Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

"A NHC-phosphinidenyl as synthon for new group 13/15 compounds"

Otfried Lemp, Markus Balmer, Kevin Reiter¹, Florian Weigend^{1,2} and Carsten von Hänisch*

Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany, Fax: +49-6421-2825653. E-Mail: haenisch@chemie.uni-marburg.de

¹ Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

² Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany

Content

Experimental Section	S2
Crystal Structure Data	S6
¹ H NMR spectra of compound 1	.S7
¹ H NMR spectra of compound IMesPH	.S8
Density functional treatments of chemical shieldings in detail	.S9
Cartesian coordinates of the optimized structures	.S11
References	.S25

Experimental Section

General: All working procedures were conducted under rigorous exclusion of oxygen and moisture using a Schlenk line and nitrogen atmosphere. Solvents were dried and freshly distilled before use. NMR spectra were recorded with BRUKERACANCEHD 300, BRUKERDRX400 or with BRUKERAVANCE 500 and were visualized with MestReNova.^[1] IR vibrational spectra were gathered with the BRUKER ALPHA ATR-FT-IR. The elemental analysis was performed on a Vario MicroCube. MS spectra were measured with the AccuTOF-GC.

Synthesis of SIMesPH (1)

4.3 g of SIMes·HCl^[2] (12.6 mmol) and 3.4 g of [Na(1,4-dioxane)_{2.5}PCO]^[3] (13.36 mmol) were suspended in 600 mL of tetrahydrofuran. The reaction mixture was stirred at 60 °C for 12 h. The solvent was removed in vacuo and, approximately 1 g of active coal and 50 mL of toluene were added to the reddish residue. The suspension was stirred for 30 min and was filtered. The remaining solid was extracted two times with 20 mL of toluene. The solvent of the filtrate was removed in vacuo and the remaining yellow residue was washed three times with 20 mL of *n*-pentane until 1.4 g of a white powder of **1** (4.14 mmol, 34.5 %) was obtained. Elemental analysis for $C_{21}H_{27}N_2P$ [%] calc: C 74.53 %, H 8.04 %, N 8.28 %; found: C 73.95 %, H 7.95 %, N 8.34 %.

¹**H NMR** (C₆D₆): δ/ppm = 2.02 (d, ¹*J*_{HP} = 163 Hz, PH, 1H), 2.10 (s, *p*-CH₃, 3H), 2.11 (s, *p*-CH₃, 3H), 2.30 (s, *o*-CH₃, 6H), 2.36 (s, *o*-CH₃, 6H), 3.26 (s, CH₂, 4H), 6.79 (s, *m*-CH, 4H).

¹³C{¹H} NMR (THF-D8): δ /ppm = 18.17 (s, *o*-CH₃), 21.30 (s, *p*-CH₃), 49.09 (s, (NCH₂), 117.5 (s, *m*-C) 129.2 (s, *p*-C), 138.3 (s, *o*-C), 191,0 (¹J_{PC} = 73.3 Hz, NCN), *i*-C: not observed.

³¹**P NMR** (101 MHz, C_6D_6) δ /ppm = -127.2 (d, ¹ J_{PH} = 163 Hz).

MS (LIFDI+) m/z: 338.1912 [M⁺] (calc: 338.1912)

IR (ATR-FT) [cm⁻¹]: 2948 (w), 2913 (w), 2873 (w), 2273 (s, PH), 1608 (w), 1479 (m), 1415 (m), 1389 (m), 1341 (m), 1328 (w), 1299 (m), 1268 (s), 1180 (s), 1098 (s), 1029 (m), 935 (w), 886 (s), 853 (m), 801 (w), 762 (w), 737 (vw), 614 (m), 597 (s), 577 (w), 497 (m), 435 (w).

Figure S1. Molecular structure of 1 with thermal displacement parameters drawn at the 70% probability level. Selected bond lengths [pm] and angles [°]: P-C1 174.64(16), C1-N 136.24(13); P-C1-N 126.28(7), N-C1-N 107.45(13).

Synthesis of SIMesPK (2)

500 mg of **1** (1.5 mmol) were solved in 75 mL of toluene and cooled to -75 °C. 181 mg of benzyl potassium^[4] (xxx mmol) were slowly added under continuous stirring. The suspension was slowly warmed to room temperature: At -25 °C formation of a yellow precipitate was observed, which vanished at room temperature forming a clear dark red solution. After several minutes an orange precipitate appeared. After additional stirring for 12 hours and subsequent filtration, the precipitate was washed with 5 mL of benzene and 2 times with 5 mL of *n*-pentane. The remaining solid was dried at 10⁻³ mbar yielding 320 mg of **2** (0.96 mmol, 65 %). Elemental analysis for C₂₁H₂₆N₂PK [%]: calc: C 66.99, H 6.96 N 7.44; found: C 66.59, H 7.09, N 7.03

μ-RFA: P: 48.47 %, K: 51.53 %

IR (ATR-FT) [cm⁻¹]: 2954 (w), 2906 (m), 1480 (m), 1362 (m), 1326 (w), 1306 (w), 1294 (w), 1266 (m),1225 (s), 1188 (vs), 1159 (s), 1094 (w), 1032 (w), 1011 (w), 889 (w), 848 (s), 732 (m), 676 (s), 617 (w), 604 (m), 575 (m), 511 (w), 498 (vw), 476 (vw).

Synthesis of [SIMesPGatBu₂]₂ (3)

58 mg of GatBu₂Cl^[5] (0.27 mmol) was solved in 3 mL of fluorobenzene and cooled to -40 °C. 100 mg of **2** (0.27 mmol) was slowly added to the solution and the reaction mixture was allowed to warm to room temperature within two hours. Subsequently, the solvent was removed in vacuo and the yellow precipitate was extracted with 10 ml of *n*-pentane. The yellow extract was concentrated to 2 mL and stored at -25 °C to obtain 83 mg of yellow crystals of **3**, suitable for single crystal x-ray diffraction (0.08 mmol, 59.3 %). Elemental analysis for C₅₈H₈₈N₄P₂Ga₂ [%]: calc: C 66.81, H 8.51, N 5.37; found: C 66.67, H 8.62, N 5.39.

¹**H NMR** (C₆D₆): δ /ppm = 1.17 (s, GaC(CH₃)₃, 36H), 2.12 (s, *p*-CH₃, 12H), 2.37 (s, *o*-CH₃, 24H), 3.21 (s, CH₂, 8H), 6.80 (s, *m*-CH, 8H).

¹³C{¹H} NMR (C₆D₆): δ/ppm = 19.1 (s, *p*-CH₃), 20.9 (s, *o*-CH₃), 30.8 (GaC(CH₃)₃),

32.2 (s, Ga**C**(CH₃)₃), 48.5 (s, **C**H₂), 130.5 (s, *m*-**C**), 137.2 (s, *o*-**C**), 137.4 (s, *p*-**C**), 137.5 (s, *ipso*-**C**), NCN not observed.

³¹**P NMR** (C_6D_6): δ /ppm = -113.2 (s).

MS (LIFDI+) m/z: decomposition, observed fragments: 1014.2735 [(SIMesPH)₂SIMesP⁺], 998.2309 [(SIMesP)₃⁺ -CH₄].

IR (ATR-FT) [cm⁻¹]: 2948 (m), 2916 (m), 2863 (m), 2815 (s), 2752 (w), 2692 (w), 2274, (w), 2162 (vw), 2113 (vw), 1608 (w), 1479 (s), 1459 (s), 1371 (s), 1304 (w), 1265 (s), 1234 (s), 1206 (s), 1179 (s), 1117 (m), 1029 (w), 1008 (m), 934 (w), 922 (w), 903 (w), 848 (m), 813 (w), 731 (w), 625 (w), 604 (w), 573 (s), 492 (s),418 (vw), 407 (vw).

