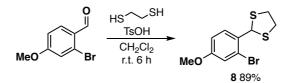
Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information for the communication entitled

Synthesis of seminaphtho-phospha-fluorescein dyes based on the consecutive arylation of aryldichlorophosphines

Aiko Fukazawa,*¹ Junichi Usuba,¹ Raúl A. Adler,² and Shigehiro Yamaguchi*^{1,2}


¹Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan ²Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan

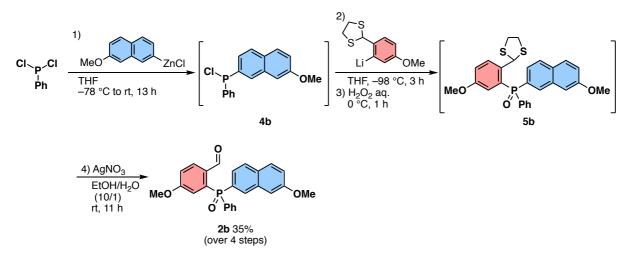
Contents

1. Experimental Details	S2
2. X-ray Crystallographic Analysis	S10
3. Computational Method and Results	S13
4. Photophysical Properties	S22
5. References	S25
6. NMR Spectra	S26

1. Experimental Details

General. Melting points (mp) or decomposition temperatures were determined with a Yanaco MP-S3 instrument or a Stanford Research System OptiMelt MPA100 instrument. ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded with a JEOL AL-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, and 162 MHz for ³¹P), a JEOL ECS400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C) or a JEOL ECA 600 II spectrometer equipped with an UltraCOOL probe (150 MHz for ¹³C) in CDCl₃, acetone- d_6 , methanol- d_4 , or DMSO- d_6 . The chemical shifts in ¹H NMR spectra are reported in δ ppm using the residual protons of the solvents as an internal standard (CHCl₃ δ 7.26, acetone δ 2.05, methanol δ 3.31, DMSO δ 2.50), and those in ¹³C NMR spectra are reported using the solvent signals as an internal standard (CDCl₃ δ 77.16, methanol- $d_4 \delta$ 49.00, DMSO- $d_6 \delta$ 39.52). The chemical shifts in ³¹P NMR spectra are reported using H₃PO₄ (δ 0.00) as an external standard. Mass spectra were measured with a JEOL JMS 700 (FAB), a Bruker micrOTOF Focus spectrometry system with the ionization method of APCI, or a ThermoFisher Scientific Exactive with the ionization method of ESI. Thin layer chromatography (TLC) was performed on glass plates coated with 0.25 mm thickness of silica gel 60F₂₅₄ (Merck). Preparative thin layer chromatography (PTLC) was performed on glass plates coated with 1.0 mm thickness of silica gel EMD Millipore 1.13895.0001 (Merck). Column chromatography was performed using silica gel PSQ100B or PSQ60B (Fuji Silysia Chemicals). Recycling preparative HPLC was performed using YMC LC-forte/R equipped with a silica gel column (YMC-Actus SIL). All reactions were performed under a nitrogen atmosphere unless stated otherwise. Commercially available solvents and reagents were used without further purification unless otherwise mentioned. Anhydrous THF were purchased from Kanto Chemicals and further purified by Glass Contour Solvent Systems.

Scheme S1. Synthesis of 8.

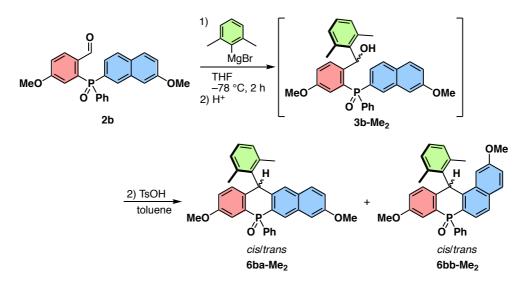

2-(2-Bromo-4-methoxyphenyl)-1,3-dithiolane То (8). solution of a 2-bromo-4-methoxybenzaldehyde (1.91 g, 8.88 mmol) and TsOH·H₂O (242 mg, 1.27 mmol) in CH₂Cl₂ (25 mL) was added 1,2-ethanedithiol (1.2 mL, 1.35 g, 14.3 mmol) at ambient temperature in air. After stirring for 6 h at the same temperature, the mixture was transferred into a separatory funnel and washed with water three times. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting yellow oil was subjected to silica gel column chromatography (PSQ100B, 5/1 hexane/ethyl acetate as an eluent, $R_f = 0.50$) to afford 2.30 g (7.90 mmol, 89% yield) of **8** as colorless oil: ¹H NMR (400 MHz, CDCl₃): δ 3.32–3.39 (m, 2H), 3.43–3.50 (m, 2H), 6.03 (s, 1H), 3.79 (s, 3H), 6.86 (dd, J = 8.8, 2.6 Hz, 1H), 7.06 (d, J = 2.6 Hz, 1H), 7.76 (d, J = 2.6 Hz, 2H), 7.86 (d, J = 2. 8.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 39.9 (CH₃), 54.8 (CH₂), 55.7(CH), 114.2 (CH), 117.7(CH), 124.1(C), 130.2 (C), 131.9 (C), 159.5 (C). HRMS (FAB): *m/z* calcd. for C₁₀H₁₂⁷⁹BrOS₂:

290.9507 ($[M+H]^+$); found. 290.9516.

A Typical Procedure for the Consecutive Diarylation of PhPCl₂: Synthesis of 4-Methoxy-2-[(3-methoxyphenyl)(phenyl)phosphoryl]benzaldehyde (2a). To a solution of 3-bromoanisole (1.73 g, 9.25 mmol) in THF (50 mL) was added *n*-BuLi in hexane (1.60 M, 5.80 mL, 9.28 mmol) dropwise at -78 °C. After stirring for 1 h at the same temperature, a solution of ZnCl₂(tmeda) (2.33 g, 9.23 mmol) in THF (60 mL) was added dropwise at the same temperature, and the mixture was allowed to warm to ambient temperature followed by stirring for 1 h. Then, PhPCl₂ (1.50 mL, 1.98 g, 11.1 mmol) was added dropwise into the mixture at -78 °C. The mixture was allowed to warm to ambient temperature. After stirring for 18 h, all volatiles were removed under reduced pressure, and hexane (40 mL) was added to the mixture. The resulting suspension was filtered under a N₂ atmosphere, and the filtrate was concentrated under reduced pressure to give a crude chloro(3-methoxyphenyl)(phenyl)phosphine (**4a**).

A solution of **8** (2.81 g, 9.65 mmol) in THF (120 mL) was prepared in another flask, to which was added *n*-BuLi in hexane (1.60 M, 6.10 mL, 9.76 mmol) dropwise at -98 °C. After stirring for 5 min, crude **4a** was added dropwise at the same temperature. After stirring for 3 h at the same temperature, the mixture was allowed to warm to ambient temperature and stirred for another 1 h. Then, an aqueous solution of H₂O₂ (30%, 3.5 mL) was added to the mixture at 0 °C followed by stirring for 30 min at the same temperature. A saturated aqueous solution of Na₂SO₃ (15 mL) was added and the mixture was extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and filtered. Concentration of the filtrate under reduced pressure afford 3.91 g of crude **5a** as colorless solids.

To a solution of crude 5a in EtOH (300 mL), a solution of AgNO₃ (8.27 g, 48.7 mmol) in water (30 mL) was added at ambient temperature in air. After stirring for 12 h, the mixture was concentrated under reduced pressure. After addition of CH₂Cl₂, the resulting suspension was filtered and washed with CH₂Cl₂. After concentration of the filtrate under reduced pressure, the resulting solids were subjected to a silica gel column chromatography (PSQ100B, 1/1 hexane/acetone as an eluent, R_f = 0.47) to afford 1.58 g (4.31 mmol, 47% yield based on 3-bromoanisole) of 2a as pale yellow viscous oil: ¹H NMR (400 MHz, acetone- d_6): δ 3.825 (s, 1H), 3.829 (s, 3H), 6.73 (dd, J = 15.0, 2.4 Hz, 1H), 7.17–7.23 (m, 2H), 7.28 (ddd, 1H, J = 13.4, 2.6, 1.6 Hz), 7.33 (dd, J = 15.0, 2.4 Hz, 1H), 7.51 (ddd, J = 8.0, 8.0, 3.6 Hz, 1H), 7.55–7.65 (m, 2H), 7.65–7.75 (m, 3H), 8.12 (dd, J = 8.4, 4.4 Hz, 1H), 10.63 (s, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 55.4 (s, CH₃), 55.6 (s, CH₃), 116.0 (d, J_{P-C} = 2.5 Hz, CH), 116.6 (d, $J_{P-C} = 11.6$ Hz, CH), 118.3 (d, $J_{P-C} = 2.5$ Hz, CH), 120.6 (d, $J_{P-C} = 11.5$ Hz, CH), 123.9 (d, $J_{P-C} = 10.7$ Hz, CH), 128.7 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, $J_{P-C} = 12.3$ Hz, CH), 129.9 (d, $J_{P-C} = 13.9$ Hz, CH), 131.6 (d, J_{P-C} = 13.9 Hz, CH), 131.6 (50.3 Hz, CH), 131.72 (d, $J_{P-C} = 76.6$ Hz, C), 131.73 (d, $J_{P-C} = 9.9$ Hz, CH), 132.4 (d, $J_{P-C} = 2.5$ Hz, CH), 132.6 (d, *J*_{P-C} = 43.7 Hz, C), 133.0 (d, *J*_{P-C} = 170.4 Hz, C), 137.1 (d, *J*_{P-C} = 94.6 Hz, C), 159.7 (d, $J_{P-C} = 14.8$ Hz, C), 162.7 (d, $J_{P-C} = 14.8$ Hz, C), 189.8 (d, $J_{P-C} = 4.9$ Hz, CH). ³¹P{¹H} NMR (162) MHz, CDCl₃): δ 31.5. HRMS (APCI): m/z calcd. for C₂₁H₂₀O₄P: 367.1094 ([M+H]⁺); found. 367.1089.



Scheme S2. Synthesis of naphthyl-substituted analogue 2b via consecutive arylation of PhPCl₂.

4-Methoxy-2-[(7-methoxynaphthalen-2-yl)(phenyl)phosphoryl]benzaldehyde This (2b). compound а similar manner described for was prepared in as 2a using 2-bromo-7-methoxynaphthalene (1.60 g, 6.75 mmol) as a starting material. Purification by the silica gel column chromatography (2/1 to 1/1 hexane/acetone as an eluent, $R_f = 0.38$ in 1/1 hexane/acetone) afforded 997 mg of 2b (2.39 mmol, 35% yield based on 2-bromo-7-methoxynaphthalene) as colorless solids: Mp (MPA100): 122.4–123.7 °C. ¹H NMR (400 MHz, acetone- d_6): δ 3.81 (s, 3H), 3.93 (s, 3H), 6.79 (dd, J = 15.2, 2.4 Hz, 1H), 7.31 (dd, J = 9.2, 2.4 Hz, 1H), 7.34 (dd, J = 9.2, 2.4 Hz, 1H), 7.44 (d, J = 9.2, 2.4 Hz,J = 2.4 Hz, 1H), 7.56–7.67 (m, 4H), 7.75–7.80 (m, 2H), 7.93 (d, J = 8.8 Hz, 1H), 8.01 (dd, J = 8.2, 2.8Hz, 1H), 8.13 (dd, J = 8.4, 4.4 Hz, 1H), 8.24 (d, J = 14.0 Hz, 1H), 10.63 (s, 1H). ¹³C NMR (100 MHz, 1H), 10.63 (s, 1H). CDCl₃): δ 55.4 (CH₃), 55.7 (CH₃), 106.6 (CH), 116.1 (d, $J_{P-C} = 2.2$ Hz, CH), 120.8 (d, $J_{P-C} = 12.1$ Hz, CH), 121.7 (CH), 124.4 (d, $J_{P-C} = 10.5$ Hz, C), 128.4 (d, $J_{P-C} = 12.7$ Hz, CH), 128.9 (d, $J_{P-C} = 12.1$ Hz, CH), 129.4 (d, $J_{P-C} = 1.1$ Hz, CH), 129.8 (d, $J_{P-C} = 55.2$ Hz, C), 130.4 (d, $J_{P-C} = 1.6$ Hz, C), 131.9 (d, $J_{P-C} = 9.2$ Hz, CH), 132.1 (d, $J_{P-C} = 30.8$ Hz, CH), 132.2 (d, $J_{P-C} = 27.0$ Hz, CH), 132.3 (d, $J_{P-C} = 6.6$ Hz, C), 132.5 (CH), 132.3 (d, $J_{P-C} = 104.1$ Hz, C), 133.8 (d, $J_{P-C} = 13.8$ Hz, C), 137.4 (d, $J_{P-C} = 93.1$ Hz, C), 158.5 (d, $J_{P-C} = 1.1$ Hz, C), 162.8 (d, $J_{P-C} = 14.3$ Hz, C), 190.0 (d, $J_{P-C} = 5.6$ Hz, CH). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 31.7. HRMS (APCI): m/z calcd. for C₂₅H₂₂O₄P: 417.1250 ([M+H]⁺); found. 417.1259.

