Supporting Information

Exploiting the Dual Role of Ethynylbenziodoxolones in Gold-Catalyzed C(sp)-C(sp) Cross-Coupling Reactions

Somsuvra Banerjee, and Nitin T. Patil*

Contents

nation	2
Considerations:	2
	2
tation:	2
procedure for the synthesis of EBX reagents and terminal alkynes	3
procedure for synthesis and characterization of 1,3-diynes	4
characterization of gold acetylides 4 and 5 :	
udies:	19
ion on the role of phen	19
4.2 Investigation of favoured reaction pathway via stoichiometric reactions of 5	
tion of [(phen)AuPPh ₃] ⁺ by MALDI-TOF studies:	21
	hation Considerations: tation: procedure for the synthesis of EBX reagents and terminal alkynes procedure for synthesis and characterization of 1,3-diynes characterization of gold acetylides 4 and 5 : udies: ion on the role of phen ion of favoured reaction pathway via stoichiometric reactions of 5 ation of [(phen)AuPPh ₃] ⁺ by MALDI-TOF studies:

1. General information

1.1 Practical Considerations:

Unless otherwise specified, all reactions were carried out in oven dried vials or reaction vessels with magnetic stirring under nitrogen atmosphere. The gold catalyzed cross-coupling reactions were performed in 2.5 mL glass vials with a PTFE-lined cap and all other reactions for the preparation of starting materials were performed in round-bottom flasks with rubber septa. All experiments were monitored by analytical thin layer chromatography (TLC) or Gas Chromatography by using biphenyl as an internal standard. TLC was performed on pre-coated silica gel plates. After elution, the plate was visualized under UV illumination at 254 nm for UV active materials. Further visualization was achieved by staining iodine, potassium permanganate solution and charring on a hot plate. Solvents were removed in vacuo and heated with a water bath at 35 °C. Silica gel finer than 200 mesh was used for flash column chromatography. Columns were packed as slurry of silica gel in pet. ether and equilibrated with the appropriate solvent mixture prior to use. The compounds were loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure with an air pump.

1.2 Materials:

Unless otherwise noted, material obtained from commercial suppliers was used without further purification. DCE, ACN, 1,4-dioxane, toluene were dried by using standard protocols under N_2 . Gold salts, silver salts, 1,10-phenanthroline (phen) and 2,2'-bipyridine (bipy) ligands were purchased from Sigma-Aldrich and stored under inert atmosphere. All deuterated solvents were used as supplied by Sigma–Aldrich.

1.3 Instrumentation:

Melting points are uncorrected and recorded using digital Büchi B-540 melting point apparatus. ¹H NMR spectra and ¹³C NMR spectra were recorded on Bruker AV 500 or JEOL 400 MHz spectrometers in appropriate solvents using TMS as internal standard or the solvent signals as secondary standards and the chemical shifts are shown in δ scales. Multiplicities of ¹H NMR signals are designated as s (singlet), d (doublet), dd (doublet of doublet), dt (doublet of triplet), t (triplet), quin (quintet), br. s. (broad signal), m (multiplet) etc. HRMS (ESI) data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. Gas chromatography (GC) was performed on a Perkin Elmer Arnel Clarus 500 instrument equipped with a hydrogen flame ionization detector; HP5 columns (polar) ($12 \text{ m} \times 0.32 \text{ mm} \times 1.0 \text{ }\mu\text{m}$) were used with helium as the carrier gas at a flow rate of 1 mL/min. Elemental analysis was performed on Thermo Finnigan FLASH EA 1112 series analyzer. MALDI-TOF mass spectrometric analysis was performed on AB SCIEX TOF/TOF 5800 system.

2. Representative procedure for the synthesis of EBX reagents and terminal alkynes

Ethynylbenziodoxolone (EBX) reagents **2a-d** were prepared by following Waser's methods.^{1a} **2e** was synthesized by method described by Xiao.^{1b} The terminal alkynes **1a**, **1b**, **1c**, **1f**, **1h**, **1v**, **1w**, **1ah** and **1ak** have been purchased from Sigma-Aldrich and were directly used without further purification. The rest of the alkynes were prepared by literature methods. The references for the representative procedures are given in tabular form below.

Terminal alkynes (Starting materials)	Starting from	Overall yields	References
1d-e, 1g, 1i-m, 1o, 1af	$R + \bigcup_{X = Br, I} X$	84-90% (2 steps)	Angew. Chem. Int. Ed., 2010, 49 , 9891
1n, 1q, 1t-u	R-CHO	80-87% (2 steps)	<i>Chem. Commun.</i> , 2014, 50 , 8966
1p, 1r, 1s	R NH2	71-75% (3 steps)	<i>Synthesis</i> , 2015, 47 , 1633
1y, 1aj	R ₁ NHR ₂ and R ₃ CO ₂ H	75-82% (1 step)	<i>Chem. Eur. J.</i> , 2014, 20 , 11101

¹ (a) J. P. Brand, C. Chevalley, R. Scopelliti and J. Waser, *Chem. Eur. J.*, 2012, **18**, 5655; (b) Q.-Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L.-Q. Lu and W.- J. Xiao, *Angew. Chem. Int. Ed.*, 2015, **54**, 11196.

