-0.76302500	0.92419600	1	Н	-2.98544900	1.38726900	3.58237700
Ν	-2.98337200	0.49468900	0.77106500	1	Н	-2.12718100	2.88535000	3.41931500
С	-3.63706400	-0.34250400	-0.17233300		С	-0.38194600	0.67184700	3.34192100
С	-5.00831500	-0.01239700	-0.33286900	1	Н	-0.93205200	-0.09782500	3.88863900
С	-3.11627300	-1.39151100	-0.91130600	1	Н	-0.07423200	1.45682300	4.04010300
С	-5.86012200	-0.76673600	-1.18062200		С	-1.79134000	0.24350800	1.28470200
С	-3.95455300	-2.12620800	-1.78450300		0	-1.00725200	-0.74821000	0.87374300
Н	-2.07766500	-1.67029300	-0.82091000	1	N	-2.96742200	0.42123400	0.76435500
С	-6.77035100	1.36502800	0.35193800		С	-3.62151600	-0.39398600	-0.18427300
С	-7.22764800	-0.39988800	-1.21952200		С	-5.01565600	-0.12526800	-0.26672600
С	-5.29396900	-1.83878200	-1.91664700		С	-3.07730000	-1.36549000	-1.00702100
Н	-3.51947200	-2.94626500	-2.34737000		С	-5.85672600	-0.85676000	-1.14608400
С	-7.68106900	0.64915800	-0.45012600		С	-3.91174900	-2.08254700	-1.89878400
Н	-7.91082700	-0.96147600	-1.85087100	I	Н	-2.02142600	-1.59161800	-0.96768000
Н	-5.92919900	-2.42567000	-2.57347300		С	-6.80273000	1.11256800	0.56555900
Н	-8.72539700	0.94050900	-0.44660400		С	-7.23924600	-0.54539600	-1.12453400
Н	-7.07755600	2.19960000	0.96857000		С	-5.26680500	-1.84759400	-1.97298800
Ν	-5.48380400	1.04993400	0.38361300	1	Н	-3.46058900	-2.84270500	-2.52942200
Н	0.41310300	-0.01226800	3.08274600		с	-7.70994100	0.42735100	-0.26958700
Н	-0.36873400	-0.90398100	1.55759100	l	Н	-7.91757100	-1.08665700	-1.77876000
B-TS2				1	Н	-5.89505000	-2.41580300	-2.65277100
С	-5.06897700	-2.64698400	3.01448400	1	Н	-8.76450000	0.67599600	-0.22178200
F	-5.04716600	-2.49022400	1.67012500	1	Н	-7.13278900	1.88332800	1.25270600
F	-6.35229000	-2.66272600	3.40139200	1	N	-5.50447100	0.85197600	0.55497600
F	-4.52525500	-3.83870900	3.29434700	1	Н	0.55005400	0.24171500	2.93996300
S	-4.13577800	-1.27303100	3.85081100	1	Н	-0.28729600	-0.87093400	1.51792200
0	-4.23248300	-1.58046400	5.28198100					

B-IN3				Н	-5.63583000	-1.49798000	-3.86099100
С	-5.14203600	0.50455100	5.91181300	н	-8.62278100	-1.03473300	-0.05862200
F	-5.79682800	1.66772300	5.97007700	н	-7.08409700	-0.26151900	1.75655000
F	-3.82730900	0.73756500	6.00285000	N	-5.41153800	-0.25855700	0.56485500
F	-5.51742300	-0.26562900	6.93511700	н	0.16116700	-1.08268700	2.13308500
S	-5.53215600	-0.36178800	4.31042700	н	0.21410100	0.37827900	0.00368300
0	-4.59234500	-1.47796000	4.19753600				
0	-6.97380400	-0.61653600	4.32791500	A-I Ni	N1' i 1.67859400	1.38229000	0.70644000
0	-5.19069700	0.77587400	3.30469000	Р	1.53991700	1.54273700	-1.79339700
С	-5.75890100	4.21004700	0.86157600	0	2.56675800	0.79292500	-0.91941800
F	-5.09669400	3.10536600	0.47990900	0	2.26104400	2.50681400	-2.86427000
F	-5.07685200	5.28246100	0.45684500	н	2.99955400	3.00195700	-2.47022400
F	-6.96339300	4.20866200	0.29302000	0	0.64344200	2.24546100	-0.76054500
S	-5.91030200	4.25033800	2.71730900	0	0.65663100	0.64115000	-2.77051200
0	-6.78569100	5.36390200	3.03009200	н	1.05848100	0.50789400	-3.64515600
0	-6.71644400	2.89422100	2.94549200	Р	-0.71229700	1.73824800	2.30339200
0	-4.55277700	4.14899200	3.23877600	0	0.77556100	2.21663400	2.06429300
Ni	-3.99773400	0.43540100	1.82667400	0	-0.86757600	0.27770000	2.58486500
С	-1.18347300	0.67496200	2.01935300	0	-1.57392000	2.31456800	1.06767400
С	-0.06205000	1.73690400	2.04083000	Н	-1.00867000	2.41903600	0.27620200
Н	0.88682100	1.38346700	1.60340600	О	-1.25748000	2.65856300	3.52189400
Н	-0.36419400	2.65226800	1.52058500	Н	-1.47765300	2.07379900	4.26517100
Н	0.15748200	1.99983000	3.07998900	с	4.41827500	-0.89910500	1.15237200
С	-2.46856600	1.16525000	2.71777000	с	4.43372500	0.34351200	1.71800300
Н	-6.10341900	2.11848100	3.16358400	с	3.15705200	0.71637000	2.25323300
Н	-2.47832800	0.90595200	3.77875300	С	2.18260000	-0.27454500	2.05610000
Н	-2.59733300	2.25031300	2.61618900	S	2.85951500	-1.65640500	1.24895800
С	-0.67958600	-0.63609100	2.67989100	н	5.23443300	-1.40969200	0.65729700
Н	-1.48844300	-1.37005300	2.74413000	н	5.31209100	0.97727300	1.75834200
Н	-0.34158900	-0.41428500	3.69735200	н	2.97676800	1.58612900	2.87447400
С	-1.58328300	0.33028000	0.60042500	н	1.18136200	-0.32572900	2.48545100
0	-0.66378300	0.17032500	-0.36126600		FC1)		
Ν	-2.84324500	0.13799100	0.36334300	A-1 Ni	i 1.17477300	0.72888100	0.07370400
С	-3.46954700	-0.28801700	-0.82956300	р	1.11886900	1.85727000	-2.16974200
С	-4.87478700	-0.49863200	-0.67224200	0	2.28102300	1.11122100	-1.47903900
С	-2.88903500	-0.51284500	-2.06804400	0	1.58058800	3.34117200	-2.61261800
С	-5.66715400	-0.94157700	-1.76589500	н	2.17287300	3.73781100	-1.95092800
С	-3.68389200	-0.94845100	-3.15511300	0	-0.04689200	1.78750900	-1.17429900
Н	-1.82923400	-0.35732300	-2.21280500	0	0.64886600	1.26471400	-3.57961700
С	-6.70827100	-0.45146700	0.75593100	н	1.23497500	1.51737400	-4.31239300
С	-7.05281600	-1.13423800	-1.52664300	Р	-0.02199100	1.86988900	2.23176700
С	-5.03772000	-1.16201800	-3.01853700	0	-0.13214400	0.55292200	1.42911000
Н	-3.20372500	-1.11591600	-4.11465100	о	1.43586400	2.15042100	2.64017900
С	-7.56918800	-0.89335900	-0.27407600	0	-0.90812700	1.85264000	3.56578000
Н	-7.69091800	-1.47253300	-2.33893500	Н	-1.85551400	1.94709000	3.36977100