A Typical Procedure for Synthesis of Cyclic Triarylphosphine Oxides 6 via the Nucleophilic Addition and Intramolecular Friedel–Crafts Cyclization: Synthesis of 3,7-dimethoxy-10-(2-methylphenyl)-5-phenyl-10*H*-acridophosphine 5-oxide (*trans*-6aa-Me). To a solution of 2a (971 mg, 2.65 mmol) in THF (20 mL), was added a solution of *o*-tolylmagnesium bromide in THF (1.62 M, 6.0 mL, 9.72 mmol) dropwise at -78 °C. After stirring for 2 h at the same temperature, the mixture was allowed to warm up to ambient temperature followed by addition of 1*N* HCl aqueous solution (20 mL). After addition of CH₂Cl₂, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give 1.59 g of crude **3a-Me** as colorless solids. After dissolving the crude **3a-Me** in toluene (100 mL), TsOH·H₂O (1.52 g, 7.99 mmol) was added, and the resulting suspension was heated at 100 °C for 4 h. After addition of a saturated NaHCO₃ aqueous solution (100 mL) at ambient temperature, the mixture was extracted with CH₂Cl₂, and the combined organic layers were dried over anhydrous MgSO₄, and concentrated under reduced pressure. The brown mixture was subjected to silica gel column chromatography (PSQ60B, 2/1 to 1/1 hexane/acetone as an eluent, $R_f = 0.34$ in 1/1 hexane/acetone) to afford 438 mg of *trans*-**6aa-Me** (0.994 mmol, 38% yield based on **2a**) as colorless solids: Mp (MP-S3): 181.2 °C–183.1 °C (dec). ¹H NMR (400 MHz, CDCl₃): δ 1.81 (s, 1H), 3.85 (s, 6H), 5.12 (d, $J_{P-H} = 3.6$ Hz, 1H), 6.83 (ddd, J = 8.8, 6.2, 0.4 Hz, 2H), 6.92 (dd, J = 8.8, 3.2 Hz, 2H), 7.19–7.28 (m, 4H), 7.31–7.39 (m, 2H), 7.41–7.50 (m, 3H), 7.65 (dd, J = 13.2, 2.4 Hz, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 20.3 (s, CH₃), 113.5 (d, $J_{P-C} = 7.8$ Hz, C), 119.7 (s, CH), 126.7 (s, CH), 127.7 (d, $J_{P-C} = 2.5$ Hz, CH), 128.6 (d, $J_{P-C} = 99.5$ Hz, C), 128.8 (d, $J_{P-C} = 12.3$ Hz, CH), 130.1 (d, $J_{P-C} = 11.8$ Hz, C), 130.7 (d, $J_{P-C} = 10.6$ Hz, CH), 132.0 (s, CH), 132.3 (s, CH), 134.8 (d, $J_{P-C} = 105.9$ Hz, C), 136.5 (d, $J_{P-C} = 2.5$ Hz, C), 137.2 (s, C), 141.0 (s, C), 158.5 (d, $J_{P-C} = 13.4$ Hz, C). ³¹P {¹H} NMR (162 MHz, CDCl₃): δ 10.6. HRMS (APCI): m/z calcd. for C₂₈H₂₆O₃P: 441.1614 ([M+H]⁺); found. 441.1625.

3,7-Dimethoxy-10-(2,6-dimethylphenyl)-5-phenyl-10*H***-acridophosphine 5-oxide (***trans***-6aa-Me₂). This compound was prepared in a similar manner as described for** *trans***-6aa-Me using 2a** (233 mg, 0.635 mmol) and 2,6-dimethylphenylmagnesium bromide (0.838 M, 2.3 mL, 1.93 mmol) as a starting material. Purification by the silica gel column chromatography (2/1 to 1/1 hexane/acetone as an eluent, $R_f = 0.58$ in 1/1 hexane/acetone) afforded 66.4 mg of *trans*-6aa-Me₂ (0.146 mmol, 23% yield based on **2a**) as colorless solids: Mp (MP-S3): 181.2 °C–182.8 °C (dec.). ¹H NMR (400 MHz, CDCl₃): δ 1.41 (s, 3H), 2.35 (s, 3H), 3.87 (s, 6H), 5.40 (d, $J_{P-H} = 4.4$ Hz, 1H), 6.76 (ddd, J = 8.8, 6.0, 0.8 Hz, 2H), 6.91 (dd, J = 8.8, 2.8 Hz, 2H), 7.02 (dd, J = 6.4, 2.8 Hz, 1H), 7.19–7.26 (m, 2H), 7.35–7.46 (m, 5H), 7.72 (dd, J = 13.2, 2.8 Hz, 2H). ¹³C {¹H} NMR(100 MHz, CDCl₃): δ 21.0 (d, $J_{P-C} = 3.3$ Hz, CH₃), 43.5 (d, $J_{P-C} = 8.3$ Hz, CH₃), 55.8 (s, CH), 113.5 (d, $J_{P-C} = 6.6$ Hz, CH), 119.9 (d, $J_{P-C} = 2.5$ Hz, CH), 127.5 (s, C), 128.9 (s, CH), 128.3 (s, CH), 128.8 (d, $J_{P-C} = 3.3$ Hz, CH), 136.0 (d, $J_{P-C} = 8.2$ Hz, C), 137.7 (s, C), 138.3 (s, C), 139.3 (s, C), 158.6(d, $J_{P-C} = 7.8$ Hz, C). ³¹P {¹H} NMR (162 MHz, CDCl₃): δ 11.2. HRMS (APCI): *m/z* calcd. for C₂₉H₂₈O₃P: 445.1771 ([*M*+H]⁺); found. 445.1750.

Scheme S3. Friedel-Crafts cyclization of in-situ generated 3b-Me2.

12-(2,6-Dimethylphenyl)-3,8-dimethoxy-5-phenyl-12H-benzo[b]acridophosphine

5-oxide

(trans-6ba). This compound was prepared in a similar manner as described for trans-6aa-Me using 2b (79.4 mg, 0.191 mmol) and 2,6-dimethylphenylmagnesium bromide (0.838 M, 0.70 mL, 0.587 mmol) as a starting material. Purification by the silica gel column chromatography (2/1 to 1/1 hexane/acetone as an eluent, $R_f = 0.59$ in 1/1 hexane/acetone) afforded 36.9 mg of trans-6ba-Me₂ (73.1 µmol, 38% yield based on 2b) as colorless solids: Mp (MP-S3): 132.9 °C-134.8 °C. ¹H NMR (400 MHz, acetone- d_6): δ 1.47 (s, 3H), 2.30 (s, 3H), 3.90 (s, 3H), 3.96 (s, 3H), 6.80 (dd, J = 8.2, 6.0 Hz, 1H), 7.05 (dd, J = 9.0, 3.2 Hz, 1H), 7.13 (d, J = 4.0 Hz, 1H), 7.20 (dd, J = 8.8, 2.4 Hz, 1H), 7.25–7.28 (m, 3H), 7.35–7.50 (m, 5H), 7.56 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 9.2 Hz, 1H), 7.77 (dd, J = 13.2, 2.8 Hz, 1H), 8.72 (d, J = 13.6 Hz, 1H). ¹³C{¹H} NMR(100 MHz, CDCl₃) : δ 21.3 (d, $J_{P-C} = 79.9$ Hz, CH₃), 44.0 (d, $J_{P-C} = 7.4$ Hz, CH₃), 55.5 (CH₃), 55.8 (CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 55.5 (CH₃), 55.8 (CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 55.8 (CH₃), 55.8 (CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 55.8 (CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 55.8 (CH₃), 55.8 (CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 55.8 (CH₃), 55.8 (CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 55.8 (CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 105.9 (C), 113.7 (CH), 113.8 (CH), 119.8 (d, $J_{P-C} = 7.4$ Hz, CH₃), 119.8 (d, $J_{P-C} = 7.4$ Hz, 119.8 (d, $J_$ _C = 2.4 Hz, CH), 121.4 (CH), 125.8 (d, *J*_{P-C} = 9.9 Hz, CH), 126.5 (d, *J*_{P-C} = 98.8 Hz, C), 127.6 (CH), 128.4 (CH), 128.8 (d, $J_{P-C} = 12.4$ Hz, CH), 128.9 (d, $J_{P-C} = 14.9$ Hz, CH), 128.9 (d, $J_{P-C} = 88.9$ Hz, C), 129.6 (CH), 130.5 (d, $J_{P-C} = 10.7$ Hz, CH), 130.7 (C), 130.7 (CH), 131.2 (d, $J_{P-C} = 5.7$ Hz, CH), 131.6 (d, $J_{P-C} = 3.3$ Hz, CH), 132.9 (d, $J_{P-C} = 12.3$ Hz, C), 135.1 (d, $J_{P-C} = 106.1$ Hz, C), 136.0 (d, $J_{P-C} = 8.2$ Hz, C), 136.6 (d, *J*_{P-C} = 11.2 Hz, C), 138.0 (C), 138.4 (C), 138.6 (C), 158.2 (C), 158.7 (d, *J*_{P-C} = 13.2 Hz, C). ${}^{31}P{}^{1}H{}$ NMR (162 MHz, CDCl₃): δ 10.8. HRMS (APCI): m/z calcd. for C₃₃H₃₀O₃P: 505.1927([*M*+H]⁺); found. 505.1902.

Separation and Identification of the Isomers Obtained by the Friedel–Crafts Cyclization. To gain insights into the ratio of regioisomers and diastereomers produced by the Friedel–Crafts cyclization of **3aa-Me**, all the isomers, *cis-* and *trans-***6aa-Me** as well as *cis-* and *trans-***6ab-Me**, were isolated according to the following procedure: the reaction was conducted in a similar manner as described above using **2a** (65.0 mg, 0.177 mmol) and *o*-tolylmagnesium bromide (1.62 M in THF, 0.33 mL, 0.532 mmol) as a starting material. The crude mixture after aqueous workup was subjected to recycling preparative HPLC (1/1 hexane/Et₂O containing 5% (v/v) MeOH) to afford analytically pure

trans-6aa-Me (31.9 mg, 72.4 µmol, 41%) and *cis*-6ab-Me (7.5 mg, 17 µmol, 10%) as colorless solids, and the other fraction containing *cis*-6aa-Me and *trans*-6ab-Me. This fraction was further subjected to PTLC (1/3 hexane/acetone) to afford *cis*-6aa-Me ($R_f = 0.50$, 4.3 mg, 9.8 µmol, 6% yield) and *trans*-6ab-Me ($R_f = 0.65$, 10.3 mg, 23.4 µmol, 13% yield), respectively, as slightly yellowish solids. The structures of *trans*-6aa-Me and *cis*-6ab-Me were identified unequivocally by X-ray crystallographic analyses (see pp. S10–S12). The structures of the other two isomers *cis*-6aa-Me and *trans*-6ab-Me were identified by ¹H, ¹³C, and ³¹P NMR spectroscopy.

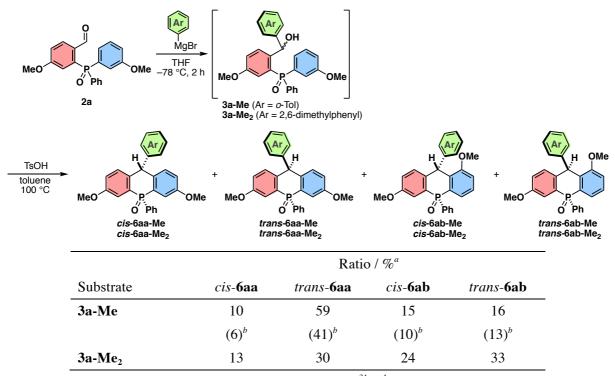
cis-6aa-Me. Mp (MP-S3): 94.0–99.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.14 (s, 3H, CH₃), 3.70 (s, 6H, OCH₃), 5.72 (d, ⁴*J*_{P-H} = 4.2 Hz, 1H, HCAr₃), 6.90–6.91 (m, 4H), 7.01–7.02 (m, 1H), 7.09–7.17 (m, 3H), 7.21–7.24 (m, 2H), 7.47–7.58 (m, 3H), 7.78–7.83 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 20.4 (s), 46.9 (d, *J*_{P-C} = 8.3 Hz), 55.5 (s), 114.7 (d, *J*_{P-C} = 9.6 Hz), 119.7 (d, *J*_{P-C} = 2.4 Hz), 126.9 (s), 127.5 (s), 128.7 (d, *J*_{P-C} = 12.4 Hz), 129.0 (d, *J*_{P-C} = 102.0 Hz), 130.9 (d, *J*_{P-C} = 10.8 Hz), 131.8 (s), 131.9 (s), 132.1 (d, *J*_{P-C} = 2.7 Hz), 132.4 (d, *J*_{P-C} = 10.6 Hz), 133.5 (d, *J*_{P-C} = 108.2 Hz), 136.5 (s), 138.3 (d, *J*_{P-C} = 7.3 Hz), 143.0 (s), 158.2 (d, *J*_{P-C} = 14.0 Hz). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 13.25. HRMS (ESI): *m/z* calcd. for C₂₈H₂₆O₃P: 441.1614 ([*M*+H]⁺), found: 441.1608.