1x	O NH O	71% (2 steps)	<i>Adv. Synth. Catal.</i> 2010, 352 , 2881
1z	E	90% (3 steps)	<i>Tetrahedron</i> , 2016, 72 , 8106
1 aa	O N H	69% (1 step)	<i>Chem. Commun.</i> , 2012, 48 , 10132
1ab	СССОН	80% (3 steps)	J. Org. Chem., 2004, 69 , 2084
1 ac	Br	51% (3 steps)	<i>Chem. Commun.</i> , 2014, 50 , 5451
1ad	HZ	54% (4 steps)	J. Am. Chem. Soc., 2006, 128 , 5592
1ae	HZ	50% (2 steps)	J. Org. Chem., 2010, 75 , 980
1ag	NH ₂	66% (2 steps)	<i>Tetrahedron</i> , 2008, 64 , 53
1ai	OBn OH BnO'' OBn OBn	45% (5 steps)	Bioorg. Med. Chem. Lett., 2012, 22 , 642

3. Representative procedure for synthesis and characterization of 1,3-diynes

To an oven-dried screw-cap vial containing a stir bar were added 4-ethynyltoluene (1a) (25 μ L, 0.20 mmol), TIPS-EBX (2a) (94 mg, 0.22 mmol, 1.1 equiv), Ph₃PAuCl (3.0 mg, 3

mol%), phen (6.0 mg, 15 mol%) and degassed CH₃CN:1,4-dioxane (1.8 mL : 0.6 mL). The reaction vial was fitted with a cap, evacuated and back filled with N_2 and heated at 60 °C for 12 h. The reaction mixture was allowed to cool at ambient temperature. The reaction mixture was diluted with EtOAc and washed with NaHCO₃ followed by brine. The collective organic layer dried over Na₂SO₄ and the solvent was removed under vacuo. The resulting residue was purified by flash column chromatography on silica gel (eluent: pet. ether/EtOAc) to give the product **3a** as yellow liquid (87% yield).

Characterization data:

Compound 3a: **R**_{*f*}: 0.80 (pet. ether); 51 mg, **yield**: 87%; **physical appearance**: yellow liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.39 - 7.44$ (m, J = 8.0 Hz, 2 H), 7.11 - 7.15 (m, J = 8.0 Hz, 2 H), 2.37 (s, 3 H), 1.13 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 139.8$, 132.9, 129.4, 118.6, 89.9, 87.6, 76.1, 74.3, 21.8, 18.8, 11.6 ppm.

Compound 3b²: \mathbf{R}_{f} : 0.75 (pet. ether); 45 mg, yield: 81%; physical appearance: colourless liquid; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.52$ (m, 2 H), 7.33 (m, 3 H), 1.14 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 132.7$, 129.2, 128.4, 121.5, 89.5, 87.9, 75.5, 74.7, 18.6, 11.3 ppm.

Compound 3c³: \mathbf{R}_{f} : 0.70 (pet. ether); 38 mg, yield: 64%; physical appearance: colourless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 7.50 (dd, J = 8.8, 5.3 Hz, 2 H), 7.02 (t, J = 8.8 Hz, 2

² P. Bichler, W. A. Chalifoux, S. Eisler, A. L. K. Shi Shun, E. T. Chernick and R. R. Tykwinski, *Org. Lett.*, 2009, **11**, 519.

H), 1.12 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 164.2$ and 162.2 (d, ¹ $J_{C-F} = 251.8$ Hz), 134.9 (d, ³ $J_{C-F} = 8.58$ Hz), 117.9 (d, ⁴ $J_{C-F} = 3.81$ Hz), 116.2 (d, ² $J_{C-F} = 21.93$ Hz), 89.6, 88.2, 74.7, 74.6, 18.8, 11.5 ppm.

Compound 3d²: **R**_{*f*}: 0.50 (pet. ether); 53 mg, **yield**: 85%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.43 - 7.49$ (m, J = 8.8 Hz, 2 H), 6.82 - 6.87 (m, J = 8.8 Hz, 2 H), 3.82 (s, 3 H), 1.13 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 160.6$, 134.6, 114.4, 113.7, 90.1, 87.3, 76.0, 73.8, 55.5, 18.8, 11.6 ppm; **HRMS**: (**ESI**) calcd 313.1982 for C₂₀H₂₉OSi [M + H]⁺ found 313.1984.

Compound 3e: \mathbf{R}_{f} : 0.60 (pet. ether/EtOAc = 98/02); 49 mg, yield: 76%; physical appearance: colourless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 7.87 - 7.94 (m, *J* = 8.4 Hz, 2 H), 7.56 - 7.62 (m, *J* = 8.4 Hz, 2 H), 2.60 (s, 3 H), 1.13 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 197.3, 137.1, 133.0, 128.5, 126.7, 90.4, 89.3, 77.9, 74.7, 26.9, 18.8, 11.5 ppm; HRMS: (ESI) calcd 325.1982 for C₂₁H₂₉OSi [M + H]⁺ found 325.1985.

Compound 3f: \mathbf{R}_{f} : 0.40 (pet. ether/EtOAc = 95/05); 43 mg, yield: 70%; physical appearance: white solid; mp: 70-72 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.60 (q, *J* = 8.4 Hz, 4 H), 1.12 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 133.3, 132.3, 126.8, 118.4, 112.6, 91.4, 88.9,

³ T. Luu, R. McDonald and R. R. Tykwinski, Org. Lett., 2006, 8, 6035.

78.9, 73.6, 18.8, 11.5 ppm; **HRMS**: (**ESI**) calcd 308.1830 for $C_{20}H_{26}NSi [M + H]^+$ found 308.1829.

Compound 3g: **R**_{*f*}: 0.50 (pet. ether); 51 mg, **yield**: 70%; **physical appearance**: bright yellow solid; **mp**: 70-72 °C; ¹**H NMR** (**500 MHz**, **CDCl**₃): $\delta = 8.17 - 8.22$ (m, J = 8.8 Hz, 2 H), 7.63 - 7.68 (m, J = 8.8 Hz, 2 H), 1.13 (s, 21 H) ppm; ¹³**C NMR** (**125 MHz**, **CDCl**₃): $\delta = 147.8$, 133.6, 128.8, 123.9, 92.0, 88.9, 79.7, 73.4, 18.8, 11.5 ppm; **HRMS**: (**ESI**) calcd 328.1727 for C₁₉H₂₆NO₂Si [M + H]⁺ found 328.1724.