Synthesis of SIMesP(GatBu₂)₂CI (4)

117 mg of Ga*t*Bu₂Cl^[5] (0.53 mmol) were solved in 3.0 mL of fluorobenzene and added to a suspension of 100 mg of **2** (0.27 mmol) in 5 mL of fluorobenzene at –40 °C. The reaction mixture were slowly warmed to room temperature and stirred for additional 12 h. After filtration, the clear colourless solution was concentrated in vacuo to 4 ml and stored at 6 °C. Within three days 160 mg of colourless crystals of **4** was obtained (0.21 mmol, 78 %). Elemental analysis: $C_{37}H_{62}N_2PGa_2Cl$ [%]: calc: C 59.99, H 8.44 N 3.78; found: 59.82, H 8.55, N 3.80.

¹**H NMR** (C₆D₆): δ/ppm = 1.27 (d, ${}^{4}J_{PH}$ = 1.3 Hz, GaC(CH₃)₃, 36H), 2.10 (s, *p*-CH₃, 6H), 2.28 (s, *o*-CH₃, 12H), 2.86 (d, ${}^{4}J_{PH}$ = 2.0 Hz, CH₂, 4H), 6.74 (s, *m*-CH, 4H).

¹³C{¹H} NMR (C_6D_6): δ /ppm = 19.3 (d, ⁵ J_{PC} = 2.4 Hz, o-CH₃), 21.1 (s, p-CH₃), 29.1 (d, ² J_{PC} = 15 Hz, GaC(CH₃)₃), 31.9 (s, GaC(CH₃)₃), 50.6 (s, CH₂), 131.2 (s, m-C), 136.5 (s, o-C), 136.6 (s, p-C), 139.2 (s, *ipso*-C), 183.3 (d, ¹ J_{CP} = 65.7 Hz, NCN).

³¹**P NMR** (C_6D_6): δ /ppm = -122.6 (s).

IR (ATR-FT) [cm⁻¹]: 2952 (m), 2933 (m), 2867 (m), 2827 (s), 2696 (w), 1608 (w), 1469 (m), 1411 (m), 1378 (m), 1356 (m), 1270 (vs), 1206 (w), 1191 (w), 1170 (w), 1011 (m), 931 (w), 850 (m), 731 (w), 626 (w), 626 (m), 605 (m), 576 (s), 512 (m).

Synthesis of (SIMesP)₃AltBuK (5)

50 mg of SIMesPK (0.13 mmol) were suspended in 5 mL of fluorobenzene and cooled to -40 °C. A solution of 16 mg of Al*t*Bu₂Cl^[5] (0.09 mmol) in 5 ml fluorobenzene was added at -40 °C to the suspension. The reaction mixture was slowly warmed to room temperature and stirred for 12 hours. The solvent was removed in vacuo and the remaining yellow solid was extracted three times with 4 mL of *n*-pentane. The yellow solution was concentrated to half of its former volume and stored at -25 °C. After one week orange crystals of **5** were obtained with a yield of 30 mg, 62%. Elemental analysis: calc. for C₆₇H₈₇N₆P₃AlK: C 70.81 %, H 7.81 %, N 7.39 %, found: C 70.85 %, H 7.38 %, N 6.86 %.

¹**H NMR** (C₆D₆): δ/ppm = -0.14 (s, AIC(CH₃)₃, 9H), 2.26 (s, *p*-CH₃, 18H), 2.49 (s, *o*-CH₃, 36H), 3.25 (s, CH₂, 12H), 6.81 (s, *m*-CH, 12H).

¹³C{¹H} NMR (C_6D_6): δ /ppm = 19.47 (s, p-CH₃), 22.74 (s, o-CH₃), 31.34 (s, AlC(CH₃)₃), 49.29 (s, (CH₂), 129.6 (s, *m*-C), 135.7 (s, *o*-C), 138.3 (s, *p*-C), 140.6 (s, *ipso*-C), NCN not observed. ³¹P NMR (C_6D_6): δ /ppm = -61.2 (s).

IR (ATR-FT) [cm -1]: 3001 (w), 2956 (w), 2907 (w), 2851 (w), 2747 (m), 1718 (w), 1608, (w), 1479 (m), 1439 (w), 1390 (m), 1376 (m), 1307 (w), 1292 (w), 1269 (s), 1208 (vs), 1033 (m), 1011 (m), 965 (w), 930 (w), 871 (w), 843 (m), 813 (s), 734 (w), 624 (w), 594 (m), 573 (m), 495 (s), 426 (w).

Synthesis of SIMesPHGatBu₂CI (6)

100 mg of **1** (0.30 mmol) was solved in 2.0 mL of benzene and a solution of 61 mg of $GatBu_2CI^{[5]}$ (0.30 mmol) in 2.0 mL benzene was added. A yellow solution formed immediately. The volume was reduced to 2 mL and the solution stored at 6 °C to obtain 135 mg of colourless crystals of **6** (0.24 mmol, 79.5 %). Elemental analysis: for $C_{29}H_{45}N_2PGaCI$ [%]: calc: C 62.44, H 8.13 N 5.02; found: C 62.37, H 8.16 N 5.08.

¹**H NMR** (C₆D₆): δ/ppm = 1.17 (s, GaC(CH₃)₃, 18H), 2.06 (s, *p*-CH₃, 6H), 2.37 (s, *o*-CH₃, 12H), 2.55 (d, ¹J_{HP} = 211 Hz, PH, 1H), 3.06 (s, CH₂, 4H), 6.74 (s, *m*-CH, 4H).

¹³C{¹H} NMR (C₆D₆): δ /ppm = 18.8 (s, *p*-CH₃), 20.9 (s, *o*-CH₃), 26.5 (s, GaC(CH₃)₃), 30.7 (GaC(CH₃)₃), 49.7 (s, CH₂), 130.5 (s, *m*-C), 133.9 (s, *o*-C), 136.7 (s, *p*-C), 139.5 (s, *ipso*-C), 183.1 (d, ¹J_{CP} = 66.0 Hz, NCN).

³¹**P NMR** (C₆D₆): δ /ppm = -148.8 (d, ¹*J*_{HP} = 211 Hz).

MS (LIFDI+) m/z: 517.1146 [MH⁺ -3 CH₃], 338.1905 [SIMesPH⁺], 307.2122 [SIMesH⁺].

IR (ATR-FT) [cm⁻¹]: 2949 (m), 2912 (m), 2865 (n), 2834 (s), 2698(w), 2340 (w, PH), 1628 (w), 1609 (w), 1491 (s), 1458 (s), 1411 (m), 1378 (w), 1358 (w), 1319 (w), 1301 (s), 1271 (vs), 1171 (w), 1096 (vw), 1011 (m), 933 (w), 915 (w), 858 (m), 813 (m), 733 (w), 631 (w), 596 (w), 578 (m), 530 (w), 502 (w), 478 (mw).

Synthesis of SIMesPHAI(*t*-Bu)₂CI (7)

100 mg of **1** (0.3 mmol) was solved in 2.0 mL of toluene and a solution of 52 mg of Al $tBu_2CI^{[5]}$ (0.3 mmol) in 2.5 mL of toluene was added. A yellow solution was formed immediately and was stored at -25 °C. After two days, 105 mg of white crystals of **7** (0.2 mmol, 66.6 %) was obtained. Elemental analysis for C₂₉H₄₅N₂PAICI [%]: calc: C 67.64, H 8.81 N 5.44; found: C 67.32, H 8.79 N 5.50.