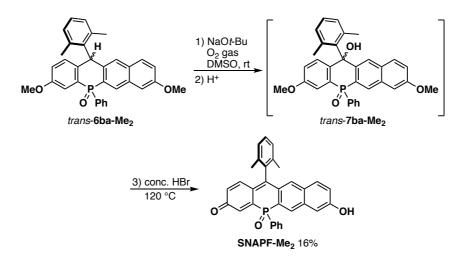
cis-6ab-Me. Mp (MP-S3): 129.5–135.0 °C (dec.). ¹H NMR (400 MHz, CDCl₃): δ 2.84 (s, 3H, CH₃), 3.65(s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 6.01–6.02 (m, 1H), 6.21–6.23 (m, 1H), 6.49–6.52 (m, 1H), 6.87–6.91 (m, 1H), 6.95–6.97 (m, 1H), 7.01–7.04 (m, 1H), 7.14–7.16 (m, 1H), 7.33–7.37 (m, 1H), 7.40–7.54 (m, 5H), 7.71–7.76 (m, 2H), 7.86–7.91 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 20.6 (s, CH₃), 41.0 (d, $J_{P-C} = 8.4$ Hz, Ar₃C), 55.70 (s, OCH₃), 55.72 (s, OCH₃), 113.9 (d, $J_{P-C} = 7.4$ Hz), 114.1 (d, $J_{P-C} = 2.4$ Hz), 121.0 (d, $J_{P-C} = 2.3$ Hz), 123.3 (d, $J_{P-C} = 5.9$ Hz), 125.89 (s), 125.9 (s), 126.7 (d, $J_{P-C} = 101.4$ Hz), 128.58 (s), 128.63 (s), 128.7 (s), 128.8 (s), 129.7 (d, $J_{P-C} = 101.2$ Hz), 130.8 (s), 131.7 (d, $J_{P-C} = 2.6$ Hz), 131.9 (d, $J_{P-C} = 9.9$ Hz), 133.8 (d, $J_{P-C} = 9.2$ Hz), 135.5 (s), 136.2 (d, $J_{P-C} = 108.0$ Hz), 138.4 (d, $J_{P-C} = 8.5$ Hz), 143.8 (d, $J_{P-C} = 1.4$ Hz), 156.7 (d, $J_{P-C} = 13.7$ Hz), 158.3 (d, $J_{P-C} = 13.3$ Hz). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 11.19. HRMS (ESI): *m/z* calcd. for C₂₈H₂₆O₃P: 441.1614 ([*M*+H]⁺); found. 441.1605.

trans-6ab-Me. Mp (MP-S3): 261.0–265.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.91 (s, 3H, CH₃), 3.66 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 6.15 (d, ⁴*J*_{P-H} = 1.4 Hz, 1H, HCAr₃), 6.90–7.04 (m, 5H), 7.14–7.18 (m, 2H), 7.23–7.28 (m, 1H), 7.32–7.36 (m, 1H), 7.43–7.52 (m, 4H), 7.70–7.75 (m, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 20.5 (s), 40.8 (d, *J*_{P-C} = 8 Hz), 55.6 (d, *J*_{P-C} = 19 Hz), 113.6 (d, *J*_{P-C} = 2 Hz), 114.9 (d, *J*_{P-C} = 10 Hz), 120.1 (d, *J*_{P-C} = 2 Hz), 124.0 (d, *J*_{P-C} = 8 Hz), 125.9 (s), 127.0 (s), 128.3 (d, *J*_{P-C} = 14 Hz), 128.2 (d, *J*_{P-C} = 102 Hz), 128.4 (d, *J*_{P-C} = 12 Hz), 129.9 (d, *J*_{P-C} = 103 Hz), 130.0 (s), 130.5 (s), 130.8 (d, *J*_{P-C} = 11 Hz), 131.8 (d, *J*_{P-C} = 3 Hz), 132.4 (d, *J*_{P-C} = 10 Hz), 133.8 (d, *J*_{P-C} = 109 Hz), 134.7 (s), 135.3 (d, *J*_{P-C} = 8.3 Hz), 139.9 (d, *J*_{P-C} = 7 Hz), 142.4 (d, *J*_{P-C} = 2 Hz), 156.6 (s), 157.9 (s). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 14.36. HRMS (ESI): *m*/*z* calcd. for C₂₈H₂₆O₃P: 441.1614 ([*M*+H]⁺); found. 441.1611.

Determination of the Ratio of Isomers Obtained by the Friedel–Crafts Cyclizations. The ratios of the four isomers *cis*- and *trans*-**6aa** as well as *cis*- and *trans*-**6ab** in the reaction mixtures were estimated based on the integral ratio in the ${}^{31}P{}^{1}H$ NMR spectra. The reactions were conducted

essentially in the same manner with the experiments described above using **2a** and arylmagnesium bromides. The signals in the ³¹P{¹H} NMR spectrum of the obtained mixture for the *o*-tolyl-substituted derivatives were identified based on the data for the purely isolated compounds, *cis*- and *trans*-**6aa**-**Me** as well as *cis*- and *trans*-**6ab**-**Me**, which are described previously (Fig. S31). In the case of the 2,6-dimethylphenyl-substituted derivatives, *i.e.*, *cis*- and *trans*-**6aa**-**Me**₂ and *cis*- and *trans*-**6ab**-**Me**₂, however, all attempts to fully separate the isomers were unsuccessful. Therefore, we assigned the ³¹P NMR signals based on the ³¹P NMR chemical shifts of the isolated *trans*-**6aa**-**Me**₂ and the experimental results including the R_f values for the *o*-tolyl series (Fig. S32). The observed NMR ratio of *trans*-**6aa**-**Me**₂ of 30% seems consistent with the isolated yield of *trans*-**6aa**-**Me**₂ (23% yield). The results thus obtained are summarized in Table S1. These results imply that the regioselectivity in the Friedel–Crafts cyclization is likely dependent on the bulkiness of the aryl groups at the benzyl position, *i.e.*, the less bulkier *o*-tolyl-substituted **3a**-**Me** gave a higher selectivity compared to **3a**-**Me**₂, although the reason remained unclear.




Table S1. Isomer Ratios of the Products Obtained by the Friedel-Crafts Cyclization

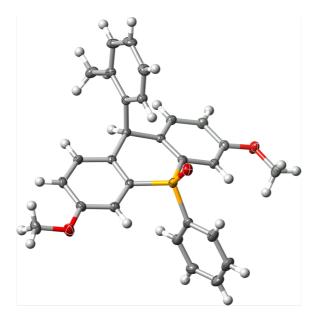
^{*a*}Ratio estimated by the integral ratio of the signals in ${}^{31}P{}^{1}H$ NMR spectrum of the reaction mixture. ^{*b*}Isolated yield.

Synthesis of POF-Me from *trans*-6aa-Me. A solution of *trans*-6aa-Me (41.8 mg, 94.9 μ mol) and NaOt-Bu (27.9 mg, 0.290 mmol) in DMSO (20 mL) was stirred at the ambient temperature for 16 h under an O₂ atmosphere. Then, 1*N* HCl aqueous solution (15 mL) was added, and the organic layer was separated. The aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with water, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give crude product containing **7aa-Me**.

To a solution of crude **7aa-Me** in MeOH (0.5 mL) was added an aqueous solution of HBr (47–48 wt%, 5 mL) dropwise under a N₂ atmosphere, and the mixture was heated at 90 °C. After stirring for 4.5 h at the same temperature, the mixture was allowed to cool to ambient temperature. After addition of CH_2Cl_2 , the organic layer was separated. The aqueous layer was extracted with CH_2Cl_2 three times. The combined organic layer was washed with water, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The mixture was purified by recrystallization from toluene to give 24.3 mg of POF-Me (59.2 µmol, 62% yield) as red crystals. The ¹H NMR spectrum of the product thus obtained was identical with that reported in ref. 3.

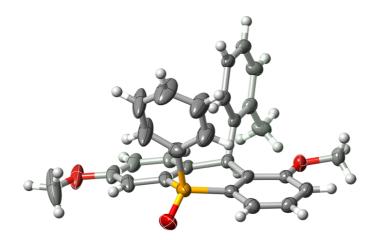
Synthesis of POF-Me₂ from *trans***-6aa-Me₂.** This compound was prepared in a similar manner as described for POF-Me using *trans***-6aa-Me₂** (46.0 mg, 0.101 mmol) as a starting material. Purification by recrystallization from toluene afforded 39.2 mg of POF-Me₂ (92.4 µmol, 91% yield) as red crystals: Mp (MP-S3): >300 °C. ¹H NMR (400 MHz, methanol-*d*₄): δ 2.02 (s, 3H), 2.06 (s, 3H), 6.60–6.75 (br, 2H), 6.98 (dd, *J* = 9.4, 6.4 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 7.38 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.50–7.60 (m, 2H), 7.60–7.70 (m, 3H). ¹³C{¹H} NMR (150 MHz, methanol-*d*₄): δ 19.8 (s, CH₃), 20.0 (s, CH₃), 129.0 (d, *J*_{P-C} = 5.7 Hz, CH), 130.4 (s, CH), 130.5 (d, *J*_{P-C} = 11.5 Hz, CH), 133.6 (d, *J*_{P-C} = 111.3 Hz, C), 134.3 (s, CH), 136.9 (s, C), 136.9 (s, C), 137.6 (s, C), 155.5 (d, *J*_{P-C} = 7.2 Hz, C). ³¹P{¹H} NMR (162 MHz, methanol-*d*₄): δ 9.07. HRMS (ESI): *m/z* calcd. for C₂₇H₂₁NaO₃P: 447.1121 ([*M*+Na]⁺); found. 447.1120.

Scheme S4. Synthesis of seminaphtho-phospha-fluorescein SNAPF-Me2.


Synthesis of SNAPF-Me₂ from *trans***-6ba-Me₂**. This compound was prepared in a similar manner as described for POF-Me using *trans***-6ba-Me₂** (68.3 mg, 0.135 mmol) as a starting material. The second-step reaction with HBr was conducted at 120 °C for 1 day. Purification by recrystallization from 1/1 CH₂Cl₂/MeOH afforded 10.0 mg of SNAPF-Me₂ (21.1 µmol, 16% yield) as deep red crystals. Mp (MP-S3): >300 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 1.93 (s, 3H), 1.97 (s, 3H), 6.37 (dd, *J* = 10.0, 2.0 Hz, 1H), 6.84 (dd, *J* = 10.0, 6.4 Hz, 1H), 7.02 (dd, *J* = 16.4, 2.0 Hz, 1H), 7.18 (dd, *J* = 8.2, 2.4 Hz, 1H), 7.29–7.60 (m, 10H), 7.73 (d, *J* = 8.4 Hz, 1H), 8.52 (d, *J* = 14.8 Hz, 1H), 10.68 (s, 1H). ¹³C {¹H} NMR (150 MHz, DMSO-*d*₆): δ 19.27 (s, CH₃), 19.30 (s, CH₃), 110.4 (s, C), 121.9 (s, CH), 125.4 (d, *J*_{P-C} = 7.2 Hz, C), 126.4 (d, *J*_{P-C} = 99.8 Hz, C), 127.8 (s, CH), 128.0 (s, CH), 128.5 (d, *J*_{P-C} = 7.2 Hz, C), 128.6 (s, C), 129.0 (s, CH), 132.8 (d, *J*_{P-C} = 8.6 Hz, CH), 133.3 (d, *J*_{P-C} = 5.7 Hz, CH), 133.8 (s, CH), 134.6 (d, *J*_{P-C} = 107.1 Hz, C), 135.1 (s, C), 135.3 (s, C), 135.4 (d, *J*_{P-C} = 21.6 Hz, C), 136.1 (s, C), 138.5 (d, *J*_{P-C} = 8.8 Hz, CH), 140.4 (d, *J*_{P-C} = 88.2 Hz, C), 152.2 (s, C), 159.6 (s, C), 183.1 (d, *J*_{P-C} = 13.0 Hz, C). ³¹P {¹H} NMR (162 MHz, DMSO-*d*₆): δ 6.3. HRMS (ESI): *m/z* calcd. for C₃₁H₂₃NaO₃P: 497.1277 ([*M*+Na]⁺); found. 497.1283.

Structure of SNARF-Me₂ in Solution. We fully characterized the ¹H and ¹³C NMR spectra of SNAPF-Me₂ based on the H–H COSY, HMBC, and HMQC techniques (Figs. S42–47). According to ¹H NMR (Fig. S42) and H–H COSY 2D NMR spectra (Fig. S45), the resonance signals at $\delta = 6.37$ (dd, J = 10.0, 2.0 Hz, 1H), 6.84 (dd, J = 10.0, 6.4 Hz, 1H), 7.02 (dd, J = 16.4, 2.0 Hz, 1H) were unequivocally assigned to the protons H_A, H_B, and H_C, respectively, on the fused benzene moiety. Considering the fact that the proton B has a correlation with the ¹³C resonance with δ of 183.1 (d, ³J_{P-C} = 13.0 Hz, C) in the HMBC 2D-NMR spectrum (Fig. S46), this signal was assigned to the *C*=O moiety in a fused benzene ring. The chemical shift of 183.1 ppm corroborates that the C–O moiety on the fused benzene ring has significant character of C=O. Furthermore, in the HMBC spectrum, the pronounced correlations were observed between the phenolic proton (–OH) and the carbon atoms at 6 and 8 positions in the naphthalene moiety (i.e., the carbon atoms bearing H_D and H_E in Fig. S46). Based on these results, we concluded that the phenolic proton is localized on naphthol moiety, *i.e.*, the tautomer I is dominant even in solution.