Compound 3h: **R**_{*f*}: 0.90 (pet. ether); 52 mg, **yield**: 74%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl₃)**: δ = 7.40 - 7.45 (m, *J* = 8.0 Hz, 2 H), 7.11 - 7.16 (m, *J* = 8.0 Hz, 2 H), 2.60 (t, *J* = 7.6 Hz, 2 H), 1.61 (quin, *J* = 7.4 Hz, 2 H), 1.29 - 1.37 (m, 4 H), 1.13 (s, 21 H), 0.90 (t, *J* = 6.9 Hz, 3 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: δ = 144.9, 132.9, 128.8, 118.8, 89.9, 87.6, 76.2, 74.3, 36.2, 31.7, 31.1, 22.7, 18.8, 14.2, 11.6 ppm; **HRMS**: (**ESI**) calcd 353.2659 for C₂₄H₃₇Si [M + H]⁺ found 353.2665.

Compound 3i: \mathbf{R}_{f} : 0.50 (pet. ether); 46 mg, **yield**: 73%; **physical appearance**: yellow liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.46 - 7.51$ (m, 1 H), 7.30 - 7.35 (m, 1 H), 6.90 - 6.93 (m, 1 H), 6.88 (d, J = 8.4 Hz, 1 H), 3.90 (s, 3 H), 1.12 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta =$ 161.8, 135.0, 130.9, 120.7, 111.0, 110.8, 89.9, 88.5, 78.7, 71.6, 56.0, 18.8, 11.6 ppm; **HRMS**: (**ESI**) calcd 313.1982 for C₂₀H₂₉OSi [M + H]⁺ found 313.1982.

Compound 3j: \mathbf{R}_{f} : 0.50 (pet. ether/EtOAc = 98/02); 35 mg, yield: 60%; physical appearance: brown liquid; ¹H NMR (500 MHz, CDCl₃): δ = 7.34 (d, *J* = 7.2 Hz, 1 H), 7.10 - 7.18 (m, 1 H), 6.63 - 6.71 (m, 2 H), 4.31 (br. s., 2 H), 1.13 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 149.6, 133.1, 130.3, 117.6, 114.1, 105.5, 89.2, 88.7, 79.5, 72.4, 18.3, 11.1 ppm; HRMS: (ESI) calcd 298.1986 for C₁₉H₂₈NSi [M + H]⁺ found 298.1989.

Compound 3k: \mathbf{R}_{f} : 0.90 (pet. ether/EtOAc = 98/02); 43 mg, yield: 66%; physical appearance: yellow liquid; ¹H NMR (500 MHz, CDCl₃): δ = 8.10 (d, *J* = 8.0 Hz, 1 H), 7.74 (d, *J* = 8.0 Hz, 1 H), 7.58 - 7.63 (m, 1 H), 7.48 - 7.53 (m, 1 H), 1.11 - 1.15 ppm (m, 21 H); ¹³C NMR (125 MHz, CDCl₃): δ = 150.2, 136.1, 132.9, 129.3, 124.9, 117.6, 92.2, 89.0, 82.1, 70.0, 18.5, 11.3 ppm; HRMS: (ESI) calcd 328.1727 for C₁₉H₂₆NO₂Si [M + H]⁺ found 328.1724.

Compound 3I: **R**_{*f*}: 0.60 (pet. ether/EtOAc = 80/20); 33 mg, **yield**: 53%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl**₃): δ = 7.56 (d, *J* = 7.6 Hz, 1 H), 7.51 (d, *J* = 7.6 Hz, 1 H), 7.38 - 7.45 (m, 1 H), 7.28 - 7.31 (m, 1 H), 4.90 (s, 2 H), 2.00 (br. s., 1 H), 1.15 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl**₃): δ = 144.3, 133.6, 129.6, 127.5, 127.3, 119.6, 89.4, 89.1, 79.0, 72.9, 63.6, 18.6, 11.3 ppm; **HRMS**: (**ESI**) calcd 313.1982 for C₂₀H₂₉OSi [M + H]⁺ found 313.1979.

Compound 3m: **R**_{*f*}: 0.80 (pet. ether); 45 mg, **yield**: 64%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl₃)**: δ = 7.78 (s, 1 H), 7.68 (d, *J* = 7.6 Hz, 1 H), 7.61 (d, *J* = 7.6 Hz, 1 H), 7.46 (t, *J* = 7.6 Hz, 1 H), 1.13 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: δ 135.6, 131.2 and 131.1(²*J*_{C-F} = 33.38 Hz), 129.4(q, ³*J*_{C-F} = 7.63 Hz), 129.0, 125.7(⁴*J*_{C-F} = 3.81 Hz), 124.6 and 122.4 (q, ¹*J*_{C-F} = 272.7 Hz), 122.6, 89.4, 88.9, 76.1, 73.7, 18.5, 11.3 ppm; **HRMS**: **(ESI)** calcd 351.1750 for C₂₀H₂₆F₃Si [M + H]⁺ found 351.1766.

Compound 3n: **R**_{*f*}: 0.50 (pet. ether/EtOAc = 98/02); 43 mg, **yield**: 63%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl₃)**: δ = 6.67 (d, *J* = 2.3 Hz, 2 H), 6.49 (s, 1 H), 3.78 (s, 6 H), 1.12 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: δ = 160.7, 123.0, 110.5, 103.3, 89.6, 88.2, 75.8, 74.4, 55.7, 18.8, 11.5 ppm; **HRMS**: (**ESI**) calcd 343.2088 for C₂₁H₃₁O₂Si [M + H]⁺ found 343.2087.

