Electronic Supplementary Information

Scavenger templates: a systems chemistry approach to the synthesis of porphyrin-based molecular wires

Arjen Cnossen, Cécile Roche and Harry L. Anderson

Table of contents

General Procedures	<u>S</u> 1
Partial deprotection of P6 _{Si2}	S1
General procedure for scavenger template reactions	S2
Determination of binding constants	S2
GPC analysis	S4
Chromatograms	S4
References	S6

General Procedures

Unless stated otherwise, all reagents were obtained from commercial sources and used as received without further purification. Chloroform and toluene were dried by passing over activated alumina. Diisopropylamine was dried by distillation over CaH₂. Linear porphyrin hexamer $P6_{si2}$ and hexakis-(4-[4-pyridy]phenyl)benzene T6 were synthesized using published procedures.¹⁻³ The linear porphyrin dodecamer P12_{si2} synthesized in this study has been prepared previously by another route; material from both routes gave identical NMR spectra, mass spectra and GPC traces.⁴

NMR spectra were recorded on a Bruker AVII400, Bruker AVIII400 (400 MHz) or Bruker DRX500 (500 MHz) spectrometer. The residual solvent peak was used as internal reference (chloroform, ${}^{1}H \delta = 7.26 \text{ ppm}$, ${}^{13}C \delta = 77 \text{ ppm}$).

Preparative recycling GPC was performed on a JAIGEL H-P pre-column, a JAIGEL 3H (20 mm \times 600 mm) and a JAIGEL 4H column (20 mm \times 600 mm) in series with toluene/pyridine 100/1 as eluent.

Partial deprotection of P6_{Si2}

To a solution of $P6_{si2}$ (10 mg, 0.9 µmol) in CD₂Cl₂ (0.4 mL) and pyridine- d_5 (20 µL) in an NMR tube was added TBAF (2 µL of 1.0 M solution in THF, 2 µmol). The contents of the tube were mixed thoroughly and the reaction was monitored by ¹H NMR. The conversion was estimated by the ratio of the integrals for the β -protons adjacent to the outer alkynes (~9.8 ppm, Ha/Hb and ~9.0 ppm Hc/Hd) and the free alkyne CH (~4.4 ppm, 1H @ 50% conversion). A typical NMR spectrum is shown in Figure S1. When optimal conversion was observed, acetic acid (20 µL) was added to quench the reaction. The reaction mixture was passed through a small silica plug (100:1 CH₂Cl₂:pyridine) and concentrated to yield a mixture of P6_{Si2}, P6_{Si} and P6 as a black solid.

Figure S1. Partial ¹H NMR spectrum of a statistical mixture of P6_{Si2}, P6_{Si} and P6 (250 MHz, CDCl₃ at 25 °C).

General procedure for scavenger template reactions

To a solution of a mixture of $P6_{si2}$, $P6_{si}$ and P6 in CHCl₃ was added T6 (2 eq.). The mixture was sonicated for 15 min and stirred at 20 °C for 1 h before addition of Pd(PPh₃)₂Cl₂ (50 mol%, added as a solution in CHCl₃), CuI (50 mol%, added as a solution in 1:1 CHCl₃ : *i*-Pr₂NH) and 1,4-benzoquinone (2 eq., added as a solution in CHCl₃). The reaction mixture was stirred for 4 h at 20 °C and then an aliquot was taken and analyzed by GPC (*vide infra*). If the reaction was not complete, an additional portion of catalyst was added and stirring was continued.

Determination of binding constants

UV/vis/NIR spectra were recorded on a Perkin-Elmer Lambda 20 photospectrometer at 25 °C. To assess the stability of the complexes between the **T6** template and protected and deprotected hexamer, respectively, a solution of a 1:1 complex in CHCl₃ was titrated with pyridine (Figure S2). Denaturation constants K_{dn} were obtained by fitting the data to a binding model:⁵

$$\frac{A - A_0}{A_{\infty} - A_0} = \frac{-K_{dn} \, [Py]^6 + \sqrt{K_{dn}^2 \, [Py]^{12} + 4 \, K_{dn} \, [Py]^6 \, [P]_0}}{2 \, [P]_0}$$

where A is the absorption at a given point in the titration, A_0 is the initial absorption at [Py] = 0, A_{∞} is the asymptotic final absorption at $[Py] = \infty$, and $[P]_0$ is the total concentration of 1:1 porphyrin oligomer template complex at the start of the titration. The final values are obtained by averaging of at least two runs.

Figure S2. Representative UV/vis/NIR titration of $P6_{S12}$ ·T6 (left) and $P6 \cdot T6$ (right) in CHCl₃ with pyridine. Inset: fit of the data to the binding model. In each titration, the initial concentration of 1:1 porphyrin oligomer template complex was $[P]_0 = 1.3 \mu M$.

The formation constants $K_{\rm f}$ for the complexes could be determined using:

$$K_{\rm f} = \frac{K_{\rm Py}^{6}}{K_{\rm dn}}$$

where K_{Py} is the binding constant of a single molecule of pyridine to a molecule of hexamer. K_{Py} can be approximated by the binding constant of pyridine to porphyrin monomer **P1**_{si2}, which was determined by titration to be 8.92 × 10³ M⁻¹ (Figure S3).