0	-0.69759700	3.04805900	1.36334300	C	4.48318800	0.66118600	1.70763300
Н	-0.65495300	2.81466400	0.40653400	С	3.24059200	1.08844300	2.25371600
С	3.92833700	-1.76822400	2.20012200	С	2.26224800	0.07658300	2.23243300
С	4.71101700	-0.85704300	1.51462600	S	2.93287700	-1.41574200	1.62039100
С	3.94848800	0.21170400	1.00316100	Н	5.25492600	-1.21951800	0.86078700
С	2.58302200	0.16651100	1.31519900	Н	5.34763300	1.30384200	1.59191300
s	2.27508900	-1.32033400	2.22369000	Н	3.06980100	2.05168700	2.72211200
н	4.26620500	-2.66892400	2.69905300	Н	1.35199900	0.05389700	2.81716400
Н	5.78427100	-0.95935900	1.39531500	S	1.74039300	1.39214300	-1.87361500
Н	4.36924400	1.02275600	0.41782200	С	0.47911500	0.19881100	-2.56701100
н	2.10752900	1.24813000	2.04432500	F	1.11957400	-0.72704900	-3.27932400
				F	-0.36315800	0.86861300	-3.34511500
A-IN2' Ni	1.78400200	1.75570700	0.23566300	F	-0.17987500	-0.37731600	-1.56702300
Р	1.00779700	1.75733100	-2.17708600	S	-0.88042500	2.20356300	1.89235900
0	2.29021900	1.18050900	-1.54275500	с	-1.16623600	1.73808100	3.67429500
0	1.38289700	2.66722600	-3.45487400	F	-0.70704900	2.68892600	4.48741200
н	2.20972700	3.15686000	-3.30362900	F	-0.52736000	0.58370000	3.95937900
0	0.26308000	2.47774300	-1.04609600	F	-2.46911100	1.56161000	3.88356000
0	0.02101000	0 68696800	-2.84536800				
н	0.35709300	0.32899900	-3 68413700	B-1	'S1'	1 49272400	-0.08872600
р	-0 27972900	1 76375900	2 15834000	0	2.46156400	1 53941100	-1 62267800
	0.99120700	2 51924300	1 79265000	0	1 73403300	3.08559800	-3 52321000
0	0.06608500	0.31523700	2 74181300	0	0.23371800	2 33666500	-1 58495500
0	-1 32048200	1.66700700	0.97921700	0	-0.11166800	1 58296500	1 21634600
ц ц	0.01838800	1.06220200	0.11074600	0	1 52696000	2.00228700	2 00202200
n 0	-0.91858800	2.44766000	2.21420700	0	0.46820100	2.09238700	2 72705200
	-1.13850700	2.44700000	4 20085 (00	0	-0.40850100	0.70502000	2.72795500
п	-0.79260700	2.25044700	4.20085600	c	4.00180500	-0.70583000	1.51635900
С	4.59191100	-1.13056500	1.86569200	С	3.53123800	-1.43140200	1.82505800
С	4.24319900	-0.32501000	2.91464200	С	2.34692600	-0.70602500	1.55731600
С	3.32089300	0.70369800	2.53571700	C	2.55245600	0.59228500	1.07588800
С	2.97332600	0.67705700	1.19818100	S	4.28522600	0.85195500	0.89689600
S	3.80069200	-0.64037900	0.39916100	Н	5.69289000	-1.00866400	1.65336900
Н	5.26341000	-1.97981000	1.87122400	Н	3.55490700	-2.43488900	2.23551400
Н	4.62880200	-0.44825100	3.92188800	Н	1.35186600	-1.09992900	1.74012500
Н	2.96601700	1.46985000	3.21735200	Н	2.06262600	1.44350100	2.22313000
Н	0.99895100	0.07880500	2.51924400	S	1.36456800	2.07220000	-2.55724900
B-IN1'				C	0.82999300	0.56151200	-3.51376200
Ni	1.59643200	1.38260300	0.66582200	F	1.83747400	0.14389200	-4.27596600
0	2.50244500	0.56498400	-0.82184800	F	-0.21512400	0.87370400	-4.27544000
0	2.49912200	1.92421400	-2.98583100	F	0.48660900	-0.40518700	-2.65766800
0	0.95935500	2.33552300	-0.97816500	S	0.05489000	2.26164500	2.55417700
0	0.67066900	2.39549300	1.92199000	С	-0.87276200	1.11384300	3.69686300
0	-1.21602300	1.01256400	1.10207900	F	-0.73621100	1.54388800	4.94564100
0	-1.58914300	3.45950900	1.69764800	F	-2.15460300	1.10733900	3.35091400
С	4.45757600	-0.65735200	1.33056400	F 10 / 00	-0.36651000	-0.11555500	3.58502100