Compound 3o: **R**_{*f*}: 0.70 (pet. ether); 63 mg, **yield**: 80%; **physical appearance**: yellow liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.07$ (dd, J = 8.0, 1.5 Hz, 1 H), 6.91 - 6.97 (m, 1 H), 6.75 (d, J = 8.0 Hz, 1 H), 5.99 (s, 2 H), 1.12 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 148.8$, 147.4, 128.0, 114.6, 112.2, 108.6, 101.5, 89.6, 87.4, 75.6, 73.3, 18.6, 11.3 ppm; **HRMS**: (**ESI**) calcd 327.1775 for C₂₀H₂₇O₂Si [M + H]⁺ found 327.1774.

Compound 3p: \mathbf{R}_{f} : 0.80 (pet. ether); 50 mg, yield: 75%; physical appearance: colourless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 7.48 - 7.51 (m, 1 H), 7.28 - 7.32 (m, 1 H), 7.17 (d, J = 7.6 Hz, 1 H), 2.38 (s, 3 H), 1.13 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 138.1, 134.6, 133.1, 131.1, 131.0, 120.7, 89.5, 88.7,75.3, 74.4, 20.4, 18.8, 11.5 ppm.

Compound 3 q^4 : **R**_f: 0.70 (pet. ether); 44 mg, **yield**: 66%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 8.37$ (d, J = 8.4 Hz, 1 H), 7.87 (d, J = 8.0 Hz, 2 H), 7.79 (d, J = 7.2 Hz, 1 H), 7.61 (t, J = 7.2 Hz, 1 H), 7.55 (t, J = 7.4 Hz, 1 H), 7.43 (t, J = 7.8 Hz, 1 H), 1.18 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 134.3$, 133.3, 132.6, 129.9, 128.6, 127.4, 126.9, 126.4, 125.4, 119.5, 89.9, 89.2, 79.5, 74.1, 18.9, 11.6 ppm; **HRMS**: (**ESI**) calcd 333.2033 for C₂₃H₂₉Si [M + H]⁺ found 333.2026.

Compound 3r: \mathbf{R}_{f} : 0.80 (pet. ether); 57 mg, yield: 86%; physical appearance: white solid; mp: 56-58 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.07$ (s, 1 H), 7.75 - 7.86 (m, 3 H), 7.52 (t, J = 8.6 Hz, 3 H), 1.15 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 133.3$, 133.2, 132.8, 128.6, 128.1, 127.8, 127.8, 127.2, 126.7, 118.8, 89.6, 88.1, 77.3, 76.7, 76.0, 75.0, 18.6, 11.3 ppm; HRMS: (ESI) calcd 333.2033 for C₂₃H₂₉Si [M + H]⁺ found 333.2033.

⁴ M. A. Heuft, S. K. Collins, G. P. A. Yap and A. G. Fallis, *Org. Lett.*, 2001, **3**, 2883.

Compound 3s: **R**_{*f*}: 0.50 (pet. ether); 48 mg, **yield**: 68%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.66$ (d, J = 7.6 Hz, 1 H), 7.63 (d, J = 7.2 Hz, 2 H), 7.45 - 7.50 (m, 2 H), 7.38 - 7.44 (m, 3 H), 7.29 - 7.34 (m, 1 H), 1.10 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 145.4$, 140.1, 134.8, 129.8, 129.6, 129.3, 128.4, 128.0, 127.3, 120.1, 89.9, 88.4, 75.5, 18.8, 11.5 ppm; **HRMS**: (**ESI**) calcd 359.2190 for C₂₅H₃₁Si [M + H]⁺ found 359.2193.

Compound 3t: **R**_{*f*}: 0.50 (pet. ether); 45 mg, **yield**: 56%; **physical appearance**: light yellow solid; **mp**: 96-98 °C; ¹**H NMR** (**500 MHz**, **CDCl**₃): $\delta = 8.57$ (d, J = 9.2 Hz, 1 H), 8.20 (d, J = 7.6 Hz, 1 H), 8.23 (d, J = 7.6 Hz, 1 H), 8.18 (d, J = 8.4 Hz, 2 H), 8.06 - 8.13 (m, 2 H), 7.99 - 8.06 (m, 2 H), 1.21 (s, 21 H) ppm; ¹³**C NMR** (**125 MHz**, **CDCl**₃): $\delta = 133.5$, 131.8, 131.1, 131.0, 130.8, 128.8, 128.7, 127.1, 126.3, 125.9, 125.8, 125.4, 124.4, 124.3, 124.1, 115.8, 89.9, 89.5, 80.0, 75.0, 18.7, 11.4 ppm; **MALDI-TOF**: calcd 406.21 for C₂₉H₃₁Si [M + H]⁺ found 406.1317.

Compound 3u²: **R**_f: 0.80 (pet. ether); 33 mg, **yield**: 53%; **physical appearance**: yellow liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.38 - 7.41$ (m, 2 H), 7.31 - 7.37 (m, 3 H), 7.13 (d, J = 16.0Hz, 1 H), 6.19 (d, J = 16.0 Hz, 1 H), 1.12 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 145.0, 135.7, 129.3, 128.8, 126.4, 106.5, 89.7, 88.6, 76.8, 75.4, 18.6, 11.3 ppm.$

Compound 3v: \mathbf{R}_{f} : 0.50 (pet. ether/EtOAc = 90/10); 24 mg, yield: 42%; physical appearance: brownish liquid; ¹H NMR: (500 MHz, CDCl₃) δ = 1.84 - 2.08 (m, 3 H), 1.66 - 1.74 (m, 2 H), 1.47 - 1.66 (m, 6 H), 1.09 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 89.0, 84.4, 80.0, 69.5, 39.6, 29.7, 25.0, 23.0, 18.5, 11.3 ppm.