¹**H NMR** (C₆D₆): δ/ppm = 1.08 (s, AIC(C**H**₃)₃, 18H), 2.05 (s, *p*-C**H**₃, 6H), 2.31 (s, *o*-C**H**₃, 12H), 2.54 (d, ¹*J*_{HP} = 215 Hz P**H**, 1H), 3.02 (s, C**H**₂, 4H), 6.73 (s, *m*-C**H**, 4H).

¹³C{¹H} NMR (C₆D₆): δ/ppm = 18.6 (s, *p*-CH₃), 20.9 (s, *o*-CH₃), 22.7 (s, AlC(CH₃)₃), 30.5 (AlC(CH₃)₃), 49.8 (s, CH₂), 130.6 (s, *m*-C), 133.6 (s, *o*-C), 136.5 (s, *p*-C), 139.7 (s, *ipso*-C), 187.9 (d, ¹ J_{CP} = 66 Hz, NCN). ³¹P NMR (C₆D₆): δ/ppm = -151.0 (d, ¹ J_{HP} = 215 Hz).

MS (LIFDI+) m/z: decomposition, observed fragments: 338.1906 [SIMesPH⁺], 307.2120 [SIMesH⁺]. **IR**[cm-1]: 3294 (m), 2920 (m), 2863 (m), 2810 (s), 2326 (w, PH), 1607 (w), 1549 (w), 1483 (s), 1455 (s), 1412 (m), 1381 (w), 1358 (w), 1355 (w), 1302 (m), 1274 (vs), 1186 (w), 1031 (w), 1007 (q), 936 (w), 899 (w), 862 (m), 848 (m), 812 (s), 637 (vw), 577 (m), 540 (s), 476 (w), 444 (vs). **Crystal Structure** Data collection was performed using a BRUKER D8 QUEST diffractometer at 100(2) K with MoK_{α} radiation and graphite monochromatization ($\lambda = 0.71073$). Structure solution was realized by direct methods, refinement with full-matrix-least-squares against *F*² using SHELXL-14 and Olex2 software.^[6, 7] The presentation of crystal structures was done with DIAMOND4.2.2.^[8]

Compound	1	3	4	5	6	7
Empirical formula	C ₂₁ H ₂₇ N ₂ P	$C_{58}H_{88}Ga_2N_4P_2$	C ₃₇ H ₆₂ ClGaN ₂ P	C ₆₇ H ₈₇ AIKN ₆ P ₃	$\begin{array}{c} C_{29}H_{45}GaClN_2P{\cdot}3.5\\ C_6H_6 \end{array}$	C ₂₉ H ₄₅ AICIN ₂ P
Crystal system	orthorhombic	triclinic	triclinic	trigonal	triclinic	triclinic
Space group	Pbcn	P-1	<i>P</i> -1	R-3	P-1	<i>P</i> -1
Formula units	4	2	2	2	2	2
Temperature [K]	100	100	100	100	100	100
Unit cell dimensions [pm] [°]	a = 1578.01(8) b = 748.05(4) c = 1618.42(8) α = 90 β = 90 γ = 90	a = 1186.00(6) b = 1297.39(7) c = 2236.82(12) α = 100.545(2) β = 101.098(2) γ = 106.378(2)	a = 970.12(6) b = 988.09(4) c = 2307.92(12) $\alpha = 84.726(2)$ $\beta = 83.754(2)$ $\gamma = 61.541(2)$	a = 1839.40(7) b = 1839.40(7) c = 3395.98(12) $\alpha = 90$ $\beta = 90$ $\gamma = 120$	a = 1081.9(5) b = 1362.19(7) c = 1714.42(8) $\alpha = 105.26(2)$ $\beta = 101.977(2)$ $\gamma = 98.128(2)$	a = 960.40(6) b = 1083.06(7) c = 1645.07(10) α = 83.758(2) β = 87.788(2) γ = 68.557(2)
Cell volume [10 ⁶ pm ³]	1919.43(17)	3135.8(3)	1931.38(18)	9950,6(8)	2332.5(2)	1583.27(17)
Density [g/cm ³]	1.177	1.104	1.274	1,137	1.183	1.080
Absorption coefficient [mm ⁻¹]	0.148	0.945	1.532	0.208	0.715	0.217
20 range [°]	5.03 - 55.82	4.29 - 54.12	4.64 - 63.88	4.43-63.52°	4.51-55.42°	4.54-55.2°
Reflections measured	23093	78201	81566	36608	47277	32732
Independent reflections	2281 (R _{int} = 0.0265)	13720 (R _{int} = 0.0767)	11774 (R _{int} = 0.0389)	6730 (R _{int} = 0.0777)	10893 (R _{int} = 0.0566)	7290 (R _{int} = 0.0869)
Parameters	117	619	406	253	517	323
$R_1[Fo > 4\sigma(Fo)]$	0.0355	0.0434	0.0327	0.0562	0.0366	0.0610
wR ₂ (all data)	0.1012	0.0981	0.0608	0.1171	0.0795	0.1316
GOOF	1.026	1.041	1.028	1.069	1.024	1.033
Residual electron density	0.30/-0.20	0.41/-0.57	0.48/-0.59	0.43/-0.35	0.48/-0.42	0.36/-0.27
CCDC	1537131	1537128	1537133	1537129	1537132	1537130

 Table S1. Crystallographic data of 1, 3 – 7.

¹H NMR analysis of compound 1

Figure S2. ¹H NMR spectrum of compound **1** at 25 °C in Toluene-d8 (Signals with *: remaining hydrogen at the solvent)

Figure S3. Temperature dependent ¹H NMR spectra of compound 1

¹H NMR analysis of IMesPH

Figure S3. ¹H NMR spectrum of the compound IMesPH at 25 °C in Toluene-d8 (Signals with *: remaining hydrogen at the solvent)

Figure S5. Temperature dependent ¹H NMR spectra of IMesPH

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 ppm

Density functional treatments of chemical shieldings in detail

Calculations were done with a local version TURBOMOLE, for which the module for calculating chemical shieldings differs from Version 7.1^[9] in the following respects. It allows for the usage of functionals PBE^[10] and PBE0^[11], the conductor like screening model (COSMO)^[12] is supported, and a resolution of the shieldings into orbital contributions^[13] as suggested by Wiberg is possible. The PBE functional with D3 dispersion correction.^[14] was used for optimization of structure parameters, chemical shieldings were calculated additionally with functionals BP86^[15], B3LYP^[16] and PBE0 as well as at Hartree-Fock level. Basis sets were of def2-TZVP^[17] quality. The conductor-like screening model was employed with a dielectric constant, set to 2.28 (benzene). Calculated and measured ³¹P and ¹³C shieldings σ for all compounds are listed in Table S2. For comparability with the experimental data we also list simulated shifts $\delta = \sigma_0 - \sigma$. σ_0 was determined by minimizing the deviation between calculated shieldings σ and measured shifts δ . In this way one obtains an agreement of calculated and measured ¹³C shifts within 2 ppm, and of ³¹P shifts within 30 ppm, which is not that much in view of the broad range of ³¹P shifts. Trends are correctly reproduced by the calculations, in particular the comparably small shift in 5; this holds largely independent from the chosen functional, see Table S3. Closer investigation shows that the differences mainly stem from the paramagnetic contribution, that is, from the response of the electron density to the magnetic field and not from the electron density itself (diamagnetic contribution). This is evident from the high similarity of calculated numbers for the diamagnetic contribution for all compounds, which range from 960 to 967 ppm. In this case, any rationalization basing on the electron density itself, for instance via comparing electron populations at P, is not really conclusive. The paramagnetic contribution is very sensitive to changes in the geometric and/or the electronic structure. For instance, the ³¹P shielding of **1** and IMesPH differ by ca. 20 ppm, both due to calculations and measurements, despite very small differences in the composition (one versus two hydrogen atoms per carbon in the NHC. The reason for this are changes in the electronic structure (aromaticity in IMesPH, non-aromaticity in 1) accompanied by changes in the geometric structure. Similar is observed for the dependence of ³¹P shifts on the rotation angle of the C-P-bond: for both 1 and IMesPH the ³¹P shifts for the transition states are higher by ca. 60 ppm than for the respective ground states. The bare electronic influence for the ground states of 1 and IMesPH was estimated by calculating the ³¹P shift for a hypothetical compound that was obtained by replacing the two H atoms per C in the NHC with one H atom per C in the optimized structure of 1, without any other changes in structure parameters. Here, a total shielding of 444 ppm was obtained, just in between those for 1 and IMesPH. This is solely to changes in the paramagnetic contribution (the diamagnetic contribution amounts to 962 ppm for all cases). The high sensitivity of the paramagnetic contribution to slight changes in the structure parameters may be the reason for the high discrepancy between calculated and measured shifts in 3, which differs from 4 only by the replacement of CI with a