B-IN2'				C	4.11784400	0.85877500	0.17791000
Ni	1.37044800	1.31459400	-0.20707500	С	3.67326900	-1.93334600	0.05892700
0	2.43100700	1.47339700	-1.80593900	С	5.17825000	-0.06447400	0.31442300
0	1.65144200	3.21544300	-3.50297900	Н	4.29772000	1.92359000	0.22561700
0	0.23762000	2.33828600	-1.55469400	С	1.04490100	-2.72985900	-0.33880000
0	0.05623000	1.32695300	1.22023600	С	3.35301800	-3.31186100	-0.01431700
0	1.56243600	1.75499400	3.18046400	С	4.98305000	-1.42972000	0.25931200
0	-0.12458200	3.49198400	2.57209700	Н	6.18097700	0.32616500	0.46718800
С	4.78644900	-0.64296600	1.66284600	С	2.04802700	-3.71143700	-0.21107000
С	3.68228100	-1.24834700	2.19447900	Н	4.14805100	-4.04658800	0.08703600
С	2.45870200	-0.69134800	1.69312300	Н	5.81246400	-2.12298500	0.36535300
С	2.64466300	0.33565400	0.77894700	Н	1.78000600	-4.76123000	-0.26889600
s	4.35010200	0.60713400	0.53918300	Н	0.00684600	-3.01411000	-0.49319000
Н	5.82780400	-0.85528700	1.86850600	Ν	1.30420600	-1.42962900	-0.27841700
Н	3.72555300	-2.06180000	2.91095900	Ni	0.15374500	0.18719300	-0.47286900
Н	1.47797900	-1.07791500	1.95722500	152	,		
Н	2.04834400	1.04864300	2.62955300	C	0.32900100	3.08497200	0.09890800
s	1.29900400	2.12910900	-2.61217500	С	1.39906000	2.02104300	-0.12587200
С	0.64845700	0.73550700	-3.66829500	Н	2.31993000	2.18799500	0.43294400
F	1.58224700	0.36825900	-4.54180800	Н	1.64210100	1.87165400	-1.18672100
F	-0.43798800	1.15068500	-4.31580700	С	0.55871600	4.29087900	-0.83416700
F	0.33296000	-0.30178500	-2.88752300	Н	0.59550500	3.97949200	-1.88433300
s	0.16660100	2.07927900	2.50736600	Н	-0.26724500	5.00071800	-0.72419000
С	-1.01746000	1.15017900	3.61712000	Н	1.50050700	4.79727700	-0.59296600
F	-0.96759800	1.68221900	4.83045500	С	0.32277800	3.56318500	1.56804900
F	-2.23754100	1.26183200	3.11078700	Н	-0.48455700	4.28438400	1.73037700
F	-0.65201600	-0.12865900	3.66088700	Н	0.17774400	2.72322500	2.25712700
IN4				Н	1.27530500	4.04809800	1.81442600
С	0.10663200	3.01070400	-0.18617000	С	-1.05237600	2.47119900	-0.19017500
С	-0.73891100	1.83715300	-0.71742000	0	-2.04978800	3.15291300	-0.40881300
Н	-0.89674300	1.91295000	-1.80446300	Ν	-1.00481700	1.09563200	-0.12290900
Н	-1.71926500	1.76564100	-0.21850200	С	-2.12446400	0.27186600	-0.18431600
С	-0.31081700	3.37318200	1.25789300	С	-1.83894900	-1.10865900	0.05505600
Н	-0.27955400	2.49137400	1.90895600	С	-3.44766500	0.63342200	-0.42960200
Н	0.35790000	4.13308100	1.67589000	С	-2.87390100	-2.08798500	0.07562100
Н	-1.33408700	3.76805000	1.26656700	С	-4.46666400	-0.34690900	-0.43095000
С	0.01848700	4.26240300	-1.07657100	Н	-3.68073800	1.67315900	-0.61004900
Н	0.69912400	5.04007600	-0.71496000	С	-0.21325800	-2.69048400	0.57871100
Н	0.29422800	4.02929900	-2.11193800	С	-2.49467400	-3.41962100	0.37166700
Н	-1.00391200	4.65868200	-1.07852200	С	-4.20713400	-1.67835100	-0.18349400
С	1.57210500	2.54179000	-0.11053800	Н	-5.48666900	-0.02745300	-0.62785000
0	2.53028500	3.29544600	0.02440400	С	-1.17455000	-3.71954400	0.63320300
Ν	1.66126700	1.16387300	-0.15864600	Н	-3.25660400	-4.19494400	0.39865200
С	2.81386700	0.40585900	-0.01928000	Н	-5.00364700	-2.41700800	-0.17716000
С	2.59602600	-1.01048000	-0.08053000	н	-0.86020100	-4.72941000	0.87508200