Compound 3w: \mathbf{R}_{f} : 0.40 (pet. ether/EtOAc = 90/10); 23 mg, yield: 46%; physical appearance: yellow liquid; ¹H NMR: (500 MHz, CDCl₃) δ = 3.77 (t, *J* = 6.1 Hz, 2 H), 2.56 (t, *J* = 6.3 Hz, 2 H), 1.08 (s, 21 H) ppm; ¹³C NMR: (125 MHz, CDCl₃) δ = 89.6, 81.1, 75.1, 67.6, 60.7, 23.7, 18.5, 11.2 ppm; HRMS: (ESI) calcd 251.1826 for C₁₅H₂₇OSi [M + H]⁺ found 251.1828.

Compound 3x: \mathbf{R}_{f} : 0.90 (pet. ether/EtOAc = 60/40); 55 mg, yield: 71%; physical appearance: white solid; mp: 110-112 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.55 - 7.66 (m, 3 H), 7.42 - 7.51 (m, 1 H), 5.89 (s, 1 H), 3.56 (dt, *J* = 10.6, 6.9 Hz, 2 H), 2.57 - 2.69 (m, 2 H), 1.07 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 167.5, 143.9, 132.5, 131.1, 129.9, 123.4, 123.3, 89.5, 82.4, 81.4, 75.4, 67.5, 38.0, 19.3, 18.5, 11.2 ppm; HRMS: (ESI) calcd 382.2197 for C₂₃H₃₂NO₂Si [M + H]⁺ found 382.2208.

Compound 3y: **R**_{*f*}: 0.60 (pet. ether/EtOAc = 95/05); 36 mg, **yield**: 52%; **physical appearance**: colourless liquid; ¹**H NMR** (**500 MHz**, **CDCl**₃): δ = 7.99 (d, *J* = 7.6 Hz, 2 H), 7.54 (d, *J* = 7.6 Hz, 1 H), 7.43 - 7.49 (m, 2 H), 5.46 (t, *J* = 3.1 Hz, 1 H), 4.85 (d, *J* = 3.1 Hz, 2 H), 1.11 (s, 21 H) ppm; ¹³**C NMR** (**125 MHz**, **CDCl**₃): δ = 166.0, 132.1, 128.6, 128.1, 126.3, 101.9, 95.2, 82.7, 59.2, 29.7, 18.6, 11.2 ppm; **HRMS**: (**ESI**) calcd 340.2091 for C₂₁H₃₀NOSi [M + H]⁺ found 340.2105.

Compound 3z: \mathbf{R}_{f} : 0.50 (pet. ether/EtOAc = 80/20); 60 mg, yield: 59%; physical appearance: colourless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.4 Hz, 1 H), 7.75 - 7.81 (m, *J* = 8.4 Hz, 2 H), 7.68 - 7.74 (m, 2 H), 7.31 - 7.36 (m, 1 H), 7.23 - 7.26 (m, 1 H), 7.19 - 7.23 (m, *J* = 8.0 Hz, 2 H), 5.72 (s, 1 H), 2.33 (s, 3 H), 1.09 (s, 21 H) ppm; ¹³C NMR: (125 MHz, CDCl₃): δ = 145.2, 135.4, 135.0, 130.0, 128.1, 126.9, 125.2, 124.2, 123.4, 121.3, 120.3, 113.6, 88.5, 86.3, 74.4, 71.3, 58.4, 21.5, 18.5, 11.2 ppm.

Compound 3aa: **R**_{*f*}: 0.50 (pet. ether/EtOAc = 70/30); 57 mg, **yield**: 74%; **physical appearance**: white solid; **mp**: 230-232 °C; ¹**H NMR (500 MHz, DMSO-d₆:CDCl₃ (1:4)**): δ = 10.43 (br. s., 1 H), 7.36 (d, *J* = 7.2 Hz, 1 H), 7.19 (t, *J* = 7.4 Hz, 1 H), 7.07 (s, 1 H), 6.96 (t, *J* = 7.2 Hz, 1 H), 6.79 (d, *J* = 7.6 Hz, 1 H), 1.00 (br. s., 21 H) ppm; ¹³C NMR (**125 MHz, DMSO-d₆:CDCl₃ (1:4)**); δ = 173.5, 141.1, 129.7, 129.5, 124.2, 122.0, 110.0, 88.4, 85.0, 78.5, 78.2, 78.0, 74.6, 69.3, 68.9, 18.0, 10.5 ppm; **HRMS**: (**ESI**) calcd 354.1884 for C₂₁H₂₈NO₂Si [M + H]⁺ found 354.1896.

Compound 3ab: **R**_{*f*}: 0.60 (pet. ether/EtOAc = 95/05); 47 mg, **yield**: 67%; **physical appearance**: colourless liquid; ¹**H NMR (500 MHz, CDCl₃)**: δ = 7.48 (dd, *J* = 7.6, 1.1 Hz, 1 H), 7.27 - 7.32 (m, 1 H), 6.84 - 6.93 (m, 2 H), 5.97 - 6.17 (m, 1 H), 5.41 - 5.56 (m, 1 H), 5.21 - 5.36 (m, 1 H), 4.64 (d, *J* = 4.6 Hz, 2 H), 1.13 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: δ = 160.7, 134.7, 132.8, 130.5, 120.7, 117.4, 112.3, 111.4, 89.9, 88.1, 72.1, 69.3, 18.6, 11.3 ppm; **HRMS**: **(ESI)** calcd 339.2139 for C₂₂H₃₁OSi [M + H]⁺ found 339.2136.