second SIMesP unit. In the calculations, exchanging SiMesP with Cl in **3** without any structure optimization yields a shielding of 336 ppm, very close to that in **3** (333 ppm) and not to that of the optimized structure of **4** (380 ppm. Thus, the calculated difference in the ³¹P shift of **3** and **4** is a result of changes of the geometric structure, which act on the paramagnetic contribution of the shielding constant. In view of the high sensitivity ³¹P shifts on slight changes in the geometric structure the measured similarity of shifts in **3** and **4** - despite measured significant differences in the N-C-P-Ga torsion angles - is much more surprising than the (measured and calculated) dissimilarity of the shifts in 5 to those in **3** and **4**. For further investigation the chemical shielding was resolved into orbital contributions, as suggested e.g. by Wiberg et al.^[13] We exemplarily show the results for the P atom in **4**, Table S4. The orbitals yielding the largest contributions are displayed in Figure S4. As expected, the diamagnetic part is dominated by inner orbitals of P, first of all the 1s(P), ca. 500 ppm, but also the 2s(P) and 2p(P) orbitals, ca. 100 ppm each. The paramagnetic part receives largest contributions from the C-P π-bond, 180 ppm in sum, but many other orbitals also show contributions larger than 10 ppm.

Table S2. Comparison of selected spectroscopic and structural data of compounds **1-7**. For details concerning the calculated absolute shielding constants ("abs.") and the simulated shifts ("sim.") see text.

Compound	δ ³¹ P [ppm]		δ ¹³ C (carbene C atom) [ppm]		¹ J _{PC} [Hz]	d P-C [pm]	
	measured	calculated	measured	calculated		x-ray diffraction	calculated
		sim./abs.		sim./abs.			
1	-127.2	-157/433	191.0	192/-3	73.3	174.6(2)	175.3
IMesPH ^[5,6]	-147.3	-178/454	180.0	178/11	93.5	174.7(2)	176.1
3	-113.2	-57/333		182/ 7	-	174.4(2)	175.6
4	-122.6	-104/380	183.3	181/ 8	65.7	175.4(1)	175.3
5	-61.2	-54/330		185/4	-	175.3(2)	175.8
6	-148.8	-163/439	188.5	191/-2	68.9	179.8(2)	179.4
7	-151.0	-157/433	187.9	190/-1	65.5	180.1(2)	179.5

Table S3. ³¹P shifts/shieldings for compounds **1-7** obtained with different functionals. For details concerning the calculated absolute shielding constants ("abs.") and the simulated shifts ("sim.") see text. The column "PBE, opt" contains numbers for optimized structure parameters, the numbers in the subsequent columns were calculated for experimental structure parameters.

compound	measured	PBE, opt	PBE	BP	B3-LYP	PBE0	HF
1	-127,2	-157 / 433	-164 / 455	-165 / 450	-163 / 443	-155 / 465	-140 / 491
ImesPH	-147,3	-178 / 454	-137 / 428	-138 / 423	-136 / 416	-133 / 443	-121 / 472
3	-113,2	-57 / 333	-59 / 350	-58 / 343	-61/341	-68 / 378	-94 / 445
4	-122,6	-105 / 381	-109 / 400	-107 / 392	-111 / 391	-117 / 427	-137 / 488
5	-61,2	-54 / 330	-77 / 368	-77 / 362	-79 / 359	-83 / 393	-99 / 450
6	-148,8	-163 / 439	-162 / 453	-162 / 447	-162 / 442	-160 / 470	-144 / 495
7	-151	-157 / 433	-163 / 454	-164 / 449	-161/441	-158 / 468	-137 / 488

Table S4. Molecular orbital (MO) contributions to ³¹P shieldings, calculated as suggested in reference 13. Orbitals with contributions of less than 1 ppm to the total shielding are omitted; orbitals with largest contributions are indicated by an "x" in the last column and plotted in Figure S4. The molecule was shifted in a way that P is in the origin, for minimizing problems of gauge invariance.

	total	paramagnetic part	diamagnetic part	Energy/eV	MO
Х	517.187296	-0.0045397	517.191836	-2075.219	4
Х	99.564093	0.09861722	99.4654758	-170.577	56
Х	127.405675	34.7117998	92.6938755	-122.029	59
Х	91.0759738	-4.87383336	95.9498071	-121.991	60
Х	90.5003915	-5.30359114	95.8039826	-121.983	61
	1.88866866	1.3546215	0.53404716	-25.662	68
	3.06790293	3.16604807	-0.09814514	-23.408	69
	1.80662684	1.78702756	0.01959928	-21.627	70
	1.98028413	1.95831192	0.02197222	-21.234	71
	2.44131041	2.4592444	-0.01793399	-19.775	72
	6.78246089	6.54078556	0.24167534	-19.633	73
	1.07168644	1.09340645	-0.02172001	-19.570	74
	2.20980355	2.11593358	0.09386996	-19.473	76
	1.95765824	1.87050869	0.08714956	-19.446	77
	2.25498006	2.12303904	0.13194102	-19.368	78
	-3.96248637	-4.45535897	0.49287261	-19.362	79
	1.3944226	1.20863043	0.18579217	-19.357	80
	1.59600048	1.5980115	-0.00201103	-19.202	81
	2.15400584	2.14047301	0.01353283	-17.403	93
	1.53491159	1.55183281	-0.01692121	-17.354	94
	1.11458766	1.1277965	-0.01320885	-16.901	95
	1.01588356	1.00358603	0.01229753	-16.814	96
	1.20541225	1.21713482	-0.01172257	-16.764	97
	1.65647307	1.63625805	0.02021503	-16.437	98
	1.52387604	1.45607779	0.06779826	-16.434	99
	1.82586014	1.75989832	0.06596182	-16.374	100
	1.35668329	1.32661045	0.03007284	-16.303	101
	1.54360887	1.52573046	0.01787841	-16.290	102
	1.44884728	1.42316584	0.02568144	-16.268	103
	1.491147	1.47227302	0.01887398	-16.195	104
	1.52114195	1.50018399	0.02095796	-16.142	105
	1.58955976	1.53983104	0.04972872	-15.952	106
	7.63461654	0.69097726	6.94363928	-15.680	107
	5.42383967	2.36501176	3.05882791	-15.051	108
	1.55803757	0.74118574	0.81685183	-13.518	112
	1.94801516	1.78343911	0.16457604	-13.116	113
	1.20604171	-0.04451094	1.25055266	-12.945	114
	-1.74520798	-1.90735225	0.16214427	-12.836	115
	1.29226684	1.15076135	0.1415055	-12.561	116
	9.69463445	5.91381542	3.78081903	-12.556	117
	1.20297198	1.07317233	0.12979966	-12.483	118
	1.57404948	1.25053545	0.32351403	-12.480	119