Н	0.83486700	-2.89392200	0.76785800	С	2.33879700	-0.76684700	0.15835200
Ν	-0.52723000	-1.43520600	0.28464500	С	3.05078700	-1.26767700	1.22500800
Ni	0.65664400	0.25167500	0.17182600	C	4.31599000	-1.84700200	0.87619500
С	2.38001100	-0.54530900	0.18491600	С	4.57150100	-1.79647600	-0.46546400
С	3.57261800	-0.33698300	0.83947000	S	3.25571500	-1.03267200	-1.31232700
С	4.66772900	-1.10178800	0.33096800	Н	1.53897300	1.63750700	0.90982700
С	4.31547400	-1.89888100	-0.72295300	Н	2.68526300	-1.23029700	2.24799900
S	2.62703000	-1.73445800	-1.09564400	Н	5.00111500	-2.27963000	1.59898400
Н	1.19384100	0.39655800	1.48292700	Н	5.44297900	-2.15250600	-0.99943200
Н	3.67574600	0.35965700	1.66547500	IN6			
Н	5.67518500	-1.05244000	0.73159000	С	1.02178200	2.45526600	-1.70201900
Н	4.94255200	-2.56121100	-1.30589000	С	-0.19174000	1.53549900	-1.69458200
IN5				Н	-0.61571000	1.29548000	-2.67033000
С	0.29849700	3.24344800	0.04902300	Н	-0.97761000	1.82041900	-0.98861300
С	1.48258100	2.27288500	-0.00645800	С	0.63060400	3.90522200	-1.35762300
Н	2.45770700	2.77284600	-0.00417600	Н	0.10113500	3.95588900	-0.39953600
Н	1.48819500	1.68160100	-0.94360500	Н	1.53025400	4.52417600	-1.27995200
С	0.32505700	4.16808800	-1.18451500	Н	-0.02251100	4.32145100	-2.13254500
Н	0.30455300	3.58950800	-2.11637900	с	1.73414800	2.41481500	-3.07495600
Н	-0.55004300	4.82304700	-1.17371700	Н	2.64459800	3.02223000	-3.05429400
Н	1.23094600	4.78634200	-1.18680300	Н	2.01002800	1.39011500	-3.35058500
С	0.37231600	4.09079600	1.33589700	Н	1.07003000	2.80875900	-3.85271500
Н	-0.49818700	4.74952800	1.39576800	С	2.03143900	1.94166100	-0.66490700
Н	0.38042000	3.45638300	2.23105500	0	2.95433000	2.61055100	-0.22840000
Н	1.28118000	4.70465800	1.34453700	Ν	1.78739300	0.60571900	-0.33442100
С	-1.05950700	2.49760700	0.05425900	С	2.63467900	-0.17330600	0.47062200
0	-2.10343900	3.15329400	0.05043200	С	2.19401100	-1.52282000	0.64194800
Ν	-0.97653500	1.12985200	0.06788600	С	3.81896000	0.21743100	1.08675100
С	-2.09536800	0.30397100	0.06902600	С	2.94363600	-2.45228900	1.41256400
С	-1.76754500	-1.08583800	0.08151100	С	4.56188900	-0.71253800	1.85248800
С	-3.44674600	0.64920500	0.05692600	Н	4.16399600	1.23488500	0.97526800
С	-2.77076300	-2.09685300	0.07751500	С	0.54368700	-3.10012000	0.16277000
С	-4.44052200	-0.35600100	0.05481100	С	2.41894900	-3.76456900	1.52383900
Н	-3.71849200	1.69455100	0.04861800	С	4.15039400	-2.01677100	2.02025300
С	-0.05114100	-2.67941500	0.10764300	Н	5.48306800	-0.37450100	2.31880900
С	-2.33406300	-3.44322100	0.08695600	С	1.22957900	-4.08541700	0.90671800
С	-4.13189900	-1.70021500	0.06395400	Н	2.96332800	-4.50597000	2.10380100
Н	-5.48244100	-0.04674700	0.04480300	Н	4.73185200	-2.71728300	2.61312400
С	-0.98631200	-3.73196300	0.10155900	Н	0.80278700	-5.07975800	0.98434600
Н	-3.07303100	-4.24069400	0.08262600	Н	-0.41671400	-3.30631100	-0.30380700
Н	-4.90881100	-2.45923800	0.06082000	Ν	1.01730600	-1.86670800	0.03537200
Н	-0.62570100	-4.75500000	0.10877700	Ni	0.27484900	-0.22003500	-0.96934400
Н	1.01498100	-2.86299100	0.12817300	Р	-2.54218100	-1.53085300	-1.04793000
Ν	-0.42895200	-1.40389600	0.09769100	0	-2.53936100	-2.93133300	-0.52893000
Ni	0.66555900	0.14709900	0.09849100	0	-2.89535100	-0.41617700	0.09259400

Н	-3.55857900	-0.77117500	0.70702900	0	-4.14371500	-0.62001600	-2.45726200
0	-3.71843500	-1.32667500	-2.15833500	Ν	-2.60429500	-0.07051800	-0.80313200
Н	-4.08518400	-2.20054000	-2.36921600	С	-2.96930500	1.26090300	-0.60695300
0	-1.26722500	-0.94145700	-1.69891300	С	-2.16194200	1.94348400	0.35831300
4-TS3				С	-3.99071300	1.97499000	-1.22822800
Ni	1.29811300	1.49272400	-0.08872600	С	-2.37982000	3.31533400	0.67081800
0	2.46156400	1.53941100	-1.62267800	С	-4.21051700	3.33449600	-0.90399700
0	1.73403300	3.08559800	-3.52321000	Н	-4.60536300	1.47824500	-1.96527100
0	0.23371800	2.33666500	-1.58495500	С	-0.36212100	1.80292600	1.82690700
0	-0.11166800	1.58296500	1.21634600	С	-1.50840400	3.90636300	1.61801800
0	1.52696000	2.09238700	3.00202300	С	-3.43494300	4.00460800	0.01749600
0	-0.46830100	3.59961300	2.72795300	Н	-5.01710200	3.85931300	-1.40887700
С	4.66186500	-0.70583000	1.51635900	С	-0.50085300	3.15838700	2.18957400
С	3.53123800	-1.43140200	1.82505800	Н	-1.64190500	4.95275400	1.88171800
С	2.34692600	-0.70602500	1.55731600	Н	-3.61252300	5.05118200	0.24842800
С	2.55245600	0.59228500	1.07588800	Н	0.18396200	3.59015200	2.91199500
s	4.28522600	0.85195500	0.89689600	Н	0.41225100	1.17714700	2.25881300
н	5.69289000	-1.00866400	1.65336900	Ν	-1.16620200	1.21473200	0.95235700
н	3.55490700	-2.43488900	2.23551400	Ni	-1.17188800	-0.72216000	0.21265700
н	1.35186600	-1.09992900	1.74012500	С	0.07782000	-1.55106800	1.40582100
н	2.06262600	1.44350100	2.22313000	С	0.10995900	-1.40688900	2.78551000
s	1.36456800	2.07220000	-2.55724900	С	1.15853700	-2.12001500	3.43851800
С	0.82999300	0.56151200	-3.51376200	С	1.94545200	-2.81767400	2.55812500
F	1.83747400	0.14389200	-4.27596600	S	1.38256200	-2.61881300	0.93181000
F	-0.21512400	0.87370400	-4.27544000	Н	-0.62329500	-0.81766100	3.32893800
F	0.48660900	-0.40518700	-2.65766800	Н	1.32195100	-2.11202600	4.51165400
s	0.05489000	2.26164500	2.55417700	Н	2.82585900	-3.40936400	2.77443900
С	-0.87276200	1.11384300	3.69686300	4/R-TS4			
F	-0.73621100	1.54388800	4.94564100	С	-2.67179900	-2.30508700	-1.29961700
F	-2.15460300	1.10733900	3.35091400	С	-1.26835200	-2.31551300	-0.66629900
F	-0.36651000	-0.11555500	3.58502100	Н	-0.49887600	-1.88025500	-1.31774900
A/B-IN7				Н	-0.97414300	-3.33675000	-0.43667500
С	-2.72108000	-2.36546500	-1.53171700	С	-3.69052600	-3.06312200	-0.42085800
С	-1.33363900	-2.33581500	-0.88412000	Н	-3.82786200	-2.57175600	0.54808700
Н	-0.53038700	-2.15590500	-1.60971800	Н	-4.66121700	-3.09294100	-0.92516500
Н	-1.11299900	-3.22972100	-0.30331000	Н	-3.35960200	-4.09277400	-0.23823200
С	-3.72774700	-3.11045100	-0.62293100	С	-2.55942300	-3.01355700	-2.66841800
Н	-3.77618000	-2.65552100	0.37318300	Н	-3.52193300	-2.93886300	-3.18251700
Н	-4.73088900	-3.08874200	-1.06121400	Н	-1.80325100	-2.53944500	-3.30498400
Н	-3.42324900	-4.15698500	-0.50372200	Н	-2.29558700	-4.07056000	-2.54595800
С	-2.67179600	-3.04644500	-2.91253800	С	-3.23671500	-0.87889700	-1.52313600
Н	-3.65523700	-2.99005300	-3.39021700	0	-4.16006500	-0.68031100	-2.31574000
Н	-1.94881700	-2.55300500	-3.57219400	Ν	-2.62919700	0.03557300	-0.71957700
Н	-2.38261100	-4.09893600	-2.81380200	С	-2.96218800	1.37239600	-0.62569700
С	-3.24407600	-0.92946600	-1.68497000	С	-2.15282600	2.10654400	0.30869500
				46 / 98			