Compound 3ac: \mathbf{R}_{f} : 0.40 (pet. ether/EtOAc = 80/20); 31 mg, yield: 47%; physical appearance: colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (br. s., 1 H), 7.56 - 7.63 (m, 1 H), 7.40 - 7.48 (m, 2 H), 5.56 (s, 2 H), 1.13 ppm (br. s., 21 H); ¹³C NMR: (100 MHz, CDCl₃): δ = 135.8, 134.1, 132.7, 130.8, 129.1, 125.0, 91.0, 88.1, 78.5, 75.6, 18.5, 11.3 ppm; ¹¹B NMR (128 MHz, CDCl₃): δ = 28.9 ppm; HRMS: (ESI) calcd 327.1946 for C₁₉H₂₈BO₂Si [M + H]⁺ found 327.1947.

Compound 3ad: **R**_{*f*}: 0.70 (pet. ether); 91 mg, **yield**: 81%; **physical appearance**: colourless solid; **mp**: 171-173 °C; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 8.15$ (br. s., 2 H), 7.69 - 7.75 (m, J = 7.6 Hz, 2 H), 7.52 - 7.59 (m, J = 7.6 Hz, 2 H), 7.45 - 7.51 (m, J = 8.4 Hz, 2 H), 7.36 - 7.42 (m, J = 8.4 Hz, 2 H), 1.49 (s, 18 H), 1.17 (br. s., 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃); $\delta = 143.4$, 139.0, 138.7, 134.1, 126.2, 123.8, 123.7, 119.7, 116.3, 109.2, 89.5, 88.5, 75.3, 75.0, 34.7, 32.0, 18.6, 11.3 ppm; MALDI-TOF: calcd 559.36 for C₃₉H₅₀NSi [M + H]⁺ found 559.2845

Compound 3ae: \mathbf{R}_{f} : 0.50 (pet. ether/EtOAc = 95/05); 30 mg, yield: 45%; physical appearance: colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 8.11 (s, 1 H), 7.82 (d, *J* = 8.0 Hz, 1 H), 7.67 (d, *J* = 7.6 Hz, 1 H), 7.43 (t, *J* = 7.6 Hz, 1 H), 7.38 (t, *J* = 7.6 Hz, 1 H), 1.15 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 143.9, 141.6, 134.4, 125.2, 124.5, 121.0, 111.2, 90.5, 87.6, 61.7, 61.4, 18.5, 11.2 ppm; HRMS: (ESI) calcd 323.1938 for C₂₀H₂₇N₂Si [M + H]⁺ found 323.1941.

Compound 3af⁴: **R**_{*f*}: 0.80 (pet. ether/EtOAc = 98/02); 44 mg, **yield**: 66%; **physical appearance**: colorless liquid; ¹**H NMR (500 MHz, CDCl₃)**: δ = 7.34 (d, *J* = 3.1 Hz, 1 H), 7.30 (d, *J* = 5.3 Hz, 1 H), 6.96 - 7.01 (m, 1 H), 1.12 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: δ = 134.8, 128.9, 127.3, 122.1, 90.6, 89.5, 79.0, 68.9, 18.8, 11.5 ppm.

Compound 3ag: \mathbf{R}_{f} : 0.50 (pet. ether/EtOAc = 95/05); 36 mg, yield: 56%; physical appearance: brown liquid; ¹H NMR (500 MHz, CDCl₃): δ = 8.16 (s, 1 H), 7.69 (d, *J* = 8.0 Hz, 1 H), 7.25 -7.33 (m, 2 H), 7.18 - 7.24 (m, 1 H), 1.20 (s, 21 H), 1.14 (s, 21 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 135.1, 128.0, 125.2, 121.7, 121.4, 120.5, 111.1, 108.9, 98.8, 97.0, 91.9, 89.1, 82.2, 66.3, 18.7, 18.5, 11.3, 11.3 ppm; MALDI-TOF calcd 501.32 for C₃₂H₄₈NSi₂ [M + H]⁺ found 501.2562.

Compound 3ah: **R**_{*f*}: 0.40 (pet. ether/EtOAc = 95/05); 36 mg, **yield**: 64%; **physical appearance**: yellow liquid; ¹**H NMR** (**500 MHz**, **CDCl**₃): $\delta = 8.60$ (d, J = 4.6 Hz, 1 H), 7.67 (dt, J = 7.6, 1.5 Hz, 1 H), 7.51 (d, J = 8.0 Hz, 1 H), 7.27 - 7.32 (m, 1 H), 1.13 (s, 21 H) ppm; ¹³C **NMR** (**125 MHz**, **CDCl**₃): $\delta = 150.6$, 142.3, 136.3, 128.3, 123.7, 89.8, 89.3, 74.6, 74.4, 18.7, 11.4 ppm; **HRMS**: (**ESI**) calcd 284.1829 for C₁₈H₂₆NSi [M + H]⁺ found 284.1833.

Compound 3ai: \mathbf{R}_{f} : 0.60 (pet. ether/EtOAc = 60/40); 68 mg, yield: 60%; (1:1 mixture of C-1 anomers); physical appearance: colourless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 5.25 - 5.32 (m, 1 H), 5.15 - 5.23 (m, 1 H), 5.03 - 5.14 (m, 2 H), 4.96 (dt, *J* = 9.2, 5.0 Hz, 2 H), 4.37 - 4.44 (m, 1 H), 4.20 - 4.31 (m, 2 H), 4.12 (d, *J*=12.2 Hz, 2 H), 3.87 (t, *J* = 6.3 Hz, 1 H), 3.58 - 3.72 (m, 2 H), 2.06 - 2.13 (m, 12 H), 1.99 - 2.05 (m, 12 H), 1.07 (s, 42 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.8, 170.7, 170.3, 170.0, 169.8, 169.6, 169.5, 169.5, 89.6, 89.5, 81.7, 81.6, 75.8, 75.6, 73.9, 72.7, 72.4, 71.8, 70.7, 69.8, 69.7, 69.6, 68.4, 68.4, 68.1, 67.7, 62.1, 61.9, 20.8, 20.7, 20.7, 20.6, 18.5, 11.2 ppm; HRMS: (ESI) calcd 537.2514 for C₂₇H₄₁O₉Si [M + H]⁺ found 537.2513.