2. X-ray Crystallographic Analysis

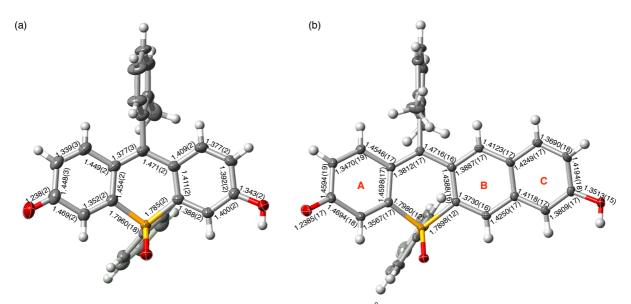

X-ray Data Collection of *trans-***6aa-Me.** Colorless needle-shaped single crystals were grown by slow evaporation of a solution of *trans-***6aa-Me** in CH₂Cl₂/hexane. Intensity data were collected at 123 K on a Rigaku Single Crystal X-ray diffractometer equipped with FR-X generator, Varimax optics, and PILATUS 200K photon counting detector with MoK α radiation ($\lambda = 0.71075$ Å). A total of 29556 reflections were measured with the maximum 2 θ angle of 55.0°, of which 5130 were independent reflections ($R_{int} = 0.0215$). The structure was solved by direct methods (SIR-2003) and refined by the full-matrix least-squares on F^2 (SHELXL-2013). ¹ All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as

follows: C₂₈H₂₅O₃P; FW = 440.45, crystal size 0.20 × 0.07 × 0.05 mm³, monoclinic, $P2_1/n$, a = 7.4318(16) Å, b = 19.171(4) Å, c = 15.802(4) Å, $\beta = 94.986(3)^\circ$, V = 2242.8(9) Å³, Z = 4, $D_c = 1.304$ g cm⁻³, $\mu = 0.151$ mm⁻¹, $R_1 = 0.0377$ ($I > 2\sigma(I)$), $wR_2 = 0.975$ (all data), GOF = 1.091. CCDC 1553532 contains the supplementary crystallographic data for this compound. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.

Fig. S1. Molecular structure of *trans-6aa-Me* (atomic displacement parameters set at 50% probability; only selected atoms are labelled; color scheme: grey, carbon; white, hydrogen; red, oxygen; orange, phosphorus).

X-ray Data Collection of *cis*-**6ab-Me.** Colorless platelet single crystals were grown by slow diffusion of pentane into a CHCl₃ solution of *cis*-**6ab-Me**. Intensity data were collected at 123 K on a Rigaku Single Crystal X-ray diffractometer equipped with FR-X generator, Varimax optics, and PILATUS 200K photon counting detector with MoK α radiation ($\lambda = 0.71075$ Å). A total of 24050 reflections were measured with the maximum 2θ angle of 55.0°, of which 4981 were independent reflections ($R_{int} = 0.0773$). The structure was solved by direct methods (SIR-2003) and refined by the full-matrix least-squares on F^2 (SHELXL-2013).¹ All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: $C_{28}H_{25}O_3P$; FW = 440.45, crystal size $0.17 \times 0.09 \times 0.04$ mm³, monoclinic, $P2_1/c$, a = 9.230(10) Å, b = 26.54(3) Å, c = 9.263(10) Å, $\beta = 104.736(18)^\circ$, V = 2195(4) Å³, Z = 4, $D_c = 1.333$ g cm⁻³, $\mu = 0.154$ mm⁻¹, $R_1 = 0.1174$ ($I > 2\sigma(I)$), $wR_2 = 0.3458$ (all data), GOF = 1.056. CCDC 1553531 contains the supplementary crystallographic data for this compound. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.

Fig. S2. Molecular structure of *cis*-6ab-Me (atomic displacement parameters set at 50% probability; only selected atoms are labelled; color scheme: grey, carbon; white, hydrogen; red, oxygen; orange, phosphorus).


X-ray Data Collection of SNAPF-Me₂. Deep-red block-shaped single crystals were grown by slow evaporation from a solution of SNAPF-Me2 in 1/1 CH2Cl2/MeOH. Intensity data were collected at 123 K on a Rigaku Single Crystal X-ray diffractometer equipped with FR-X generator, Varimax optics, and PILATUS 200K photon counting detector with MoK α radiation ($\lambda = 0.71075$ Å). A total of 31735 reflections were measured with the maximum 2θ angle of 55.0°, of which 5501 were independent reflections ($R_{int} = 0.0259$). The structure was solved by direct methods (SIR-2003) and refined by the full-matrix least-squares on F^2 (SHELXL-2013).¹ All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: $C_{31}H_{23}O_3P$; FW = 474.46, crystal size $0.10 \times 0.05 \times 0.03 \text{ mm}^3$, monoclinic, P_{21}/n , a =9.7350(7) Å, b = 15.9966(9) Å, c = 15.9748(15) Å, $\beta = 105.392(4)^{\circ}$, V = 2398.5(7) Å³, Z = 4, D_{c} =1.314 g cm⁻³, μ = 0.146 mm⁻¹, R_1 = 0.0348 ($I > 2\sigma(I)$), wR_2 = 0.0937 (all data), GOF = 1.063. CCDC 1553533 contains the supplementary crystallographic data for this compound. This data can be The Cambridge Crystallographic obtained free of charge from Data Centre at www.ccdc.cam.ac.uk/data_request/cif.

The Harmonic Oscillator Model of Aromaticity (HOMA) in SNAPF-Me₂. The harmonic oscillator model of aromaticity $(HOMA)^2$ were calculated for the X-ray crystal structure of SNAPF-Me₂ by using the following equation (eq.1):

$$HOMA = 1 - \frac{\alpha}{n} \sum (R_{opt} - R_i)^2 \qquad (eq. 1)$$

Where α is an empirical normalization constant ($\alpha = 257.7$ for C–C bonds)^{2a}, *n* is the number of C–C bonds taken into summation, R_{opt} is the optimal aromatic bond length ($R_{opt} = 1.388$ for C–C bonds)^{2a}, and R_i are the experimental bond lengths. The results were summarized in Fig. S3. HOMA of the ten-membered ring periphery of the naphthalene moiety (*i.e.*, the periphery of rings B and C) in

SNAPF provided values of 0.79, which is significantly larger than that of benzene moiety (ring A, - 0.02). These results revealed that rings B and C in a naphthalene moiety retain strong aromatic character, whereas the ring A is nonaromatic.

Fig. S3. Molecular structures and selected bond lengths (Å) of (a) POF-Me and (b) SNAPF-Me₂. Atomic displacement parameters set at 50% probability. Only selected atoms are labelled. Colour scheme: grey = carbon; white = hydrogen; red = oxygen; orange = phosphorus) and selected bond lengths (Å). The crystal structure of POF-Me has been reported in ref.3.

3. Computational Method and Results

Computational Method. All quantum chemical calculations were carried out using the GAUSSIAN 09 Revision E.01 suite of programs⁴ with default thresholds and algorithms. The employed atomic basis sets was the 6-31+G(d) set.⁵ Geometry optimizations of two tautomers **I** and **II** for charge-neutral SNAPF-Me, and the deprotonated forms of POF-Me, SNAPF-Me, and SNAF-Me in the ground state (S_0) were performed using density functional theory (DFT) with the B3LYP functional.⁶ Stationary points in S_0 were optimized without any symmetry assumptions and characterized by frequency analysis at the same level of theory (the number of imaginary frequencies, NIMAG, was 0). The geometry optimizations of the deprotonated forms of POF-Me and SNAPF-Me in the lowest excited singlet state (S_1) were conducted using time-dependent DFT (TD-DFT) with the B3LYP functional. The Cartesian coordinates for the optimized geometries of these compounds are given in Tables S2–8. Frontier molecular orbitals of POF-Me, SNAPF-Me, and SNAF-Me are shown in Fig. S4. The molecular structures, the selected bond lengths, and the values of HOMA for these compounds are shown in Fig. S5–8. The values of HOMA were calculated based on the same procedure described in the section 2 (see p. S12).

Table S2. Cartesian Coordinates (Å) of the Optimized Structures for Tautomer I of Charge-neutral SNAPF-Me in S_0 (charge = 0)

atom	X	У	Z
С	-5.51617846	-1.03790472	-0.5602824
H	-4.29905485	-2.65621558	-1.2470892
C	-4.30746926	-1.64852549	-0.8420434
C	-4.38221076	0.96128981	0.20969166
C	-3.09592295	-0.96279091	-0.6009595
C	-5.55371465	0.27802895	-0.0288378
С	-3.12135950	0.36613771	-0.0678196
С	-1.82417609	-1.54844935	-0.8582333
Н	-6.51364392	0.74374530	0.1874299
Н	-1.95757581	2.06529084	0.5365183
Н	-4.41463548	1.97023922	0.6135597
С	-0.65152304	-0.86925294	-0.6194501
Н	-1.78212608	-2.55936932	-1.2576067
С	-0.65998574	0.48449759	-0.1253912
С	-1.90407907	1.05200693	0.1523789
С	0.56345105	1.28653784	0.03140602
C	1.83066965	0.88676462	-0.3678912
P	0.89768623	-1.76993957	-0.9129992
C	2.12038096	-0.42038612	-0.9602567
C	3.33066243	-0.69800179	-1.5113539
Н	3.52820651	-1.66099992	-1.9758684
C	2,95486785	1.81215034	-0.2869668
c	4.17242907	1.53647153	-0.8137916
Н	2.79058263	2.76716738	0.2014296
Н	4.99131698	2.24803786	-0.7546394
C	4.44328238	0.26867855	-1.5004292
C	0.38767464	2.66209435	0.61545858
C	0.04907244	5.18647795	1.7944931
C			
C	0.17044271	3.78921466	-0.2082161
	0.42835263	2.81510997 4.06847424	2.00890440
C	0.26404679		
C	0.00351958	5.03911212	0.4063653
H	0.59535495	1.94003675	2.6327258
H	0.30401901	4.16696901	3.68371890
H	-0.16294374	5.91282226	-0.2200286
H	-0.08157423	6.16928146	2.2401219
С	0.13135345	3.67246793	-1.7155892
Н	1.11360238	3.40303922	-2.1237004
Н	-0.57275876	2.90042753	-2.0471637
Н	-0.16903737	4.62126092	-2.1711125
0	-6.66124389	-1.74091823	-0.8085714
Н	-7.43969845	-1.21218175	-0.5735637
0	5.53474184	0.01151705	-2.0204684
0	0.89470711	-2.68758147	-2.1042946
C	1.24664203	-2.69013376	0.6352628
C	1.82555580	-4.20947940	2.9164242
С	1.59731615	-4.04164722	0.5109224
C	1.18400524	-2.10390084	1.9085679
С	1.47317210	-2.86151101	3.0445314
C	1.88634834	-4.79760416	1.6507240
Н	1.63733948	-4.48750049	-0.4789184
Н	0.90896346	-1.05788847	2.0190065
Н	1.42309867	-2.40187704	4.0284279
Н	2.15862993	-5.84491247	1.5477230
Н	2.05124577	-4.79798245	3.8021531