С	-3.95886600	2.06802200	-1.30945700	С	-0.60867700	2.35215200	2.26531100
С	-2.36279500	3.49831500	0.53793800	с	-1.74692000	4.33373600	1.54980100
С	-4.15660600	3.44768000	-1.07720300	С	-3.26700200	4.15427600	-0.41472700
Н	-4.57409900	1.52902100	-2.01721900	Н	-4.50976800	3.76511400	-2.10693100
С	-0.40147200	2.03469800	1.84561500	С	-0.87477100	3.72441100	2.42619800
с	-1.51731500	4.13047200	1.48251300	Н	-1.97309700	5.39365700	1.63929600
с	-3.38990700	4.16293500	-0.17969300	Н	-3.50786000	5.21183500	-0.35275700
н	-4.94437600	3.95463200	-1.62885100	Н	-0.39260100	4.27713600	3.22590300
с	-0.54217900	3.40626500	2.13623800	Н	0.07934200	1.83597000	2.92967200
Н	-1.64874100	5.19088700	1.68455400	Ν	-1.16854700	1.62086300	1.30820600
Н	-3.55860200	5.22306100	-0.01278900	Ni	-0.84549600	-0.26996700	0.81696200
н	0.11451800	3.87004600	2.86502100	С	-0.35172400	-2.25333000	0.46485200
н	0.35441100	1.43200700	2.34217700	С	0.83715200	-1.49223800	0.51926000
Ν	-1.17299300	1.40867900	0.96632100	С	1.48123400	-1.53457300	1.80962200
Ni	-1.19178600	-0.54841300	0.42348700	С	0.83199300	-2.33350700	2.70567300
С	-0.71670700	-2.08529700	1.37789000	S	-0.59311500	-3.07151900	2.02985800
С	0.61118400	-2.40209900	1.61536700	Н	1.32235000	-1.10555200	-0.37219000
С	0.82696700	-3.04424200	2.87221200	Н	2.39280800	-0.99271500	2.03797700
С	-0.33381600	-3.26307900	3.56448700	Н	1.08660000	-2.50803500	3.74334000
S	-1.71490100	-2.65604000	2.69960700	A-IN9			
Н	1.40489500	-2.20367700	0.90188500	С	0.50324300	2.64406300	0.36510800
Н	1.80523600	-3.34242700	3.23505300	С	1.29796400	1.35624200	0.51657500
Н	-0.45807300	-3.73607300	4.53006500	Н	1.98771900	1.31293400	1.35911500
A/B-IN8				Н	1.76340100	0.99785500	-0.40944300
С	-2.54232800	-2.42454200	-1.03657300	С	1.21512000	3.62069400	-0.59259500
с	-1.03370800	-2.73193400	-0.79676700	Н	1.40202900	3.15744900	-1.56837200
Н	-0.46405000	-2.32164300	-1.64001100	Н	0.58206000	4.49962300	-0.75249200
Н	-0.91235200	-3.82268600	-0.85391700	Н	2.17558300	3.94211900	-0.17456000
С	-3.41282900	-2.82478400	0.17520900	С	0.28909300	3.31661100	1.74125000
Н	-3.18976300	-2.22024900	1.05890200	Н	-0.37295100	4.18314700	1.64215900
Н	-4.47170800	-2.68116200	-0.06669700	Н	-0.14255000	2.61057800	2.45745700
Н	-3.26930400	-3.88365600	0.42897300	Н	1.25034500	3.65752300	2.14339500
С	-2.97121300	-3.27350200	-2.24992600	С	-0.88985100	2.30768200	-0.20570100
Н	-4.01000900	-3.06917400	-2.51263200	0	-1.62771500	3.14589800	-0.71172100
Н	-2.36208300	-3.04484100	-3.13165100	Ν	-1.19660200	0.97306200	-0.02697600
Н	-2.86216900	-4.34119100	-2.02248900	С	-2.41396900	0.38362700	-0.35548200
С	-2.84094600	-0.92660900	-1.35832100	С	-2.51094300	-1.01352200	-0.03572700
0	-3.61710500	-0.68081000	-2.28828100	С	-3.52230400	0.98532300	-0.95140500
Ν	-2.27315400	0.00354400	-0.52739000	С	-3.68437500	-1.76986000	-0.32972500
С	-2.63790600	1.34682000	-0.58053600	С	-4.68677600	0.23153700	-1.22588700
С	-2.04724000	2.19505000	0.42796700	Н	-3.47295300	2.03495400	-1.20402600
С	-3.51828000	1.96658000	-1.47577500	С	-1.41334800	-2.88283300	0.83638000
С	-2.36426200	3.58712800	0.51686500	С	-3.65632500	-3.14831200	0.00300800
С	-3.81741100	3.34256100	-1.38277200	С	-4.78684700	-1.11312200	-0.93281100
Н	-3.97310000	1.36430700	-2.24672000	H	-5.52607700	0.74009700	-1.69315400
				47 / 98			