Compound 3aj: **R**_f: 0.60 (pet. ether/EtOAc = 70/30); 51 mg, yield: 62%; physical appearance: colourless liquid; ¹H NMR (5c00 MHz, CDCl₃): δ = 3.71 (t, *J* = 5.34 Hz, 2 H, 2 H), 3.60 (t, *J* = 5.34 Hz, 2 H), 3.49 (t, *J* = 4.58 Hz, 2 H), 3.42 (t, *J* = 4.58 Hz, 2 H), 1.47 (s, 9 H), 1.06 - 1.11 ppm (m, 21 H); ¹³C NMR (125 MHz, CDCl₃): δ = 154.4, 151.8, 92.8, 87.4, 80.5, 76.4, 65.9, 46.7, 41.5, 28.3, 18.4, 11.1 ppm; HRMS: (ESI) calcd 419.2724 for C₂₃H₃₉N₂O₃Si [M + H]⁺ found 419.2739.

Compound 3ak: **R**_{*f*}: 0.30 (pet. ether); 33 mg, **yield**: 63%; **physical appearance**: yellow liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 3.80$ (s, 3 H), 1.10 (s, 21 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 153.2$, 92.6, 87.3, 65.5, 53.0, 18.4, 11.1 ppm; **HRMS**: (**ESI**) calcd 265.1618 for C₁₅H₂₅O₂Si [M + H]⁺ found 265.1621.

Compound 3al: **R**_{*f*}: 0.70 (pet. ether); 37 mg, **yield**: 73%; **physical appearance**: yellow solid; **mp**: 59-61 °C; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.32 - 7.49$ (m, *J*=8.0 Hz, 2 H), 7.03 - 7.18 (m, *J*=8.0 Hz, 2 H), 2.36 (s, 3 H), 0.99 (s, 9 H), 0.18 ppm (s, 6 H); ¹³**C NMR (125 MHz, CDCl₃)**: δ = 139.7, 132.6, 129.2, 118.3, 88.9, 88.6, 76.5, 73.8, 26.1, 21.6, 16.8, -4.8 ppm; **HRMS**: (**ESI**) calcd 255.1564 for C₁₇H₂₃Si [M + H]⁺ found 255.1574.

Compound 3am: **R**_{*f*}: 0.50 (pet. ether); 42 mg, **yield**: 56%; **physical appearance**: yellow liquid; ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.76 - 7.89$ (m, 4 H), 7.38 - 7.51 (m, 8 H), 7.17 (d, *J* = 6.9 Hz, 2 H), 2.39 (s., 3 H), 1.16 (s., 9 H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 139.9$, 135.6, 132.7, 132.6, 129.7, 129.3, 127.8, 118.0, 91.8, 85.5, 76.7, 74.0, 27.1, 21.6, 18.9 ppm; **HRMS**: (**ESI**) calcd 379.1877 for C₂₇H₂₇Si [M + H]⁺ found 379.1873.

Compound 3ao: \mathbf{R}_{f} : 0.60 (pet. ether); 21 mg, yield: 51%; physical appearance: colourless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 7.34 - 7.42 (m, *J* = 7.6 Hz, 2 H), 7.08 - 7.15 (m, *J* = 7.6 Hz, 2 H), 2.27 - 2.40 (m, 5 H), 1.56 - 1.62 (m, 2 H), 1.38 - 1.45 (m, 2 H), 1.32 - 1.37 (m, 2 H), 0.92 (t, *J* = 7.2 Hz, 3 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 139.1, 132.4, 129.1, 119.0, 84.5, 75.0, 73.8, 65.1, 31.0, 28.0, 21.6, 19.6, 13.9 ppm; HRMS: (ESI) calcd 211.1481 for C₁₆H₁₉ [M + H]⁺ found 211.1491.

Compound 3a⁵: **R**_{*f*}: 0.40 (pet. ether); **physical appearance**: white solid; **mp**: 177-178 °C; ¹**H NMR (500 MHz, CDCl₃)** δ = 7.43 (d, *J* = 8.0 Hz, 4 H), 7.15 (d, *J* = 8.0 Hz, 4 H), 2.38 (s, 6 H) ppm; ¹³C NMR: (**125 MHz, CDCl₃**) δ = 139.5, 132.4, 129.2, 118.8, 81.5, 73.4, 21.6 ppm.

3. Synthesis and characterization of gold acetylides 4 and 5:

The gold acetylides 4^6 and 5^7 were prepared in accordance with literature known methods.

Complex 4⁸: **physical appearance**: white solid; ¹**H NMR** (**500 MHz, CDCl**₃): $\delta = 7.38 - 7.61$ (m, 17 H), 7.07 (d, J = 8.0 Hz, 2 H), 2.33 (s, 3 H) ppm; ³¹**P NMR (202 MHz, CDCl**₃): $\delta = 42.38$ ppm.

Complex 5: physical appearance: yellow solid; mp: 178-180 °C (decomp.); Anal. Calcd. for C_9H_7Au : C, 34.63; H, 2.26; Found: C, 34.34; H, 1.97.

⁵ J. M. Pérez, R. Cano, M. Yus and D. J. Ramón, *Synthesis*, 2013, **45**, 1373.