Table S3. Cartesian Coordinates (Å) of the Optimized Structures for Tautomer II of Charge-neutral SNAPF-Me in S_0 (charge = 0)

atom	X	У	Z
С	-5.55904463	-1.32613792	-0.59903546
Н	-4.16311869	-2.81839642	-1.36452099
C	-4.21986509	-1.83290939	-0.90914699
C	-4.50354753	0.72126463	0.29327130
C	-3.08749627	-1.10998102	-0.63565976
C	-5.62361796	0.00722776	0.02702326
С	-3.18488597	0.21059403	-0.02399728
C	-1.75952040	-1.61098145	-0.90944537
H	-6.61494184	0.38502683	0.26083528
H	-2.14823383	1.92159589	0.66643485
Н	-4.56931304	1.70586114	0.75317109
C	-0.63531311	-0.88981654	-0.64185122
H	-1.66954222	-2.60648591	-1.33941934
C C		0.46730268	-0.10391846
C	-2.04740946 0.37955103	0.93624360 1.31138657	0.03674726
C	1.74369783	0.97376225	-0.38093554
P	0.96047989	-1.70825131	-0.9154241
C	2.11796278	-0.30370480	-0.88568551
C	3.40398266	-0.55021461	-1.35487403
Н	3.66487068	-1.52313438	-1.76169153
C	2.75789649	1.96049311	-0.34338408
C	4.04735850	1.71343251	-0.79809807
H	2.52748310	2.94736629	0.04165786
Н	4.79578913	2.50264762	-0.75506871
C	4.37659540	0.45594282	-1.31748058
C	0.16820787	2.68831810	0.60308994
С	-0.19065454	5.22701053	1.74690443
С	-0.17004257	3.78210976	-0.22539460
С	0.32347751	2.88331034	1.98341160
С	0.14427039	4.14275566	2.55954513
C	-0.34339628	5.03983572	0.37110684
H	0.58581630	2.03428911	2.61043245
H	0.26498970	4.27190456	3.63186674
H	-0.60541731	5.88707017	-0.25900670
H	-0.33322837	6.21420231	2.17892048
С	-0.35438805	3.61578011	-1.71727022
H	0.52927221	3.17015823	-2.18949940
H	-1.20190138	2.95863522	-1.9479713
H	-0.54068619	4.58206703	-2.19621279
0	-6.58217052	-1.98201038	-0.8446685
0	1.04662283 1.31541329	-2.58400541	-2.1355356
C C	1.87280906	-2.66220087 -4.22811176	0.61037800
C	1.63305386	-4.01947306	0.46369893
C	1.27785997	-2.09262488	1.89243806
C	1.55543236	-2.87351906	3.01518453
C	1.91121825	-4.79897739	1.59057840
Н	1.65731618	-4.45088009	-0.53308414
Н	1.03025038	-1.04143941	2.01953786
H	1.52271719	-2.42759266	4.00607150
Н	2.15653619	-5.85114592	1.47076757
Н	2.08807481	-4.83525894	3.74061297
0	5.61502592	0.14767280	-1.79280177
Н	6.20503844	0.91531822	-1.72499271

Table S4. Cartesian Coordinates (Å) of the Optimized Structures for the Deprotonated Form of POF-Me in S_0 (charge = -1)

atom	x	У	Z
С	0.64858160	1.26716941	-0.27245424
C	1.23337716	-0.00020050	-0.00033187
C	0.64824066	-1.26740499	-0.27249052
C	-0.67086982	-1.42669746	-0.84234478
C	-0.67048024	1.42684569	-0.84230869

(Table S4	continued)		
C	-1.15790215	2.65239981	-1.21681449
н	-2.14674084	2.74100586	-1.66057397
C	-1.15862428	-2.65210217	-1.21689899
C	-0.40051306	-3.89051076	-1.04342890
H	-2.14748192	-2.74042142	-1.66067279
C	-0.39943676	3.89058830	-1.04332886
P	-1.78693367	0.00023223	-1.00552629
C	1.38306138	-2.48691530	-0.06688564
C	0.90362778	-3.71870636	-0.42314122
н	2.37121935	-2.42418320	0.38029719
H	1.49450560	-4.61638120	-0.25570583
C	1.38374210	2.48646522	-0.06681494
c	0.90465030	3.71840128	-0.42303300
н	2.37188112	2.42344209	0.38037334
H	1.49577569	4.61590678	-0.25556319
0	-0.85091564	-5.00522269	-1.39331208
0	-0.84953633	5.00544086	-1.39315601
C	2.62388155	-0.00036965	0.58119032
C	5.18390635	-0.00061237	1.74492423
C C	2.78284039	-0.00063419	1.97352658
С	3.76774418	-0.00020155	-0.24831645
C C	5.03353980	-0.00033099	0.35565040
С	4.05091413	-0.00076489	2.56010544
Н	1.89505262	-0.00075518	2.60144180
Н	5.91764878	-0.00020721	-0.27949427
Н	4.14903239	-0.00098227	3.64322024
Н	6.17909986	-0.00070626	2.18409637
C	3.64066955	0.00018149	-1.75439581
Н	4.62772608	-0.00013218	-2.22970455
H	3.09097566	0.88055438	-2.10793549
Н	3.09021273	-0.87954401	-2.10833867
0	-2.69983256	0.00033053	-2.20592016
С	-2.78227937	0.00034351	0.54769971
C	-4.40396804	0.00037101	2.83711773
С	-4.17769801	-0.00008292	0.42503147
С	-2.20337236	0.00079743	1.82522686
C	-3.01050197	0.00081144	2.96442118
С	-4.98550911	-0.00007383	1.56656982
H	-4.61381884	-0.00038399	-0.57017064
H	-1.12160482	0.00115336	1.93130933
H	-2.55275274	0.00117776	3.95121833
H	-6.06833037	-0.00040065	1.46177228
H	-5.03184949	0.00038454	3.72557876

Table S5. Cartesian Coordinates (Å) of the Optimized Structures for the Deprotonated Form of SNAPF-Me in S_0 (charge = -1)

atom	x	У	Z
Н	-2.66923963	2.85686838	0.14652154
С	-2.87137896	1.88517266	-0.29470361
С	-3.38665643	-0.62062340	-1.42729551
С	-1.79115329	0.93273580	-0.37038617
С	-4.12752227	1.62825201	-0.76711686
С	-4.47413816	0.35761343	-1.38842876
С	-2.13569312	-0.35571960	-0.93693031
Н	-4.91423378	2.37590516	-0.69866314
Н	-3.61495556	-1.58934421	-1.86541791
С	0.68620936	0.46997379	-0.12598355
С	3.10140285	-1.05550262	-0.63033413
С	1.97692950	0.97466595	0.18551314
С	0.64418140	-0.87762006	-0.66257730
С	1.79273952	-1.58324632	-0.91090007
С	3.15163696	0.26969080	-0.04337113
Н	2.06106737	1.97090849	0.61056103
Р	-0.93357116	-1.72109282	-0.94555801
0	-0.99069976	-2.64967144	-2.13253026
0	-5.61185651	0.10959281	-1.84302617
С	-1.27385676	-2.65931340	0.60515935
С	-1.82240005	-4.19097164	2.89089334
С	-1.62019551	-4.01141129	0.48353929
С	-1.20153890	-2.07920219	1.88031176

(Table S5	continued)		
C	-1.47490096	-2.84149914	3.01759773
С	-1.89394445	-4.77407096	1.62315506
Н	-1.66864466	-4.45064623	-0.50911337
Н	-0.92857143	-1.03246265	1.98753764
Н	-1.41472020	-2.38372117	4.00243250
Н	-2.16225313	-5.82308343	1.51907585
Н	-2.03459779	-4.78393656	3.77783950
С	-0.47811919	1.28894182	0.02065362
С	-0.27403970	2.66881841	0.58956553
C C C	0.09719435	5.20983830	1.73541503
С	-0.37094075	2.85631929	1.97534647
С	0.01486396	3.77407297	-0.24213074
С	0.19533242	5.03112926	0.35312469
С	-0.18827388	4.11517170	2.55287586
Н	-0.59402603	1.99853810	2.60543702
Н	0.41812484	5.88541189	-0.28354961
Н	-0.26778710	4.23563170	3.63068844
Н	0.24302468	6.19724535	2.16760468
Н	1.72196578	-2.58367402	-1.33347109
С	4.44574468	0.81247986	0.27011409
Н	4.49064931	1.80843350	0.71119276
С	5.58995191	0.11381108	0.02522567
Н	6.56714258	0.52816020	0.26324081
C	5.57911267	-1.22930856	-0.57179282
С	4.26873144	-1.76084755	-0.88010669
Н	4.22721269	-2.75528136	-1.31936231
0	6.64507658	-1.85563675	-0.78871556
С	0.12883403	3.61822057	-1.74157045
Н	0.92094834	2.90956345	-2.01122132
Н	0.35512638	4.57871430	-2.21695195
H	-0.80150379	3.23345853	-2.17601035

Table S6. Cartesian Coordinates (Å) of the Optimized Structures for the Deprotonated Form of SNAF-Me in S_0 (charge = -1)

atom	x	У	Z
С	-1.66990580	-2.06723022	-0.06755268
С	-4.37092574	-1.33110993	-0.12999365
С	-2.01057200	-0.66714998	-0.12482618
C C	-2.61270688	-3.06024106	-0.04180622
С	-4.03185919	-2.75737567	-0.06918239
С	-3.41441804	-0.35919822	-0.15754314
Н	-2.30724590	-4.10114864	0.00093094
Н	-3.70462245	0.68750336	-0.20847674
Н	-5.42883448	-1.08182278	-0.15571469
С	-0.98883264	0.29158695	-0.14061708
С	0.36696426	-0.11932636	-0.10522046
Н	1.28464759	1.83430172	-0.15296543
С	1.47440983	0.76432513	-0.11124282
С	1.95001818	-2.00174434	-0.00988263
С	2.78732773	0.31900594	-0.06837785
С	0.66823333	-1.52613038	-0.05065559
С	3.07468711	-1.10948980	-0.01688330
С	3.90313300	1.22984478	-0.07424433
Н	4.61008936	-2.61620780	0.06211127
Н	2.11451546	-3.07518847	0.02934083
С	5.18733697	0.78215879	-0.03366744
Н	3.68932738	2.29837725	-0.11314420
Н	6.02861588	1.47202575	-0.03828115
С	5.51897215	-0.65232957	0.01873852
С	4.39258831	-1.55068112	0.02387523
0	-0.35252913	-2.44973655	-0.03656126
0	6.71711432	-1.03370982	0.05570219
0	-4.91695489	-3.64363574	-0.04410805
С	-1.32113322	1.75146791	-0.20210624
С	-1.93019542	4.48651291	-0.40140799
С	-1.38018935	2.38581700	-1.45111423
С	-1.56857937	2.49706604	0.97180068
C C	-1.87044315	3.86099527	0.84645141
С	-1.68333916	3.74516118	-1.55812492
H	-1.18453001	1.79929540	-2.34546867

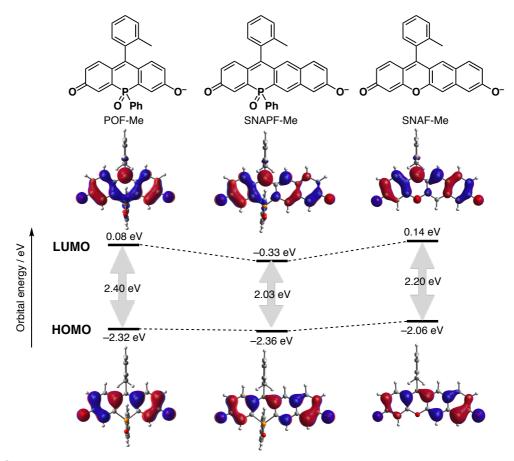

(Table S6	continued)		
н	-2.06055208	4.44156304	1.74734974
Н	-1.72394449	4.21764722	-2.53665747
Н	-2.16647285	5.54625552	-0.46685895
С	-1.51129736	1.84915322	2.33669438
Н	-2.27381034	1.06766936	2.44069158
Н	-1.67316938	2.58995614	3.12724579
Н	-0.54069740	1.36989896	2.51096762

Table S7. Cartesian Coordinates (Å) of the Optimized Structures for the Deprotonated Form of POF-Me in S_1 (charge = -1)

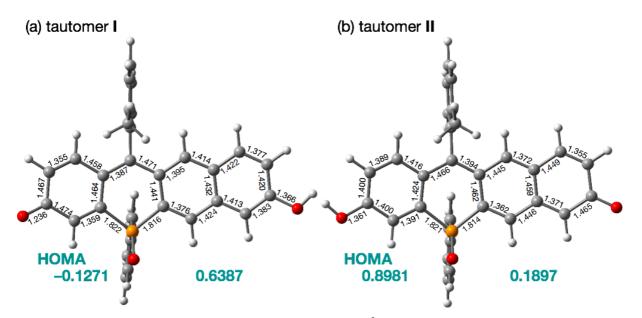
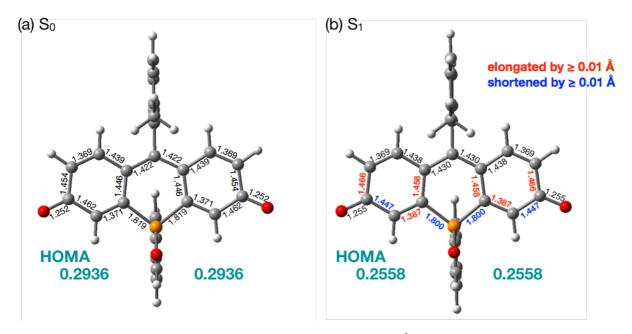
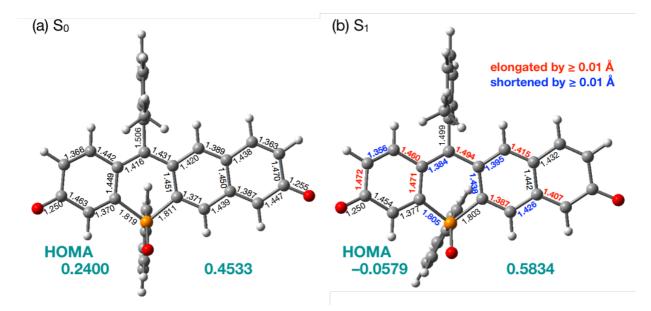