120	-12.129	0.54584208	1.34398803	1.88983012
121	-11.930	0.09249229	3.24272225	3.33521454
122	-11.276	0.44510731	-16.7759414	-16.3308341
123	-11.273	0.33385082	-9.0936797	-8.75982889
124	-11.139	0.17615005	-1.64865544	-1.47250539
125	-11.108	0.51873119	-5.03044193	-4.51171074
126	-10.787	0.03447635	-1.2173175	-1.18284116
127	-10.726	0.06770143	1.40499911	1.47270054
128	-10.662	0.06156794	2.91941845	2.9809864
134	-10.281	0.04467939	1.25376753	1.29844691
136	-10.209	0.48598321	-9.11261675	-8.62663355
137	-10.185	0.07291205	1.55274159	1.62565365
138	-10.144	0.07830575	1.02481432	1.10312007
141	-10.066	0.1364759	-1.83547857	-1.69900267
143	-9.962	0.18119511	-11.9269724	-11.7457772
145	-9.901	0.54552586	-6.83025033	-6.28472447
146	-9 893	0.01054856	1 15279966	1 16334822
148	-9 795	0.04937586	-1 11751888	-1 06814303
140	-9 771	1 57970367	-35 43946	-33 8597563
150	-0 7/10	1.05654025	-36 5240686	-35 4675283
151	-9.749	0 1/2/2252	-3 05971013	-2 01728761
152	-9.010	0.14242232	-14 0900846	-13 5/72163
152	0.079	0.34280829	6 25260617	5 70500127
154	-9.078	0.43079461	-0.23209017	-5.79590157
155	-9.022 9.01E	0.30321790	-2.89719383	11 71/0151
157	0.913	0.3317004	-12.0403733	-11./148151
150	-0.094 0.0ED	0.03499415	-2.23272019	1 65264082
159	-0.052	0.12790344	-1.78034027	-1.05204065
161	-8.830	0.22141616	-4.18203075	-4.00033897
101	-8.821	0.22141010	-2.88978294	-2.00830079
163	-8.085	-0.04341331	-1.06858108	-1.11199439
164	-8.613	-0.03929554	-1.37310952	-1.41240506
165	-8.567	0.49516778	-14.9968916	-14.5017238
166	-8.416	0.03588159	-2.28427077	-2.24838919
167	-8.368	0.00248013	-2.06308801	-2.06060789
168	-8.331	0.03514653	-2.25281836	-2.21767183
169	-8.325	0.03804272	-1.083833	-1.04579028
170	-8.287	0.01021177	-2.13399407	-2.1237823
171	-8.262	-0.01101696	-1.80433784	-1.8153548
172	-8.251	0.03656101	-2.5156817	-2.47912069
173	-8.164	0.03218817	-1.9596398	-1.92745163
174	-8.159	0.01339373	-1.20803182	-1.1946381
175	-8.024	0.27091016	-4.46817721	-4.19726705
176	-7.651	0.16272505	-5.41820816	-5.25548311
177	-7.511	0.58622111	-28.1015327	-27.5153116
178	-7.498	0.0600034	-2.75059261	-2.69058921
179	-7.436	0.03258139	-3.8819416	-3.8493602
180	-7.357	0.04926782	-3.68748232	-3.63821451
181	-7.310	1.39166476	-39.4294645	-38.0377997

S13

	-2.42312462	-2.46897227	0.04584765	-7.282	182
	-44.397035	-46.0412125	1.64417751	-7.154	183
	-24.0336297	-24.8477059	0.81407613	-7.140	184
	-32.056935	-33.2754464	1.21851146	-6.995	185
	-39.7223464	-41.6456079	1.92326147	-6.930	186
	3.83474076	2.86932743	0.96541333	-6.520	187
	1.17932463	1.04337865	0.13594597	-6.399	188
	-10.0144298	-10.3976843	0.38325442	-6.079	189
	-3.12831803	-3.14864368	0.02032565	-6.027	191
	-22.4915353	-22.6888381	0.19730284	-5.516	192
Х	-67.7853704	-75.1069516	7.32158116	-5.214	193
	11.550059	4.86354126	6.68651778	-5.099	194
	-4.72110868	-4.87733749	0.15622881	-4.892	195
Х	-109.433307	-117.389691	7.95638357	-4.434	196
	380.809294	-581.846494	962.655788		Total

S14

Figure S4. Orbitals with largest contributions to the ³¹P shielding in **4.** See also Table S4. MO 4 is the 1s of phosphorus, 56 the 2s and 59-61 the 2p orbitals. 193 and 196 are the P-C π orbitals; 196 is the highest occupied MO. Contours are drawn at ±0.05 a.u.

SIMesPH (1) C -0.0152253 0.5174412 -5.1124626 C -1.2092921 0.2191032 -4.4446645 C -1.2207013 -0.2084255 -3.1134320 C 0.0092642 -0.3433936 -2.4448167 C 1.2274439 -0.0441542 -3.0811408 C 1.1899115 0.3796684 -4.4140181 N 0.0011446 -0.8039352 -1.0951379 C 0.0201833 0.0270812 -0.0039425 N 0.1301257 -0.7634528 1.1121502 C 0.0259872 -2.1892102 0.7790400 C 0.2886595 -2.1928825 -0.7306453 Ρ -0.0694623 1.7730007 -0.1369521 С 0.0391048 -0.3072609 2.4588876 С 1.2300654 -0.0963039 3.1777294 С 1.1382369 0.3184831 4.5090539 С -0.0995155 0.5314938 5.1306831 C -1.2632383 0.3223992 4.3829533 -1.2196142 -0.0942492 3.0469582 С C 2.5628208 -0.2878182 2.5082879 C -2.4816687 -0.2762284 2.2498704 C -0.1687097 0.9957413 6.5613843 C -2.5108076 -0.4971564 -2.3973896 C 2.5323052 -0.1541683 -2.3409872 C -0.0306178 1.0118128 -6.5344719 H 2.6394707 0.3444084 1.6105227 H -0.0688111 1.9442384 1.2852263 H 2.7076949 -1.3286789 2.1796190 H 3.3831162 -0.0290020 3.1898984 H 2.0590274 0.4879531 5.0740374 H 1.3365248 -2.4550713 -0.9624862 H -0.3684778 -2.8846754 -1.2754303 H -0.9799423 -2.5761109 1.0216623 H 0.7652179 -2.7769042 1.3406637 H -2.2370999 0.4953241 4.8489163 H -2.4483136 0.3303657 1.3311922 H -3.3591211 0.0247584 2.8361613 H -2.6251228 -1.3238941 1.9428458 H 0.4446953 0.3605560 7.2175696 H -1.2004019 0.9823176 6.9367944 H 0.2125494 2.0241172 6.6609350 H -2.5518860 -1.5360194 -2.0356241 H -3.3703264 -0.3302012 -3.0590575 H -2.6148802 0.1546886 -1.5161393 H -2.1605630 0.3270914 -4.9727726 H 2.1310278 0.6178352 -4.9172334 H 2.4741541 0.3682652 -1.3741395 H 3.3483984 0.2878404 -2.9266586 H 2.7990940 -1.2030590 -2.1357535 H -0.1356945 2.1083406 -6.5652121 H -0.8734623 0.5876841 -7.0976342 H 0.9011232 0.7574673 -7.0580467