Complex	K _{dn}	$K_{ m f}$
P6 _{Si2} ·T6	$4.19\pm2.16\times10^{5}\ M^{-5}$	$1.20\pm0.74\times10^{18}\ M^{-1}$
Р6.Т6	$1.63\pm 0.58\times 10^5\ M^{-5}$	$3.09 \pm 1.5 \times 10^{18} \text{ M}^{-1}$
P1 _{Si2} ·Py		$8.92\pm 0.49\times 10^3~M^{-1}$

Table 1. Summary of equilibrium constants (in CHCl₃ at 25 °C)

Figure S3. Determination of the binding constant of porphyrin monomer P1_{S12} with pyridine in CHCl₃ at 25 °C.

Figure S4. a) Partial ¹H NMR spectrum (CDCl₃, 400 MHz) of a 1:1 mixture of $P6_{si2}$ and P6. b) The same mixture after addition of 1 equivalent of T6. c) The same mixture after addition of a second equivalent of T6.

GPC analysis

Analytical gel permeation chromatography (GPC) was performed on a JAIGEL H-P pre-column, a JAIGEL 3H-A (8 mm × 500 mm) and a JAIGEL 4H-A column (8 mm × 500 mm) in series with toluene/pyridine 100/1 as eluent. Samples were passed through a short size-exclusion column (Bio-Beads S-X1, CHCl₃) before analysis to remove any traces of low molecular weight compounds and insoluble material. The sample was cycled for two runs to ensure maximum separation of the peaks. Chromatograms were analyzed by absorption at 591 nm. Peak areas were then corrected for differences in molar absorption coefficients between species at this wavelength (P6_{si2}: 5.6×10^4 M⁻¹ cm⁻¹, *c*-P6·T6: 8.3×10^4 M⁻¹ cm⁻¹) to obtain the final GPC yield. The molar absorption coefficient for longer oligomers was estimated by extrapolation of the molar absorption coefficients of a series of linear oligomers according to the equation $\varepsilon_{591} = 6562 + 8118N$, where *N* is the number of porphyrin units. The template totally dissociates from all the linear porphyrin oligomers under the conditions of the GPC analysis (1% pyridine in toluene) to form pyridine complexes, whereas it does not dissociate from the cyclic hexamer.

Chromatograms

Figure S5. GPC chromatogram of the coupling of a mixture of P6_{Si2}, P6_{Si} and P6 (2 mM) in the absence of template.

1	24.720	55090385	793168	7.334	5.923
2	26.100	140175114	2872773	18.661	21.453
3	31.250	94226878	2992041	12.544	22.343
4	50.012	63180657	446352	8.411	3.333
5	52.276	93287165	1056545	12.419	7.890
6	60.683	209363733	3681963	27.872	27.495
7	62.753	95833425	1548323	12.758	11.562
Total		751157358	13391166	100.000	100.000

	Peak lable				
Petector A C Peak#	Ret. Time	Area	Height	Area %	Height %
1	50.032	13415345	70550	15.729	9.281
2	52.279	15832162	130170	18.563	17.123
3	55.512	27246331	232481	31.946	30.582
4	60.520	17762118	197877	20.826	26.030
5	62.756	11033076	129112	12.936	16.984
Total		85289030	760190	100.000	100.000

Figure S6. GPC chromatogram of the coupling of a mixture of P6_{Si2}, P6_{Si} and P6 (2 mM) in the presence of template.

Figure S7. GPC chromatogram of the coupling of a mixture of P6_{Si2}, P6_{Si} and P6 (0.2 mM) in the absence of template.

1 2

		PeakTable			
Detector A C Peak#	Ret. Time	Area	Height	Area %	Height %
1	53.163	12865593	113207	5.094	4.515
2	56.047	94297065	759019	37.333	30.273
3	60.522	83287641	898815	32.974	35.849
4	62.727	62134355	736197	24.599	29.363
Total		252584654	2507238	100.000	100.000

		PeakTable			
Detector A Channel 2 591nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	53.180	1811596	12536	7.872	5.826
2	56.033	8359865	62279	36.324	28.945
3	60.533	7120019	74165	30.937	34.469
4	62.733	5723050	66185	24.867	30.760
Total		23014530	215164	100.000	100.000

Figure S8. GPC chromatogram of the coupling of a mixture of $P6_{Si2}$, $P6_{Si}$ and P6 (0.2 mM) in the presence of template.

References

- 1 F. C. Grozema, C. Houarner-Rassin, P. Prins, L. D. A. Siebbeles and H. L. Anderson, J. Am. Chem. Soc., 2007, 129, 13370-13371.
- C. E. Tait, P. Neuhaus, M. D. Peeks, H. L. Anderson and C. R. Timmel, J. Am. Chem. Soc., 2015, 137, 8284-2 8293.
- 3 M. Hoffmann, J. Kärnbratt, M. H. Chang, L. M. Herz, B. Albinsson and H. L. Anderson, Angew. Chem. Int. Ed., 2008, 47, 4993-4996.
- N. Kamonsutthipaijit and H. L. Anderson, Chem. Sci., 2017, 8, 2729-2740. 4
- 5 H. J. Hogben, J. K. Sprafke, M. Hoffmann, M. Pawlicki and H. L. Anderson, J. Am. Chem. Soc., 2011, 133, 20962-20969.