atom	x	У	Z
С	0.72896914	1.25861941	-0.22625711
C	1.36185546	-0.00006835	0.01750480
C	0.72866152	-1.25857915	-0.22592749
С	-0.63249112	-1.40790765	-0.72706949
C	-0.63222551	1.40818962	-0.72710602
С Н	-1.16020116 -2.16801915	2.66136194 2.75336821	-1.00192954
н С	-1.16065339	-2.66100457	-1.0018549
c	-0.42479732	-3.88937454	-0.7910524
Н	-2.16840246	-2.75285412	-1.3992463
C	-0.42400148	3.88959582	-0.79152084
P	-1.71858513	0.00023738	-1.00327976
С	1.45660228	-2.47762343	0.00031043
С	0.92973354	-3.71370341	-0.25927863
Н	2.46954408	-2.40897393	0.38601973
Н	1.50889062	-4.61750794	-0.0837069
C	1.45731860	2.47748763	-0.00058611
C	0.93067225	3.71367164	-0.26024432
Н	2.47039609	2.40867148	0.38473327
Н	1.51016045	4.61734964	-0.08511482
0	-0.88627896	-5.03146865	-1.0307526
0	-0.88531668	5.03176814	-1.0312068
C C	2.77093174 5.38834406	-0.00014574 -0.00020814	0.53638298
C	3.00070015	0.00060576	1.92071550
C	3.87762715	-0.00090012	-0.3445560
C	5.17146598	-0.00092686	0.19694563
C	4.29550855	0.00057262	2.44598021
H	2.14397883	0.00121759	2.59060343
Н	6.02429239	-0.00150612	-0.47987128
Н	4.44578732	0.00114752	3.52323861
Н	6.40348562	-0.00024637	1.96841264
С	3.67804805	-0.00163977	-1.84294992
Н	4.64105109	-0.00183343	-2.3655079
H	3.11119625	0.87764673	-2.17186933
Н	3.11130642	-0.88130776	-2.1710446
0	-2.50755536	0.00021552	-2.2949339
C C	-2.94039839 -4.85467336	0.00038382 0.00005931	0.39366772
C	-4.30836592	-0.00077099	0.0901451
c	-2.54053662	0.00138146	1.73781674
C	-3.49015035	0.00122757	2.7617722
c	-5.26144648	-0.00094199	1.1139355
H	-4.60589226	-0.00145484	-0.9548284
Н	-1.48117550	0.00229312	1.98595076
Н	-3.16718137	0.00203700	3.80083804
H	-6.32122063	-0.00183355	0.8666401
Н	-5.59519680	-0.00006558	3.2482898

Table S8. Cartesian Coordinates (Å) of the Optimized Structures for the Deprotonated Form of SNAPF-Me in S_1 (charge = -1)


	X	У	Z
Н	-2.62176588	2.85492654	0.15542615
С	-2.80485982	1.91984694	-0.36641453
C	-3.26886297	-0.54554331	-1.65490400
C C	-1.71345591	0.95303911 1.70298654	-0.43718129 -0.94725602
c	-4.01108184 -4.31687585	0.46249468	-1.67751573
c	-2.04891288	-0.34133784	-1.05073081
H	-4.80304767	2.44685960	-0.89789144
Н	-3.48964269	-1.49744974	-2.13152803
С	0.74429724	0.39986205	-0.16938751
С	3.10611642	-1.20138383	-0.63443998
С	2.02393085	0.91055801	0.05224972
C	0.65390589	-0.96504130	-0.61198511
C	1.79395882	-1.72165999	-0.83747497
C	3.20244880	0.15792527	-0.16322766
H P	2.13966691 -0.94202208	1.93529962 -1.75765169	0.39346644 -0.88803449
0	-1.02146719	-2.76643617	-2.00864871
0	-5.41685629	0.29560650	-2.24653296
c	-1.39412820	-2.56439576	0.70707043
C	-2.23966975	-3.80896828	3.08432580
С	-2.29122569	-3.64564996	0.66650351
С	-0.92193505	-2.11919645	1.95217549
C	-1.33844787	-2.73973963	3.13232585
C	-2.71371318	-4.25961099	1.84724364
H	-2.63512913	-4.00923563	-0.29791423
H	-0.21443102	-1.29511387 -2.39246823	1.99933226
H H	-0.95430329 -3.40614513	-2.39246823	4.08915744 1.80139415
H	-2.56497684	-4.29097438	4.00363764
C	-0.44525383	1.28689455	0.00650575
C	-0.20123981	2.62270987	0.64223206
С	0.26845701	5.08819840	1.91985454
C	-0.15191924	2.71616795	2.04235885
C	0.00394518	3.78787633	-0.13363069
С	0.23295406	5.00473918	0.52595733
C	0.07595233	3.93535012	2.68406768
H	-0.30307089	1.81441955	2.63106125
H H	0.39023546 0.10192906	5.90262788 3.98160161	-0.06913668 3.77032438
H	0.44874351	6.04589637	2.40300841
Н	1.68640175	-2.74374432	-1.19355518
C	4.50192215	0.71235129	0.06792758
H	4.56923816	1.74062605	0.42269967
С	5.63388167	-0.02302678	-0.15025293
Н	6.62249399	0.39585033	0.02355600
С	5.58825214	-1.40941977	-0.62970259
С	4.27688659	-1.94850336	-0.85776776
Н	4.20889347	-2.97264278	-1.21753605
0	6.65516788	-2.05974078	-0.82309322
C H	-0.02461953 0.62096234	3.73698451 2.94040557	-1.64448667 -2.03152057
H H	0.31060060	4.68811494	-2.03152057 -2.07255514
		マ・ロロロエエキンサ	


Fig. S4. Energy diagrams and pictorial representation of Kohn-Sham HOMOs and LUMOs for the deprotonated forms of POF-Me, SNAPF-Me, and SNAF-Me calculated at the B3LYP/6-31+G(d) level of theory (isovalue = 0.03).

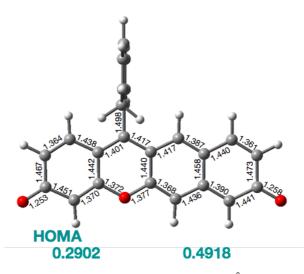
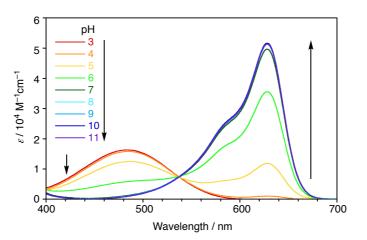
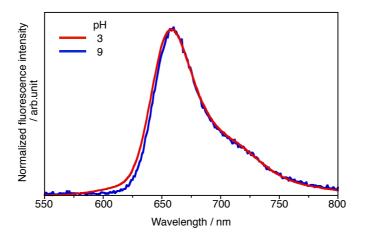
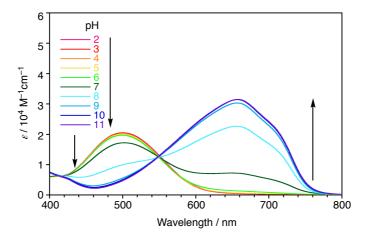

Fig. S5. Optimized geometries, the selected bond lengths (Å), and the HOMA values of the tautomers (a) I (b) and II of SNAPF-Me in S_0 .

Fig. S6. Optimized geometries, the selected bond lengths (Å), and the HOMA values of the deprotonated form of POF-Me in (a) S_0 and (b) S_1 .


Fig. S7. Optimized geometries, the selected bond lengths (Å), and the HOMA values of the deprotonated form of SNAPF-Me in (a) S_0 and (b) S_1 .


Fig. S8. Optimized geometry, the selected bond lengths (Å), and the HOMA values of the deprotonated form of SNAF-Me in S_0 .

4. Photophysical Properties


Photophysical measurements. UV-vis-NIR absorption spectra of POF-Me₂ and SNAPF-Me₂ were measured with a Shimadzu UV-3600 Plus spectrometer with a resolution of 0.2 nm using 10^{-5} M sample solutions in aqueous buffer solutions (pH = 2: 10 mM KCl/HCl aqueous solution, pH = 3–7: citric acid/Na₂HPO₄ aqueous solutions, pH = 8: 10 mM tris(hydroxymethyl)aminomethane/HCl, pH = 9–11: Na₂CO₃/NaHCO₃ aqueous solutions) containing 1% DMSO in a 1 cm square quartz cuvette. Emission spectra were measured with a Horiba SPEX Fluorolog 3 spectrofluorometer equipped with a Hamamatsu PMA R5509-73 and a cooling system C9940-01 with a resolution of 1.0 nm using 10^{-6} M sample solutions. Absolute fluorescence quantum yields were determined with a Hamamatsu photonics PMA-11 calibrated integrating sphere system.

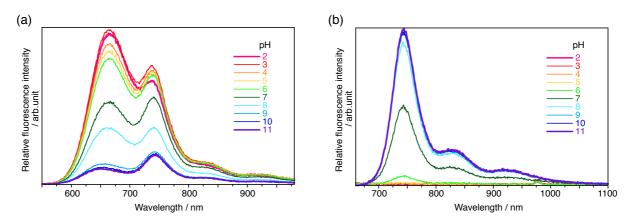

Fig. **S9.** Absorption spectra of POF-Me₂ in aqueous buffer solutions with various pH values containing 1% DMSO.

Fig. S10. Fluorescence spectra of POF-Me₂ excited at 500 nm in pH-buffer solutions (pH = 3: 50 mM citric acid/sodium citrate, pH = 9: 100 mM Na₂CO₂/NaHCO₃) containing 1% DMSO.

Fig. **S11**. Absorption spectra of SNAPF-Me₂ in aqueous buffer solutions with various pH values containing 1% DMSO.

Fig. **S12**. Fluorescence spectra of SNAPF-Me₂ excited at (a) 500 nm and (b) 650 nm in aqueous buffer solutions with various pH values containing 1% DMSO.

Dual Emission of SNAPF under the Acidic Conditions. Upon excitation at 500 nm, SNAPF-Me₂ showed another shorter-wavelength emission band at $\lambda_{em} = 655$ nm (Fig. S12a). The ratio of fluorescence intensities of the two emission bands (I_{655}/I_{744}) changes from 1.41/1 (pH = 2) to 0.64/1 (pH = 11) upon increasing pH values. Considering this pH dependence, the emission bands at $\lambda_{em} = 655$ nm and $\lambda_{em} = 744$ nm are assigned to the emission from the charge-neutral and deprotonated SNAPF-Me₂, respectively. Whereas similar dual-fluorescence behavior has already been observed in POFs under the acidic conditions, the ratio of fluorescence intensities of the two emission bands (I_{655}/I_{744}) in SNAPF-Me₂ of 1.27/1 at pH = 3 is much larger than those (I_{600}/I_{656}) in POF-Me (1/15) and POF-Me₂ (1/60). The high ratio values for POF-Me and POF-Me₂ even under the acidic conditions can be explained by the higher p K_a values in the excited state, which result in the deprotonation in the excited state. In contrast, the low I_{655}/I_{744} ratio values of SNAPF under the acidic conditions suggest that the p K_a value of this compound retains higher in the excited state compared to those of POFs, and the excited-state proton transfer process is suppressed, although other possibility, such as lower Φ_{FL} of the longer-wavelength emission bands, cannot be excluded.

Determination of p K_a **Values.** Relative absorbances of POF-Me₂ and SNAPF-Me₂ at the maximum wavelengths of the longest absorption bands A_x (where x = 628 nm and 654 nm for POF-Me₂ and SNAPF-Me₂, respectively) at various pH values were plotted against the pH values (Fig. S13), and were analyzed by non-linear least square curve fitting using the following equation (eq. 2):

$$A_x = \frac{10^{-pH}A_0 + 10^{-pK}aA_\infty}{10^{-pH} + 10^{-pK}a}$$
(eq. 2)

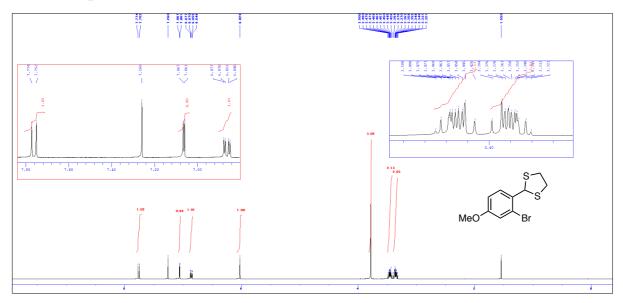
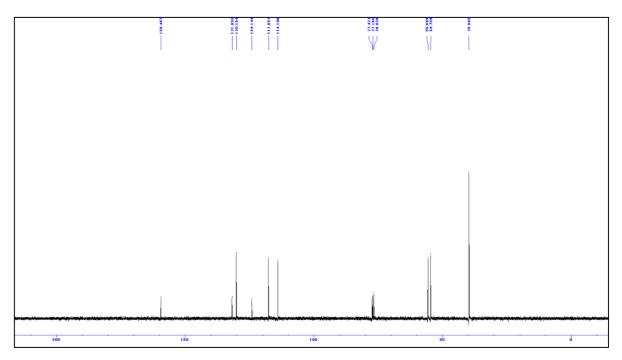
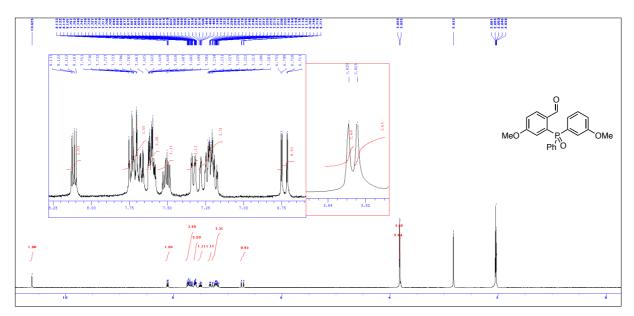
where A_0 and A_{∞} represent the initial and final absorbance values, respectively.