IMesPH

С	3.6512380	-11.4078487	6.2013959
С	4.7724950	-12.2513738	6.2312481
С	4.7551371	-13.5416898	5.6794611
С	3.5761110	-13.9709760	5.0614269
С	2.4400611	-13.1549258	4.9919926
С	2.4951943	-11.8815889	5.5724772

Ν	5.9690769 -11.78660	76 6.8610302
С	6.2781163 -11.95682	87 8.1993613
Ν	7.5143129 -11.35438	16 8.3427093
С	7.9510051 -10.83006	91 7.1289582
С	6.9915388 -11.09812	36 6.2074346
С	8.2299688 -11.29160	11 9.5804497
С	8.0142963 -10.19702	43 10.4322038
С	8.7320488 -10.15379	74 11.6318252
С	9.6317356 -11.16523	28 11.9903131
С	9.8097679 -12.24331	64 11.1145150
С	9.1153273 -12.33170	69 9.9037147
С	10.3638379 -11.11312	13.3046882
С	7.0234789 -9.127108	3 10.0679889
С	9.2832423 -13.50809	52 8.9833737
Р	5.3915895 -12.73609	76 9.5059661
С	5.9581377 -14.43569	38 5.7908225
С	1.1932141 -13.62940	09 4.2945488
С	3.6936293 -10.05822	91 6.8614334
Н	6.2090320 -14.61044	76 6.8494127
Н	4.3090619 -13.07969	96 8.6334306
Н	6.8453117 -13.98322	04 5.3223365
Н	5.7704346 -15.40481	32 5.3120592
Н	3.5423958 -14.97559	13 4.6317724
Н	8.9014574 -10.31826	66 7.0425172
Н	6.9323867 -10.86840	27 5.1507416
Н	1.6101227 -11.24057	80 5.5453697
Н	3.9118112 -10.16381	49 7.9362771
Н	2.7340803 -9.538242	6.7495474
Н	4.4845309 -9.422382	29 6.4354295
Н	1.2144266 -13.35699	57 3.2269354
Н	0.2929021 -13.17476	09 4.7300585
Н	1.0936571 -14.72201	85 4.3511509
Н	7.2739038 -8.649864	43 9.1083924
Н	6.9865596 -8.350037	75 10.8415871
Н	6.0166447 -9.561163	30 9.9595177
Н	8.5782873 -9.308030	08 12.3071016
Н	10.5048951 -13.04335	581 11.3822790
Н	8.3217771 -14.03000	89 8.8527223
Н	10.0136370 -14.21930	001 9.3888072
н	9.6200032 -13.19741	35 7.9826888
н	9.7803067 -11.61220	99 14.0950328
н	10.5339314 -10.07722	13.6286306
н	11.3348844 -11.62338	385 13.2437569

[SIMesPGatBu₂]₂ (3)

Ga	1.8695933	0.4257692	0.1403277
Ρ	0.3649189	-1.4396168	-0.4874331
Ρ	-0.3641224	1.4413857	0.4846120
С	2.7744751	0.3628838	1.9772389
С	2.9141519	0.9319138	-1.5477258
Ga	-1.8687801	-0.4246429	-0.1419675
С	0.7744933	-3.0585636	-1.0287276
С	-0.7741697	3.0601245	1.0263049
С	2.8535743	1.8005793	2.4886075
С	4.1853821	-0.2149399	1.8604358
С	1.9488956	-0.4755805	2.9498319
С	3.9060680	2.0559102	-1.2461747
С	1.9591436	1.3654850	-2.6569656
С	3.6767662	-0.3145253	-1.9945142
С	-2.9136612	0.1894096	-1.7936895
С	-2.7722407	-1.4817205	1.3624498
Ν	1.9637018	-3.7398030	-0.7930377
Ν	-0.0254892	-3.9127916	-1.7796010
Ν	0.0244829	4.1950011	0.9388385

Ν	-1.9618837	3.4608789	1.6283709
Н	3.4504974	2.4430863	1.8238223
Н	3.3235709	1.8341335	3.4927649
Н	1.8518630	2.2480728	2.5764274
Н	4.1815198	-1.2378792	1.4636769
Н	4.6702880	-0.2524916	2.8577123
Н	4.8296288	0.3972362	1.2105849
Н	0.9194574	-0.1006354	3.0380025
Н	2.4038836	-0.4579368	3.9614971
Н	1.8928264	-1.5236974	2.6311303
Н	3.4051078	2.9640384	-0.8881075
н	4.4671710	2.3314207	-2.1628792
н	4.6486857	1.7588606	-0.4895819
н	1 2165676	0 5868920	-2 8818155
н	2 5191522	1 5794195	-3 5904557
н	1 4114909	2 2760161	-2 3843151
н	1 3877505	-0 6602864	-1 2200012
н	4.3877393	-0.0002804	-1.2230012
н ц	4.2303204 2.00000E0	1 1 1 1 6 1 5 1	-2.9170472
п С	2.9009030	-1.1450154	-2.2128785
C	-1.9580181	0.5122297	-2.9395936
C	-3.6/74375	1.4527404	-1.3995120
C	-3.9046651	-0.8895793	-2.2316791
С	-2.8523289	-2.9374301	0.9051975
С	-4.1827980	-0.9493919	1.6176755
С	-1.9459611	-1.3982863	2.6433899
С	2.8552389	-3.6495512	0.3152185
С	2.0306761	-4.9652964	-1.6160039
С	-1.0220470	-3.6021879	-2.7499489
С	0.5619175	-5.2679123	-1.8240156
С	1.0172301	4.5324959	-0.0265197
С	-0.5615664	5.3030139	1.7213208
С	-2.8510687	2.7200849	2.4601681
С	-2.0300366	4.9346981	1.7099890
Н	-1.2162038	1.2697778	-2.6498700
Н	-2.5177540	0.9029555	-3.8141311
н	-1.4092737	-0.3784105	-3.2696375
н	-4.3904740	1.2660323	-0.5823584
н	-4.2551417	1.8462890	-2.2607582
н	-2.9908063	2.2473887	-1.0701469
н	-3 4030889	-1 8298828	-2 4924955
н	-1 1611837	-0 5571075	-3 1301130
н	-1 6484036	-1 1086192	-1 1/10006/
 Ц	2 4502012	2 0400061	0.0117912
 Ц	2 2217740	2 5695901	1 6972762
н ц	1 9510264	2 2400204	0.7049406
	-1.8310204	-3.3460394	1.0172624
	-4.1/02444	1 5108078	2 4262645
	-4.00/9499	-1.5198978	2.4303045
H	-4.82/144/	-1.0461736	0.7301881
H	-0.91/2/13	-1.7528904	2.48/93/9
н	-2.401/866	-2.0199385	3.4412311
Н	-1.8877156	-0.3693243	3.0190881
С	2.3849988	-3.8450113	1.6334773
С	4.2406800	-3.5884143	0.0532067
Н	2.5660072	-5.7515364	-1.0717121
Н	2.5491469	-4.7713384	-2.5700412
С	-2.2444250	-4.3057283	-2.6990645
С	-0.7129945	-2.7853258	-3.8609876
Н	0.3450398	-5.7370888	-2.7904024
Н	0.1545702	-5.9006422	-1.0175535
С	2.2409867	5.0641407	0.4333356
С	0.7030775	4.5495886	-1.4042422
н	-0.3472820	6.2597542	1.2316501
н	-0.1509141	5.3229347	2.7448557
с	-2.3780710	2.0826125	3.6293755
с	-4.2370234	2.8271155	2.2163593