С	-2.53051600	-3.70690800	0.57564000	С	-2.34611200	-3.31065700	-0.46152700
Н	-4.52888900	-3.76103300	-0.21171200	С	-4.05418200	-1.60554700	0.20483900
Н	-5.68665400	-1.67591300	-1.16464000	Н	-5.34146800	0.00628000	0.76347800
Н	-2.48433600	-4.76436700	0.81592000	С	-1.03180100	-3.59474200	-0.74857700
Н	-0.50138800	-3.26730000	1.28598300	Н	-3.10009600	-4.09416100	-0.46281000
Ν	-1.41882100	-1.58822600	0.55056700	Н	-4.83860600	-2.35724200	0.20844300
Ni	0.07285800	-0.14656700	0.82593700	Н	-0.70510800	-4.60488600	-0.97075400
Р	1.15447600	-1.12156600	3.00252900	Н	0.97148600	-2.74231200	-0.91264100
0	0.03607500	-0.03213600	2.93145900	N	-0.41327100	-1.29218500	-0.48133600
0	0.67249000	-2.37755600	3.75267500	Ni	0.77831800	0.44885000	-0.41832300
0	2.45630600	-0.49018200	3.69089800	С	2.27375700	-0.10664300	-1.83560000
Н	3.19249100	-1.16757700	3.67784800	С	3.36901500	0.66926200	-2.20980600
0	1.45464500	-1.40524200	1.47200100	С	3.50843200	0.89718000	-3.60001500
Р	3.52992300	-3.79451700	2.66917100	С	2.51040500	0.28895800	-4.32902200
0	4.12200700	-2.59956400	3.35816700	S	1.41847700	-0.56984400	-3.31178500
0	3.09365100	-3.52756400	1.15360900	Н	2.52062600	-0.97812900	-0.90255700
Н	2.51405700	-2.71413200	1.10640200	Н	4.07397500	1.04098700	-1.47148900
0	2.29266400	-4.45617800	3.42392200	Н	4.31124600	1.47216200	-4.04969100
Н	1.62311500	-3.73409900	3.64582300	Н	2.37673700	0.30068200	-5.40383100
0	4.55344900	-5.02778300	2.53507600	Р	2.72525300	-1.17436200	1.44029200
Н	5.43417000	-4.72800000	2.81236200	0	1.67508600	0.00616200	1.33140800
К	-1.72435700	-1.42815400	4.26649800	0	2.44010100	-2.13660500	2.57719100
A-TS5				0	4.11190600	-0.35377000	1.76757200
С	0.50274400	3.14355700	0.60157400	Н	4.72689000	-0.95227300	2.22177100
С	1.35653100	2.36053300	-0.39573800	0	2.86470700	-1.83403700	0.04017000
Н	2.41355300	2.30573900	-0.14447300	Р	-0.59701600	-1.34636900	3.90408300
Н	1.19656600	2.63752400	-1.44113700	0	-1.63441200	-0.88139800	4.87726300
С	0.18274100	4.54721300	0.03586900	0	-0.27276500	-0.09146100	2.95361800
Н	-0.33279100	4.47954500	-0.92938900	Н	0.54095300	-0.13085700	2.32521600
Н	-0.46513600	5.09037000	0.73219000	0	-1.13242800	-2.54008400	2.93505800
Н	1.10485500	5.12178700	-0.10806600	Н	-2.06118200	-2.39131700	2.69452500
С	1.23022800	3.28573600	1.95648300	0	0.74785400	-1.91239800	4.46875500
Н	0.58690900	3.80300600	2.67757500	Н	1.47865400	-2.03287900	3.74031500
Н	1.51496600	2.30702000	2.35266000	К	-2.07203500	1.59561300	3.91297000
Н	2.14263000	3.88009500	1.83154100	A-IN10			
С	-0.82950200	2.41123900	0.83368600	С	0.10672300	2.90669500	0.75350700
0	-1.70196200	2.86861400	1.59511700	С	0.97575100	2.57789300	-0.47727100
Ν	-0.90286500	1.23464300	0.15861500	Н	2.04366400	2.55824900	-0.26799300
С	-1.99617600	0.36979300	0.20106200	Н	0.77053000	3.20831900	-1.34810300
С	-1.70814200	-0.98888400	-0.15529500	С	-0.53535700	4.30707400	0.59332500
С	-3.31199900	0.69785100	0.52305900	Н	-1.15108200	4.35881600	-0.31227700
С	-2.72893900	-1.98224800	-0.13930000	Н	-1.17063800	4.53598900	1.45634200
С	-4.32497800	-0.29018700	0.51702400	Н	0.24305700	5.07573200	0.52162600
Н	-3.55567200	1.72454900	0.76245300	С	0.94549100	2.87317000	2.04490400
С	-0.08241300	-2.54872300	-0.74103300	Н	0.29969300	3.00944800	2.91814400
				48 / 98			