Fig. S13. Plots of relative absorbance of (a) POF-Me₂ at 628 nm (A_{627}) and (b) SNAPF-Me₂ at 654 nm (A_{654}) as a function of the pH value and their fitting curves ($R^2 = 0.99971$ and 0.99695 for POF-Me₂ and SNAPF-Me₂, respectively).

5. References

- 1 G. M. Sheldrick, *SHELX-2013, Program for the Refinement of Crystal Structures*; University of Gottingen: Gottingen, Germany, 2013.
- 2 (a) J. Kruszewski and T. M. Krygowski, *Tetrahedron Lett.*, 1972, 13, 3839. (b) T. M. Krygowski, *J. Chem. Inf. Model.*, 1993, 33, 70. (c) T. M. Krygowski and M. K. Cyra'nski, *Chem. Rev.*, 2001, 101, 1385.
- 3 A. Fukazawa, S. Suda, M. Taki, E. Yamaguchi, M. Grzybowski, Y. Sato, T. Higashiyama and S. Yamaguchi, *Chem. Commun.*, 2016, **52**, 1120.
- 4 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, P–Comelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- 5 (a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724–728. (b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261. (c) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213–222. (d) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys., 1982, 77, 3654–3665.
- 6 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100. (b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789. (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648–5652.

6. NMR Spectra

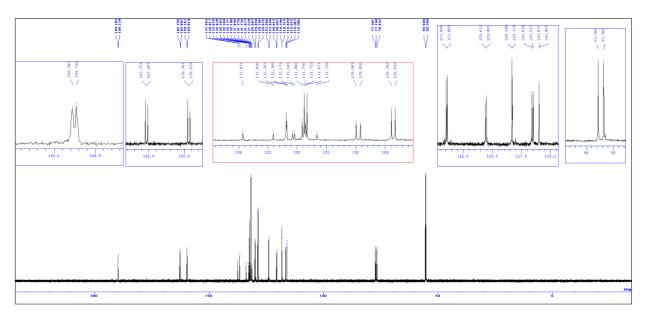

Fig. S14. ¹H NMR spectrum of 8 (400 MHz, $CDCl_3$).

Fig. **S15**. ¹³C{¹H} NMR spectrum of **8** (100 MHz, CDCl₃).

Fig. S16. ¹H NMR spectrum of **2a** (400 MHz, acetone- d_6).

Fig. **S17.** ${}^{13}C{}^{1}H$ NMR spectrum of **2a** (100 MHz, CDCl₃).

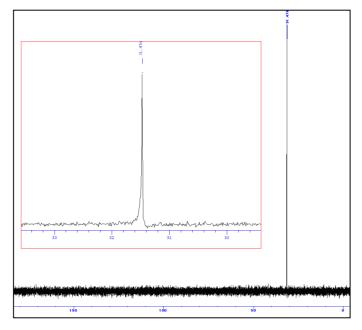
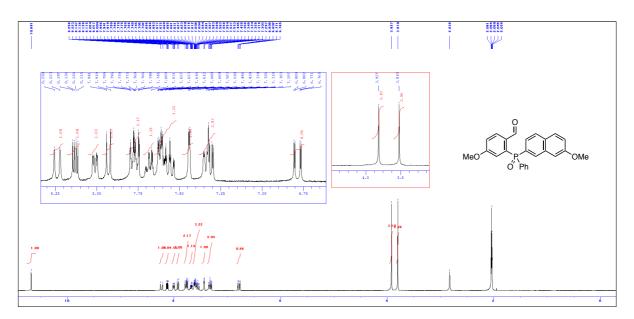



Fig. S18. ${}^{31}P{}^{1}H$ NMR spectrum of 2a (162 MHz, CDCl₃).

Fig. S19. ¹H NMR spectrum of **2b** (400 MHz, acetone- d_6).

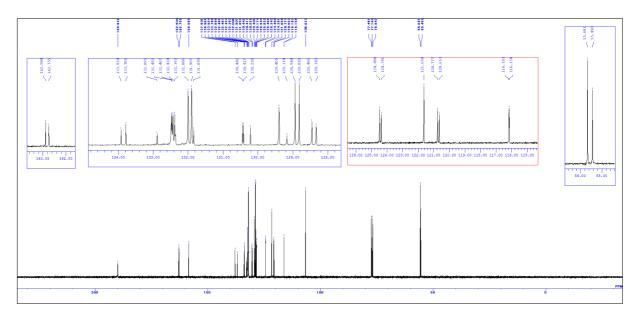
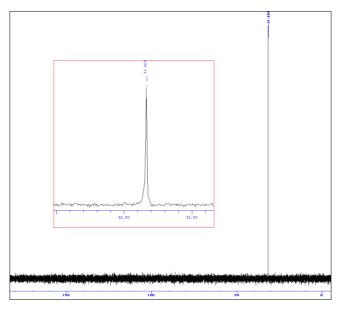



Fig. S20. ${}^{13}C{}^{1}H$ NMR spectrum of 2b (100 MHz, CDCl₃).

Fig. **S21.** ${}^{31}P{}^{1}H$ NMR spectrum of **2b** (162 MHz, CDCl₃).

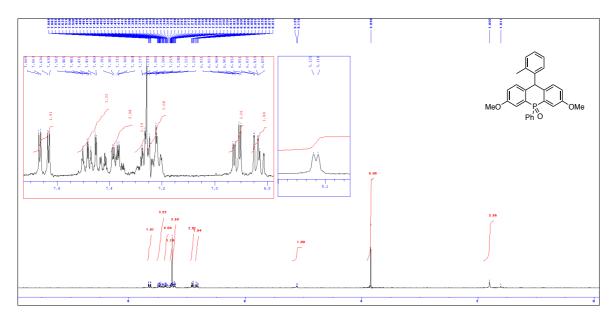
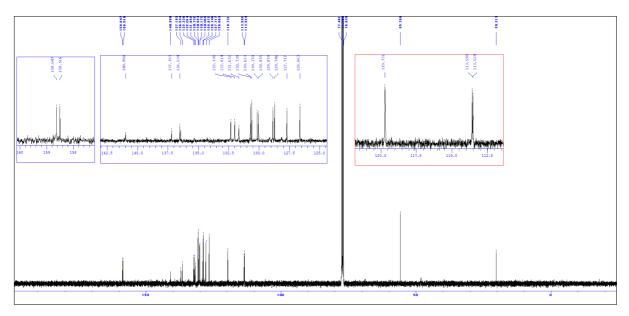
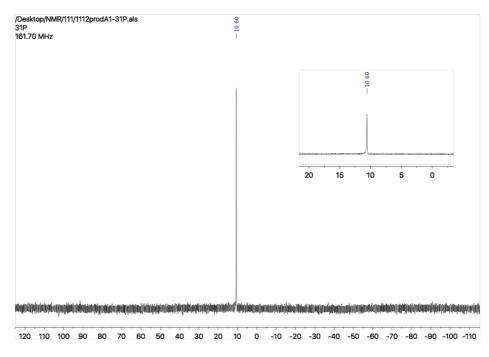
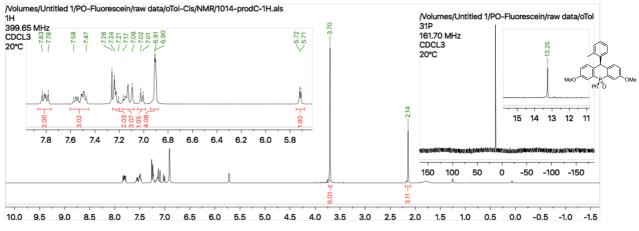
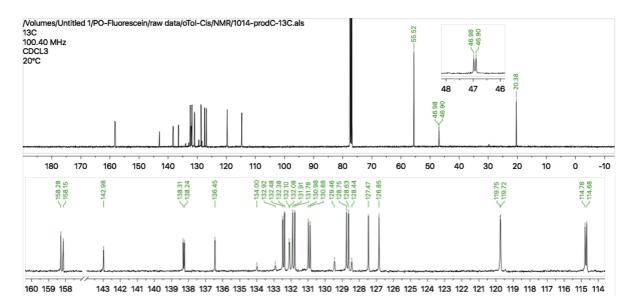
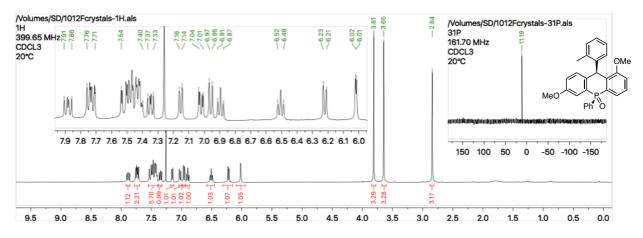
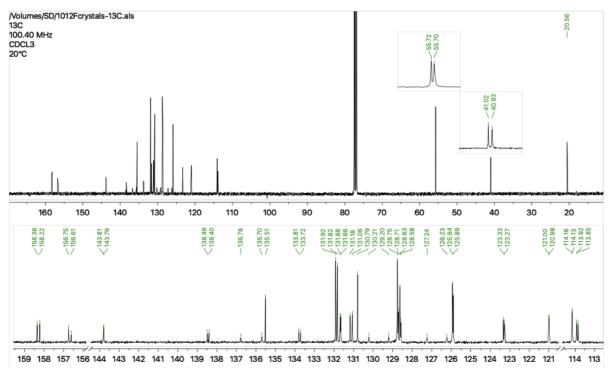




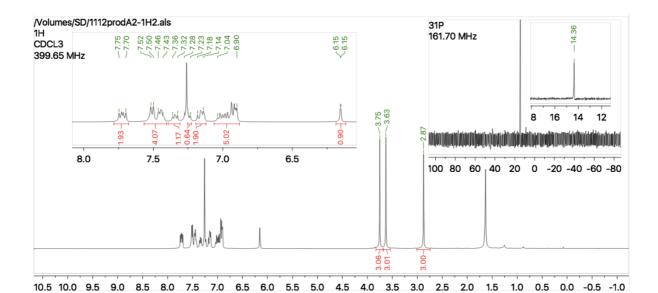
Fig. S22. ¹H NMR spectrum of *trans*-6aa-Me (400 MHz, CDCl₃).

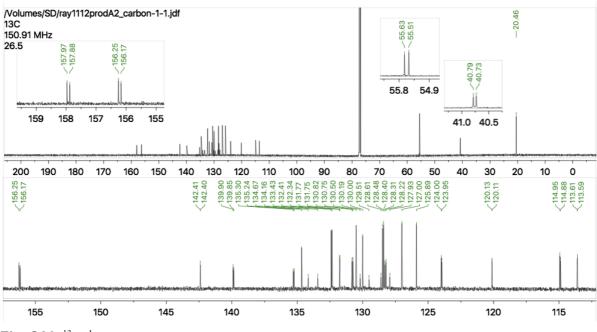
Fig. **S23.** ${}^{13}C{}^{1}H$ NMR spectrum of *trans*-**6aa-Me** (100 MHz, CDCl₃).

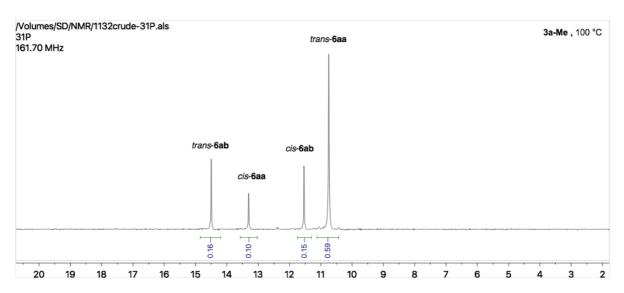
Fig. S24. ${}^{31}P{}^{1}H$ NMR spectrum of *trans*-6aa-Me (162 MHz, CDCl₃).


Fig. S25. ¹H NMR (400 MHz, CDCl₃) and ³¹P{¹H} NMR (inset: 162 MHz, CDCl₃) spectra of cis-6aa-Me.


Fig. **S26.** ${}^{13}C{}^{1}H$ NMR spectra of *cis*-**6aa-Me** (100 MHz, CDCl₃).


Fig. **S27.** ¹H NMR (400 MHz, CDCl₃) and ³¹P{¹H} NMR (inset: 162 MHz, CDCl₃) spectra of *cis*-6ab-Me.