Н	-2.5626007	5.2337710	2.6199124
Н	-2.5519527	5.3541264	0.8334508
С	3.3172315	-3.8703031	2.6753455
С	0.9340695	-4.0877851	1.9254273
С	5.1316705	-3.6395787	1.1310375
С	4.7816476	-3.5274832	-1.3492594
С	-3.1749789	-4.1117744	-3.7260410
c	-2.5463473	-5.2950821	-1.6066802
c	-1 6861614	-2 6114130	-4 8498495
c c	0.6415622	2.0114130	4.0204021
c c	0.0413033	-2.1040810 E 10E02E2	1 0001246
c	2.5461590	5.1959552	1.9001240
C	3.16/8930	5.5282923	-0.5067010
C	-0.6528501	4.1543219	-1.9088027
C	1.6/26130	5.00/0510	-2.3019415
С	-0.9266106	2.1025853	4.0065354
С	-3.3081065	1.4736963	4.4775779
С	-4.7808290	3.6221955	1.0607914
С	-5.1257631	2.2174378	3.1089055
С	4.6929801	-3.7557331	2.4523402
Н	2.9502264	-4.0020561	3.6966889
Н	0.3250459	-3.2050876	1.6797459
н	0.7878345	-4.3366904	2.9839412
н	0 5378232	-4 9168748	1 3178620
н	6 203/1365	-3 5702268	0 9258338
н	5 7565325	-3 0227521	-1 3668281
н Ц	4 1029020	-3.0227321	2 0252242
	4.1038930	-2.9940751	-2.0252342
H	4.9313131	-4.5403757	-1./584636
н	-4.1296951	-4.6420720	-3.6/21/56
С	-2.9284830	-3.2514663	-4.7988287
Н	-2.1845433	-6.3014579	-1.8751881
Н	-3.6291614	-5.3723106	-1.4423772
Н	-2.0721468	-5.0144942	-0.6594584
Н	-1.4528581	-1.9636291	-5.6990466
Н	0.8430147	-1.4255357	-3.2402369
Н	0.7223431	-1.6704002	-5.0069785
Н	1.4393272	-2.9204016	-3.9588821
н	2.1869365	6.1606347	2.2934048
н	3.6316640	5.1595556	2.0737823
н	2 0767259	4 4009362	2 4888092
н	4 1237733	5 9195783	-0 1478306
c	2 9163326	5 / 876357	-1 880318/
L L	0.8524260	2 0886620	1 7210440
LL LL	-0.8324309	3.0880020	-1.7219440
п	-0.7577121	4.5460079	1 2024028
	-1.4493073	4./142151	-1.3934038
н	1.4353304	5.0013838	-3.3691100
H	-0.3177991	1.5474029	3.2//4/22
н	-0.7782423	1.6632000	5.0008/16
Н	-0.5319513	3.1309717	4.0210804
Н	-2.9389643	0.9639817	5.3715129
С	-4.6842876	1.5145861	4.2326758
Н	-4.9305346	4.6773092	1.3438536
Н	-5.7561187	3.2290766	0.7450085
Н	-4.1048157	3.6033927	0.1985390
Н	-6.1979474	2.2840802	2.9049956
С	5.6632400	-3.7222453	3.6006680
C	-3.9763321	-2.9925817	-5.8458101
c	3 9603534	5 9119124	-2 8759164
ć	-5.6521178	0.7946559	5.1305677
ч	6 6521201	-1 0050600	3 3044040
ч Ц	5 2026177	-1 22025000	J.JU44343
11 L1		-4.3203303	4.4430000
п 	5./950888	-2.088909/	5.9014929
н	-4.6549267	-3.8493151	-5.9589302
H	-3.5239808	-2.//3/240	-6.82321/9
Н	-4.5904988	-2.1204361	-5.56/1189
Н	3.5044225	6.3231782	-3.7874064

H 4.6386538 6.6661915 -2.4537035 H -5.7845256 -0.2473409 4.7955619 H -6.6423988 1.2706263 5.1217561 H -5.2903086 0.7601012 6.1677461 SIMesP(GatBu₂)₂Cl (4) Ga 7.8393437 3.5922895 3.8862173 Cl 8.0834890 2.0559870 5.8023518 P 7.8785285 5.2196088 5.6920111 5.9334954 3.3623308 3.1829709 С C 9.4724626 3.1205243 2.7636526 Ga 8.1211182 3.7398991 7.6056093 С 7.7690815 6.9677702 5.6334033 С 5.5471251 4.6785394 2.5025938 С 5.8780308 2.2174096 2.1663018 С 4.9550660 3.0752697 4.3195333 10.7718704 3.5278330 3.4548278 С 9.4820049 1.6034496 2.5362493 С 9.3469633 3.8379859 1.4153308 С С 10.0388130 3.8015749 8.3117463 6.5559479 3.1418887 8.7642893 С N 8.0792746 7.7683288 4.5573587 N 7.3570174 7.7920489 6.6563735 H 5.5571710 5.5154311 3.2182160 H 4.5226231 4.6140581 2.0862047 6.2230385 4.9368712 1.6722071 н 6.5404742 2.3884258 1.3044590 н H 4.8487273 2.1105852 1.7708779 H 6.1548831 1.2528109 2.6184034 H 5.1841700 2.1262379 4.8258443 H 3.9210850 3.0067777 3.9276036 H 4.9720282 3.8677338 5.0812934 H 10.8041388 4.6044882 3.6690464 H 11.6383421 3.2911306 2.8057973 H 10.9088961 2.9881749 4.4016245 н 9.5602046 1.0474738 3.4822350 H 10.3555406 1.3256040 1.9145066 н 8.5825383 1.2519638 2.0099068 н 8.4424190 3.5335179 0.8661089 H 10.2155282 3.5931557 0.7720558 Н 9.3221805 4.9300840 1.5275438 11.0478025 3.5612287 7.1911513 С С 10.2563353 5.1994093 8.8976569 С 10.2347615 2.7453952 9.4043020 6.7372800 1.6545156 9.0932076 С С 5.2190298 3.3338676 8.0515794 С 6.5824774 3.9583327 10.0609026 С 8.9366797 7.4845966 3.4547564 С 7.6672607 9.1643783 4.8017058 6.5287867 7.4776355 7.7728725 С С 7.5964561 9.2092742 6.3205390 H 10.9406111 2.5581341 6.7532190 H 12.0814307 3.6503285 7.5798081 H 10.9328904 4.2904506 6.3765447 H 10.1440911 5.9773462 8.1263844 H 11.2798024 5.2916756 9.3113048 н 9.5514596 5.4280680 9.7124857 Н 9.5547821 2.8919814 10.2569457 н 11.2687122 2.7947974 9.7988891 н 10.0807411 1.7249531 9.0215544 н 6.7339197 1.0308806 8.1870285 Н 5.9031701 1.3109477 9.7359105