Н	1.47332400	1.91944600	2.13930400	К	-1.02110400	-1.02850800	2.15980400
Н	1.69070300	3.67710900	2.03274400	A-1	86		
С	-1.05237100	1.89749600	0.87056200	с	0.95907000	3.26564700	-0.95554500
0	-1.72015100	1.75924300	1.90759300	С	-0.35282000	2.46617100	-0.79820200
Ν	-1.21434300	1.17057700	-0.27251100	Н	-0.71052900	2.04488900	-1.74126100
С	-2.24609300	0.26320700	-0.48315300	Н	-1.12161500	3.12941100	-0.41037400
С	-1.95293300	-0.77109800	-1.43308400	С	1.28079100	4.06822200	0.32703500
С	-3.51669200	0.28300800	0.09260200	Н	1.44137100	3.40760300	1.18373500
С	-2.93746300	-1.73378900	-1.79704200	Н	2.18521400	4.66902400	0.18099700
С	-4.48863600	-0.67681900	-0.27510300	Н	0.45412900	4.74774500	0.56731600
Н	-3.75691600	1.05214500	0.81568500	С	0.74408400	4.24572000	-2.12932900
с	-0.37032400	-1.73466600	-2.83465100	Н	1.64986900	4.83775800	-2.28822300
с	-2.55920700	-2.71967700	-2.74355900	Н	0.52492600	3.70782300	-3.05666000
с	-4.22219700	-1.66495100	-1.19916700	Н	-0.08884800	4.92481000	-1.91400900
Н	-5.47159200	-0.62141200	0.18559900	С	2.19025700	2.37523700	-1.23936300
С	-1.28429500	-2.72205000	-3.26054100	0	3.10120200	2.76209400	-2.00750000
н	-3.28472000	-3.47080800	-3.04589400	N	2 15691600	1 21461500	-0 55910900
н	-4.97713700	-2.39657800	-1.47273200	C	3 19863100	0 31382000	-0 45380000
н	-0.96335500	-3 47173300	-3 97558300	c C	2 81847200	-0 97604700	0.06295400
н	0.64161200	-1 70767400	-3 22556900	C	4 54854400	0.53119600	-0 73042700
N	-0 68747000	-0 79228200	-1 96097900	C	3 80367000	-1 97929000	0.32652500
Ni	0.47047500	0.79220200	1 1/270700	C	5.50905200	-1.97929000	0.32032300
C	2.00827100	0.60411400	2 22827400		4.84800000	-0.4/191400	-0.4/989/00
c	2.09857100	0.09411400	-2.22837400	н	4.84899000	1.48497600	-1.14305200
c	5.44273500	0.64151400	-1.91227000	C	1.08865500	-2.36859100	0.7/416400
c	4.32612500	0.60/50/00	-3.04210800	С	3.34282200	-3.21267900	0.85818600
С	3.66374800	0.65434400	-4.23608600	С	5.16530100	-1.70348800	0.04080100
S	1.94510300	0.72992000	-3.97819400	Н	6.55085700	-0.25735800	-0.70305000
Н	2.70820600	-1.46949000	-1.08071800	С	1.99674900	-3.40611700	1.09016100
Н	3.80678000	0.67063400	-0.88918300	Н	4.06479300	-3.99428400	1.08501300
Н	5.40746200	0.55525900	-2.95987100	Н	5.91782800	-2.46164100	0.23977300
Н	4.07635700	0.64304000	-5.23673700	Н	1.62088100	-4.33647500	1.50421900
Р	2.18605200	-1.20404600	1.01775800	Н	0.01842900	-2.50397300	0.89820400
0	1.11999100	-0.18878800	0.64578400	Ν	1.48223200	-1.20496200	0.27195000
0	1.84594200	-2.18102200	2.11779400	Ni	0.31986400	0.50610900	-0.34134900
0	3.53766400	-0.37370100	1.37734400	С	-1.04662500	1.25630500	0.75803700
Н	4.15911700	-0.93646200	1.86896600	С	-2.41628800	1.03987700	0.67075900
0	2.57902600	-2.07966600	-0.31851600	С	-3.09376400	1.10313000	1.92826600
Р	-0.07511500	-4.44802700	0.78460900	С	-2.25842500	1.39489000	2.97237400
0	-1.13811700	-3.49628300	1.24101000	S	-0.61717200	1.59132100	2.42489100
0	1.10157200	-4.69087500	1.83005200	Н	-2.92607700	0.92046600	-0.28159100
Н	1.50299100	-3.80464600	2.07421900	Н	-4.16059700	0.93998000	2.04444400
0	0.60977900	-4.10292300	-0.62279900	Н	-2.50219100	1.48644600	4.02283000
Н	1.35549500	-3.46164200	-0.55008100	Р	-1.52878600	-1.83966300	-1.79308000
0	-0.64431200	-5.92149800	0.48012000	0	-0.74851000	-0.51551900	-1.89816000
Н	-1.51842500	-6.01423700	0.89180000	0	-0.85111100	-3.11670800	-2.20137100
				49 / 98			

0	-2.89250800	-1.58019700	-2.64852200	С	0.77056900	-2.37858000	1.44487200
Н	-3.30665900	-2.43060900	-2.86927900	с	2.98790900	-3.29086000	1.55627900
0	-2.01935100	-1.99976100	-0.24622200	С	4.82952100	-1.94719100	0.53461100
Р	1.84315300	0.39185600	-4.45984600	Н	6.24869800	-0.63977300	-0.39190900
0	2.33103900	-0.90611200	-3.90910600	С	1.64772600	-3.41279200	1.83695500
0	2.81594900	1.64577700	-4.43102300	Н	3.68886500	-4.07755000	1.82461700
Н	2.97036800	2.05661700	-3.52935100	Н	5.55525200	-2.71854200	0.77672200
0	0.48859400	0.91477500	-3.78657100	Н	1.24937400	-4.29315600	2.33039300
Н	0.00825600	0.25628900	-3.20198200	Н	-0.29895800	-2.46967400	1.60513000
0	1.56226400	0.24710000	-6.04206500	Ν	1.18529400	-1.27470300	0.84453300
Н	1.42366300	1.11361100	-6.45873800	Ni	0.04882700	0.24006200	0.07696300
К	1.70802500	-2.91654200	-2.50824500	С	-0.85569200	2.26563100	0.35520300
Н	-2.20055500	-1.12807200	0.16356400	С	-1.86448000	1.29620500	0.27310600
A-IN11				с	-2.43734100	0.94935800	1.54822500
С	1.20607100	3.27976200	-1.00376700	с	-1.90659400	1.66170800	2.58002300
С	-0.33285100	3.11085900	-0.78904700	S	-0.68207200	2.77813600	2.04551500
Н	-0.75934300	2.69725000	-1.70923700	Н	-2.28357400	0.97126400	-0.67335600
Н	-0.74713700	4.12496600	-0.68453200	Н	-3.21506300	0.20251800	1.66678000
С	1.87979800	3.93512000	0.22387100	Н	-2.13235400	1.57674700	3.63532300
Н	1.85294300	3.28230000	1.09803400	Р	-0.38616900	-2.25088000	-2.06812900
Н	2.93242100	4.15493500	0.00747900	0	-0.75785500	-0.79506700	-1.63665300
Н	1.38675600	4.88441800	0.46750500	0	1.05650800	-2.64025000	-1.95383000
С	1.38184400	4.22631700	-2.20732300	0	-0.99484300	-2.46657900	-3.55278800
Н	2.43868100	4.33764800	-2.46739700	Н	-0.45008500	-1.94574800	-4.19254700
Н	0.85188300	3.87269400	-3.09551900	0	-1.30613600	-3.26991700	-1.19434500
Н	0.98713300	5.21767500	-1.95569400	Р	0.11434300	0.74076700	-4.69791600
С	1.92476100	1.92424100	-1.26518000	0	0.71719400	-0.63679400	-4.72426500
0	2.44320200	1.67906600	-2.40096600	0	1.16783000	1.93567900	-4.68813500
Ν	1.97002900	1.09277900	-0.21593100	Н	1.67206100	1.99167700	-3.81273400
С	2.92307700	0.09950300	-0.07585500	0	-0.87467600	0.98264100	-3.48170500
С	2.51688400	-1.11900000	0.57647600	Н	-0.86991300	0.22674100	-2.77292700
С	4.27221700	0.22416500	-0.42355100	0	-0.71843300	1.01486600	-6.04476400
С	3.46986300	-2.12992900	0.89693500	Н	-1.08798700	1.91270800	-6.07290800
С	5.20688100	-0.79012000	-0.11833300	К	2.80041600	-1.06093700	-3.05108000
Н	4.60713500	1.13419900	-0.91077000	Н	-2.24564700	-3.05661200	-1.31581900