⁶ D. Zhang, Z. Xu, J. Yuan, Y.-X. Zhao, Z.-Y. Qiao, Y.-J. Gao, G.-A. Yu, J. Li and H. Wang, *J. Med. Chem.*, 2014, **57**, 8132.

⁷ K. J. Kilpin, R. Horvath, G. B. Jameson, S. G. Telfer, K. C. Gordon and J. D. Crowley, *Organometallics*, 2010, **29**, 6186.

⁸ T. Lauterbach, M. Livendahl, A. Rosellón, P. Espinet and A. M. Echavarren, Org. Lett., 2010, **13**, 3006.

4. Mechanistic studies:

4.1 Investigation on the role of phen

To an oven-dried screw-cap vial containing a stir bar was charged sequentially with 4ethynyltoluene (**1a**) (25 μ L, 0.20 mmol), TIPS-EBX (**2a**) (94 mg, 0.22 mmol, 1.1 equiv), **4** (3.1 mg, 0.006 mmol, 3 mol%), and degassed CH₃CN:1,4-dioxane (1.8 mL : 0.6 mL) under nitrogen. The reaction vial was fitted with a cap, evacuated and back filled with N₂ and heated at 60 °C for 12 h. Then the reaction mixture was filtered through a pad of silica gel (eluent: DCM). The solvent was evaporated under the reduced pressure and the residue was dissolved in DCM (1 mL). The GC yields were obtained from the crude mixture using biphenyl (0.20 mmol, 31 mg , 1.0 equiv) as the internal standard. The cross-coupled product **3a** was obtained in 42% yield and the homo-coupled product **3a**' was in 28% yield. Due to the poor selectivity and lower reaction rate of the reaction, it can be concluded from the results that Ph₃P-ligated gold catalyst is not the active catalyst.

To an oven-dried screw-cap vial containing a stir bar was sequentially charged with 4ethynyltoluene (**1a**) (25 μ L, 0.20 mmol), TIPS-EBX (**2a**) (94 mg, 0.22 mmol, 1.1 equiv), **5** (0.006 mmol, 1.8 mg, 3 mol%), phen (6 mg, 15 mol%) and degassed CH₃CN:1,4-dioxane (1.8 mL : 0.6 mL) under nitrogen. The reaction vial was fitted with a cap, evacuated and back filled with N₂ and heated at 60 °C for 12 h with vigorous stirring. Then the reaction mixture was filtered through a pad of silica gel (eluent: DCM). The solvent was evaporated under the reduced pressure and the residue was dissolved in DCM (1 mL). The GC yields were obtained from the crude mixture using biphenyl (0.20 mmol, 31 mg, 1.0 equiv) as the internal standard. The cross-

coupled product 3a was obtained in 78% yield and the homo-coupled product 3a' was in 8% yield.

The higher heteroselectivity observed in this case imply that phen possibly acts as the effective ligand in improving the selectivity of the reaction.

4.2 Investigation of favoured reaction pathway via stoichiometric reactions of 5

Stoichiometric reaction A: Reaction of 5 with 2a in the presence of phen

To an oven-dried screw-cap vial containing a stir bar was sequentially charged with 5 (31 mg, 0.1 mmol), **2a** (47 mg, 0.11 mmol), phen (100 mg, 0.5 mmol, 5 equiv), CH₃CN:1,4-dioxane (1.8 mL : 0.6 mL) under nitrogen. The reaction vial was fitted with a cap, evacuated and back filled with N₂ and heated at 60 °C for 12 h with vigorous stirring. Then the reaction mixture was filtered through a pad of silica gel (eluent: DCM). The solvent was evaporated under the reduced pressure and the residue was dissolved in DCM (1 mL). The GC yields were obtained from the crude mixture using biphenyl (0.10 mmol, 15.4 mg, 1.0 equiv) as the internal standard. The cross-coupled product **3a** was obtained in 50% yield and the homo-coupled product **3a**' was obtained in 24% yield.

Although the heteroselectivity is lowered here as compared to the corresponding catalytic reaction (see text, Scheme 2b), the cross-coupled product 3a was obtained in 50% yield, which supported the feasibility of a direct oxidation of phen-ligated gold(I) acetylide **B** to **D** by EBX reagents and thus favoring cycle b (see text, Scheme 3, cycle b).

Stoichiometric reaction B: Reaction of 5 with 2a in the absence of phen

To an oven-dried screw-cap vial containing a stir bar was charged with with **5** (31 mg, 0.1 mmol), **2a** (47 mg, 0.11 mmol), $CH_3CN:1,4$ -dioxane (1.8 mL : 0.6 mL) under nitrogen. The reaction vial was fitted with a cap, evacuated and back filled with N₂ and heated at 60 °C for 12 h with vigorous stirring. No reaction was observed on TLC even after 12 h. Then the reaction mixture was filtered through a pad of silica gel (eluent: DCM). The solvent was evaporated under the reduced pressure and the residue was dissolved in DCM (1 mL). The GC yields were obtained from the crude mixture using biphenyl (0.10 mmol, 15.4 mg, 1.0 equiv) as the internal standard. Neither **3a** nor **3a'** could be observed by GC.

4.3 Determination of [(phen)AuPPh₃]⁺ by MALDI-TOF studies:

To an oven-dried screw-cap vial containing a stir bar was charged sequentially with Ph_3PAuCl (10 mg, 0.02 mmol), phen (4 mg, 0.02 mmol) and CD₃CN (0.5 mL) under nitrogen. The resulting solution was stirred at 60 °C for 5 min. The formation of [(phen)AuPPh₃]⁺ was confirmed by MALDI-TOF. For [(phen)AuPPh₃]⁺: calcd 639.13, found 639.0679.

5. NMR spectra