Fig. **S28.** ${}^{13}C{}^{1}H$ NMR spectra of *cis*-**6ab-Me** (100 MHz, CDCl₃).

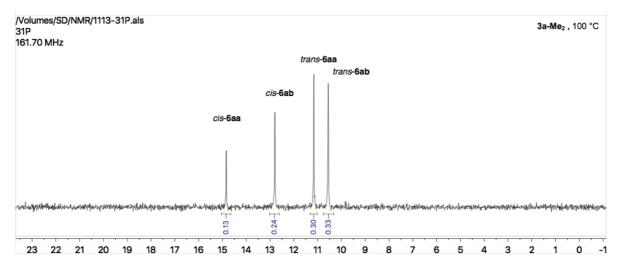

Fig. **S29.** ¹H NMR (400 MHz, CDCl₃) and ³¹P{¹H} NMR (inset: 162 MHz, CDCl₃) spectra of *trans*-6ab-Me.

Fig. **S30.** ${}^{13}C{}^{1}H$ NMR spectra of *trans*-**6ab-Me** (100 MHz, CDCl₃).

Fig. **S31.** ³¹P{¹H} NMR spectrum of the crude reaction mixture after the cyclization of *in-situ*-generated **3a-Me** at 100 °C (162 MHz, CDCl₃). The assignment of signals are based on the ³¹P{¹H} NMR spectra of each isolated product.

Fig. S32. ³¹P{¹H} NMR spectrum of the crude reaction mixture after the cyclization of *in-situ*-generated **3a-Me₂** at 100 °C (162 MHz, CDCl₃).

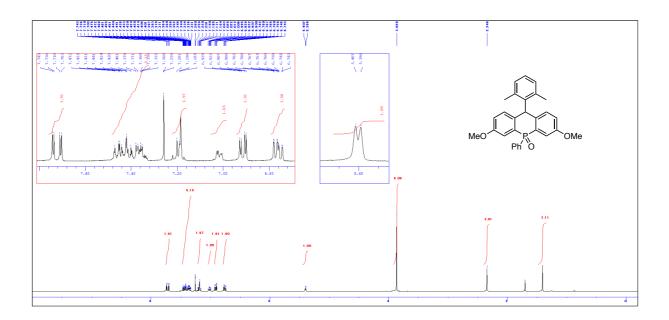


Fig. S33. ¹H NMR spectrum of *trans*-6aa-Me₂ (400 MHz, CDCl₃).

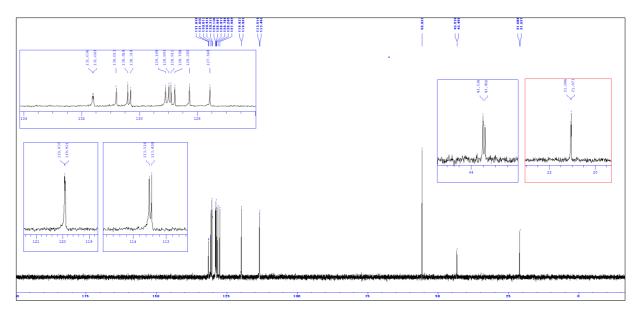
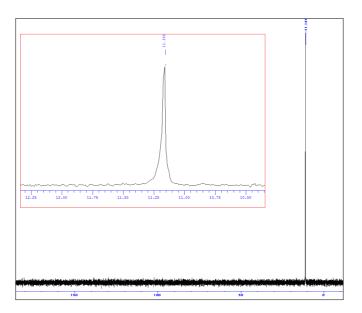
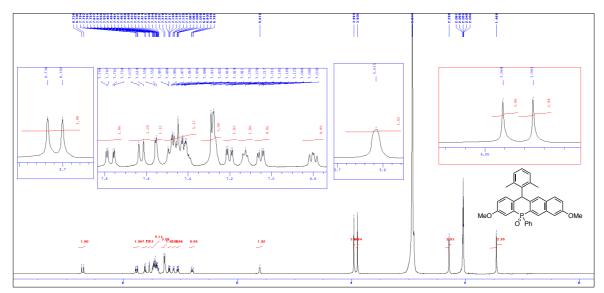




Fig. S34. ${}^{13}C{}^{1}H$ NMR spectrum of *trans*-6aa-Me₂ (100 MHz, CDCl₃).

Fig. **S35.** ${}^{31}P{}^{1}H$ NMR spectrum of *trans*-**6aa-Me**₂ (162 MHz, CDCl₃).

Fig. S36. ¹H NMR spectrum of *trans*-**6ba-Me**₂ (400 MHz, acetone- d_6).

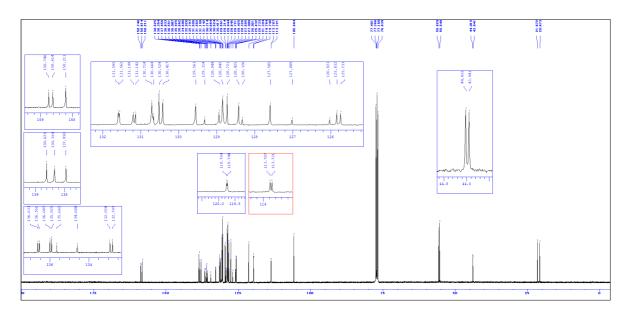
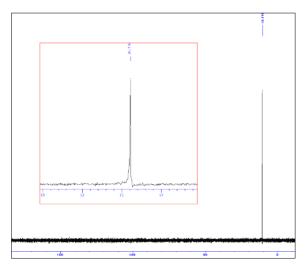
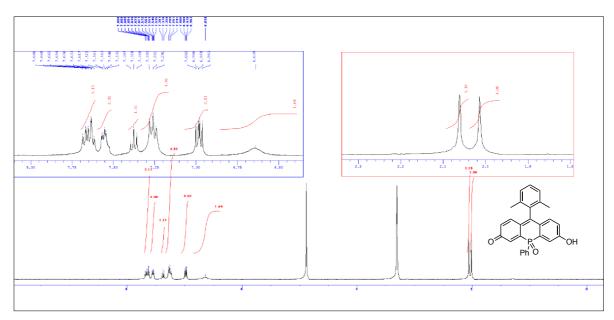
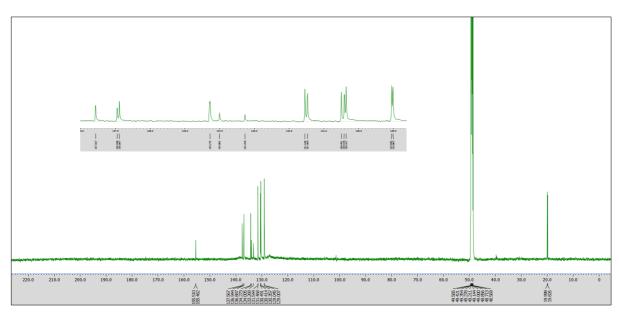
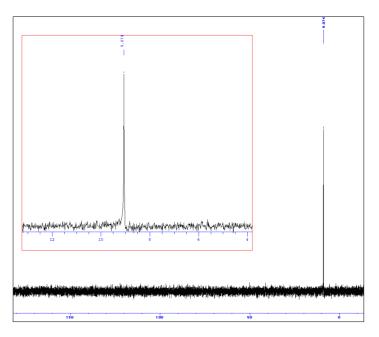
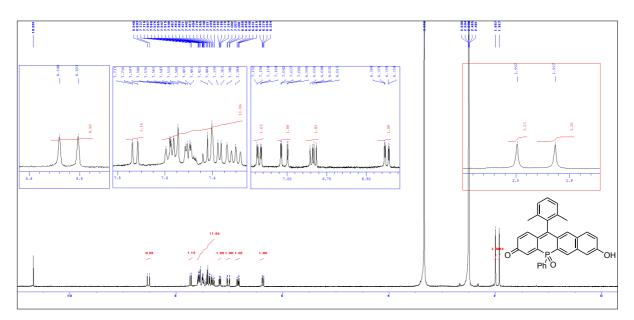
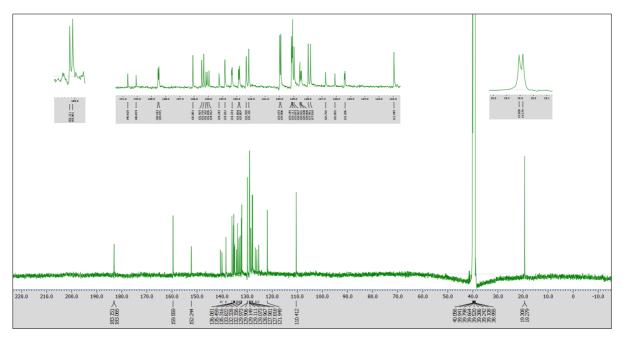


Fig. S37. ¹³C{¹H} NMR spectrum of *trans*-6ba-Me₂ (100 MHz, CDCl₃).


Fig. S38. ${}^{31}P{}^{1}H$ NMR spectrum of *trans*-6ba-Me₂ (162 MHz, CDCl₃).


Fig. S39. ¹H NMR spectrum of POF-Me₂ (400 MHz, methanol- d_4).


Fig. **S40.** ¹³C{¹H} NMR spectrum of POF-Me₂ (150 MHz, methanol- d_4).

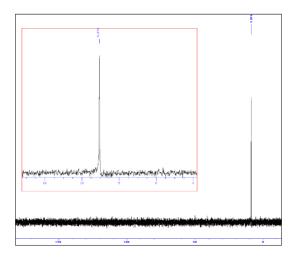

Fig. S41. ³¹P{¹H} NMR spectrum of POF-Me₂ (162 MHz, methanol- d_4).

Fig. **S42.** ¹H NMR spectrum of SNAPF-Me₂ (400 MHz, DMSO- d_6).

Fig. **S43**. ${}^{13}C{}^{1}H$ NMR spectrum of SNAPF-Me₂ (150 MHz, DMSO- d_6).

Fig. S44. ${}^{31}P{}^{1}H$ NMR spectrum of SNAPF-Me₂ (162 MHz, DMSO- d_6).

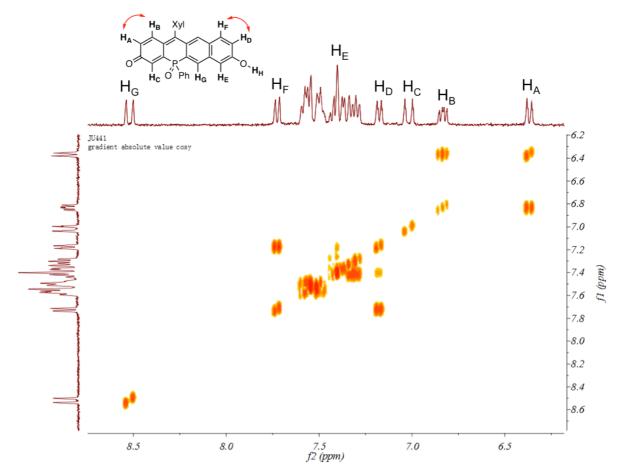


Fig. S45. H–H COSY 2D NMR spectrum of SNAPF-Me₂ (400 MHz, DMSO-*d*₆).

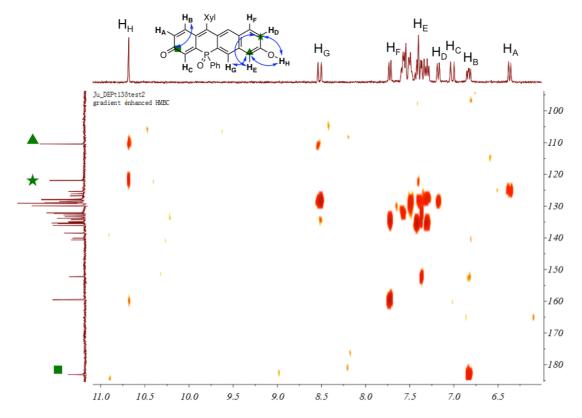
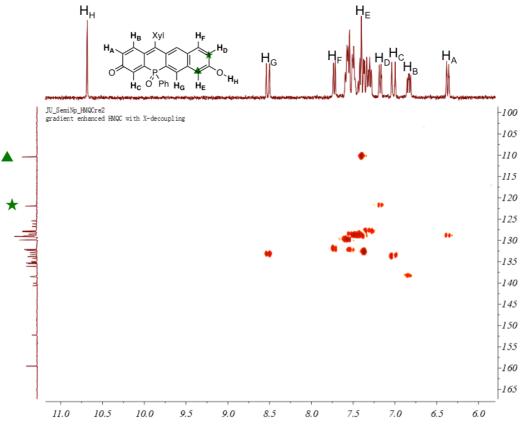




Fig. S46. HMBC 2D-NMR spectrum of SNAPF-Me₂ (400 MHz, DMSO-d₆).

Fig. **S47.** HMQC 2D-NMR spectrum of SNAPF-Me₂ (400 MHz, DMSO-*d*₆).

Fig. **S48.** Comparison of ¹H NMR spectra of POF-Me₂ (top) and SNAPF-Me₂ (bottom) (400 MHz, DMSO-*d*₆).