8 References

(a) Rui, S.; Laurean, I.; Arimasa, M.; Eiichi N. J. A. Chem. Rev. 2013, 135, 6030-6032;

- (b) Wu, X-S.; Zhao, Y.; Ge, H-B. J. A. Chem. Rev. 2014, 136, 1789-1792;
- (c) Aihara, Y.; Chatani, N. J. A. Chem. Rev. 2014, 136, 898-901.
- (d) Gaussian 09, Revision A.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
- Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
- Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
- Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.
- A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
- Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
- Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma,
- K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
- Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- (e) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (f) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
- (g) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (h) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- (i) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
- (j) Colletto, C.; Islam, S.; Juliá-Hernández, F.; Larrosa, I., J. Am. Chem. Soc. 2016, 138, 1677.

9. Copies of ¹H, ¹³C NMR Charts for the Compounds

N-(quinolin-8-yl)pivalamide (1a)

2-methyl-2-phenyl-N-(quinolin-8-yl)propanamide (1b)

2,2-dimethyl-3-phenyl-N-(quinolin-8-yl)propanamide (1c)

1-methyl-N-(quinolin-8-yl)cyclohexanecarboxamide (1d)

 $\label{eq:linear} 2\mbox{-methyl-2-(naphthalen-2-ylmethyl)-$N-(quinolin-8-yl)butanamide (1e)}$

S**56 /** S**98**

2,2-diphenyl-N-(quinolin-8-yl)propanamide (1f)

2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide (1g)

 $[D_3]\mbox{-}2\mbox{-}phenyl\mbox{-}N\mbox{-}(quinolin\mbox{-}8\mbox{-}yl)\mbox{butanamide}\ ([D_3]\mbox{-}1g)$

N-(quinolin-8-yl)benzamide (1h)

2-methyl-N-(quinolin-8-yl)benzamide (1i)

3-(5-chlorothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (**3b**) S62 / S98

S63 / S98

3-(5-iodothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (**3d**) S64 / S98

2,2-dimethyl-3-(5-methylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (3e) S65 / S98

3-(5-methoxythiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (**3f**) S**66** / S**98**

3-(5-acetylthiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (**3g**) S**67** / S**98**

Ethyl 5-(2,2-dimethyl-3-oxo-3-(quinolin-8-ylamino)propyl)thiophene-2-carboxylate (**3h**) S**68** / S**98**

3-(benzo[b]thiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (**3k**) S**69** / S**98**

2,2-dimethyl-*N*-(quinolin-8-yl)-3-(thieno[3,2-b]thiophen-2-yl)propanamide (**3**l) S**70** / S**98**

2,2-dimethyl-3-(5-phenylthiophen-2-yl)-*N*-(quinolin-8-yl)propanamide (**3m**) S**71** / S**98**

3-(4-bromothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (**3n**) S**72** / S**98**

3-(4,5-dibromothiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (**30**) S**73** / S**98**

3-([2,2'-bithiophen]-5-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (**3p**) S**74** / S**98**

 $\label{eq:solution} \begin{array}{l} 3-([2,2'-bithiophen]-5-yl)-2-([2,2'-bithiophen]-5-ylmethyl)-2-methyl-N-(quinolin-8-yl)propanamide (\mathbf{3p'})\\ & \mathsf{S75} / \mathsf{S98} \end{array}$

3-([2,2':5',2"-terthiophen]-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (**3q**) S**76** / S**98**

3-(benzo[b]thiophen-2-yl)-2-methyl-2-phenyl-*N*-(quinolin-8-yl)propanamide (**4a**) S**77** / S**98**

 $\frac{73966}{3929}$

-1831

 $1-(benzo[b] thiophen-2-ylmethyl)-\mathit{N-}(quinolin-8-yl)cyclohexane carboxamide~(\mathbf{4b})$

S**78** / S**98**

-3296 2229 22284 -1.773 -1.744 -1.773 -1.775

3-(benzo[b]thiophen-2-yl)-2,2-diphenyl-N-(quinolin-8-yl)propanamide (4c) S79 / S98

3-([2,2'-bithiophen]-5-yl)-2,2-diphenyl-*N*-(quinolin-8-yl)propanamide (**4d**) S**80** / S**98**

3-([2,2':5',2"-terthiophen]-5-yl)-2,2-diphenyl-*N*-(quinolin-8-yl)propanamide (**4e**) S**81** / S**98**

N-(quinolin-8-yl)-2-(thiophen-2-yl)benzamide (5a)

S**82** / S**98**

S**83 /** S**98**

2-(5-phenylthiophen-2-yl)-N-(quinolin-8-yl)benzamide (5c) S84 / S98

2-([2,2'-bithiophen]-5-yl)-*N*-(quinolin-8-yl)benzamide (5d)

S**85 /** S**98**

2-([2,2':5',2"-terthiophen]-5-yl)-*N*-(quinolin-8-yl)benzamide (**5e**) S**86** / S**98**

S87 / S98

S88 / S98

S**89** / S**98**

3-(2-bromothiazol-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (6b)

S**90 /** S**98**

3-(2,4-dimethylthiazol-5-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (6d) S91 / S98

3-(2-isopropyl-4-methylthiazol-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (6e) S92 / S98

S**93** / S**98**

-1.525

-3.218

Methyl 5-(2,2-dimethyl-3-oxo-3-(quinolin-8-ylamino)propyl)furan-2-carboxylate (6g) S94 / S98

2,2-dimethyl-3-(5-(phenylethynyl)thiophen-2-yl)-*N*-(quinolin-8-yl)propanamide (7) S**95** / S**98**

-1.483

2,2-dimethyl-*N*-(quinolin-8-yl)-3-(5-styrylthiophen-2-yl)propanamide (8) S96 / S98

S97 / S98