7.6717040 1.4555703 9.6381015

н

H 4.5754368 5.0485478 -3.1788729

Н	5.0515285	4.3810135	7.7659907
Н	4.3860886	3.0327962	8.7176302
Н	5.1567968	2.7192293	7.1433724
Н	7.5158707	3.8094545	10.6258560
н	5.7492373	3.6482779	10.7225175
н	6.4679932	5.0346277	9.8755217
C	8 4232837	7 6263625	2 1508378
c	10 3136020	7 2607685	3 67311/7
ц	6 6807/33	9 371 2/177	1 3346866
	0.0037433	9.3712477	4.3340800
	8.4121509	9.8513700	4.3829769
C	5.1929089	7.0693974	7.5663810
C	7.0057077	/./68888/	9.0658577
н	8.5397975	9.5634099	6.7689787
Н	6.7718586	9.8259746	6.6971199
С	9.3017929	7.4951548	1.0692792
С	6.9752716	7.9523863	1.9085422
С	11.1450597	7.1222641	2.5581575
С	10.8907323	7.2153823	5.0580289
С	4.6403871	6.8606205	6.1864677
С	4.3730536	6.9016620	8.6859741
С	6.1385594	7.6004858	10.1513566
С	8.3990336	8.2886591	9.2897223
С	10.6623352	7.2300589	1.2488435
н	8.9030411	7.5892709	0.0556684
н	6.3293828	7.5278263	2.6869395
н	6 6462132	7 5637445	0.9361021
н	6 8101398	9 0423344	1 8977731
н	12 2097275	6 9362755	2 7215667
 Ц	10 6101224	0.5502755	5 6252074
ш	11.0950002	0.1132377	5.0352974 E 0210441
п	10 5015200	6 2512045	5.0210441
	10.5015398	0.3512945	5.0190094
н	4.8077661	7.7434747	5.5494777
н	3.5618962	6.6638752	6.2254861
н	5.1369465	6.0138594	5.68/1634
н	3.341/94/	6.5733950	8.5324073
С	4.8240310	7.1549850	9.9864227
Н	6.5112363	7.8107218	11.1574263
Н	9.1022320	7.8936890	8.5462115
Н	8.7611772	8.0136576	10.2888275
Н	8.4281488	9.3886805	9.2228609
С	11.5734667	7.0192284	0.0715037
С	3.9338043	6.9089514	11.1728759
Н	11.2189342	7.5611849	-0.8158103
Н	11.6180933	5.9495584	-0.1914672
Н	12.5996428	7.3434600	0.2932631
н	4.0259268	5.8635006	11.5103657
н	2.8769237	7.0798883	10.9256978
н	4 2037246	7 5528561	12 0209982
		/10020001	12:02:05:002
(\$1	ΜοςΡ), ΔΙτΒιικ	(5)	
K	0 0087872		2 571/1526
і\ Р	0.0007075	2 0106201	0.0877755
r P	1 5103460	2.0100294	0.0017730
۲ ۲	-1.5102469	-1.4031/05	0.0913542
Ч.	1.9728520	-0.6092126	0.0860886
AI	0.0011342	-0.0013930	-1.2162952
C	1.5853720	2.6/93862	3.4964473
С	-3.0994506	0.0339661	3.4984203
С	1.5156807	-2.7210469	3.4892556
С	1.2226976	2.3550537	4.8110173

 $C \quad -2.6371536 \quad -0.1125776 \quad 4.8137580$

 C
 1.4042397
 -2.2487425
 4.8042992

 C
 2.8708316
 2.1712321
 2.9045885

 C
 -3.2987629
 1.3985790
 2.8994631

 C
 0.4410197
 -3.5834834
 2.8875906

Н	2.6858009	1.5374097	2.0175912
Н	-2.6538844	1.5500423	2.0137822
Н	-0.0250567	-3.0960186	2.0109659
С	0.8569082	3.1725739	0.2363003
С	-3.1717409	-0.8507716	0.2434852
С	2.3266778	-2.3243817	0.2360058
С	-0.0040531	-0.0020163	-3.2630202
С	0.6955324	3.4579732	2.7251363
С	-3.3312669	-1.1291430	2.7330111
с	2.6379114	-2.3306899	2.7267672
C	0.0163187	2.7945411	5.3730431
H	1.9031767	1.7424478	5.4083810
c	-2 4163932	-1 3746785	5 3815192
н	-2 //57093	0 7854504	5 4070605
c C	2.4457655	-1 /180902	5 3750151
ц	0 5311578	-2 5388/01	5 30/6260
 Ц	2 52/1/61	2.0029067	2 5770224
п	3.3241401	2.9956007	2.5770554
	3.4223707	1.5725552	3.0309912
	-4.3304059	1.5529572	2.5075003
н	-3.05/1038	2.1/91345	3.6305972
н	0.8366195	-4.5498431	2.5411990
Н	-0.3481362	-3.7837498	3.6219970
Ν	1.0953867	3.8609055	1.4208109
Ν	1.7821492	3.6563454	-0.6714756
Ν	-3.8840253	-0.9898930	1.4296378
Ν	-4.0559166	-0.2911108	-0.6616931
Ν	2.7999819	-2.8743228	1.4222027
Ν	2.2904912	-3.3668669	-0.6726029
С	1.4232574	-0.1298771	-3.7947565
С	-0.6092578	1.2991314	-3.7895152
С	-0.8301952	-1.1755965	-3.7889961
С	-0.5233706	3.9113495	3.2609151
С	-3.1144070	-2.4093461	3.2740038
С	3.6309975	-1.4968066	3.2716629
С	-0.8414249	3.5673125	4.5807695
с	-0.3288105	2.4730734	6.8031235
c	-2.6564921	-2.5073717	4.5937888
c	-1.9701049	-1.5076089	6.8135431
ĉ	3 4795848	-1.0526663	4 5912680
c c	2 2592613	-0.96220005	6 8052585
c c	2.2552015	A 9444109	1 253209/
c c	1 6620044	2 71 92 015	2 0965417
c c	1.0029044	5.7165915 4 E1E0429	-2.0803417
C C	2.7882905	4.5150438	-0.0196771
C C	-5.3088592	-0.0885172	1.2004274
C	-4.0548421	-0.4249690	-2.0767999
C	-5.3009752	0.1504204	-0.0063472
C	3.2595552	-4.255/53/	1.2550522
C	2.4033059	-3.2931574	-2.08/6669
С	2.5358961	-4.66/210/	-0.0220742
Н	2.0596897	0.7033483	-3.4725352
Н	1.4193830	-0.1285540	-4.9065922
Н	1.9005036	-1.0588898	-3.4663367
Н	-1.6478526	1.4325786	-3.4628866
Н	-0.6128146	1.2976767	-4.9013477
Н	-0.0423752	2.1764604	-3.4612867
Н	-0.4256554	-2.1424744	-3.4654094
Н	-0.8307235	-1.1758788	-4.9008365
Н	-1.8723556	-1.1237516	-3.4573558
С	-1.4676285	4.7072821	2.4089273
С	-3.3350616	-3.6283893	2.4275208
С	4.7966432	-1.0691646	2.4293758
Н	-1.7892474	3.9147836	5.0015885
Н	-1.4155735	2.4713870	6.9661667
Н	0.1024337	3.2195341	7.4894785
н	0.0693652	1.4929409	7.1013991

Н	-2.4839057	-3.5002277	5.0188325
Н	-1.3938775	-2.4295453	6.9742550
Н	-2.8365520	-1.5436334	7.4934760
Н	-1.3524894	-0.6526885	7.1225966
Н	4.2471890	-0.4015022	5.0189866
Н	2.7985327	-0.0199759	6.9753155
Н	2.6849792	-1.7101525	7.4934668
Н	1.2086425	-0.8191407	7.0947666
Н	2.7345686	5.0116426	2.1229212
Н	1.5556679	5.9181317	1.1360538
С	2.6753959	3.1298509	-2.8671991
С	0.6428053	4.4913211	-2.6818942
н	3.0496003	5.3560886	-0.6736520
н	3.7053490	3.9432562	0.2055063
н	-5.6972139	-0.1443018	2.1374919
н	-5.8972098	-1.6182758	1.1511600
C	-4.0562335	0.7465244	-2.8569588
c	-4 2147114	-1 6948318	-2 6721038
H	-6.1617142	-0.0439758	-0.6580242
н	-5 2640575	1 2305148	0 2186991
н	2 9830399	-4 8693448	2 1226514
н	4 3595415	-4 2936695	1 1433199
r r	1 2880087	-3 87816/3	-2 8686337
c c	2 5012021	2 7022055	2.8080557
с ц	2 1/02272	-2.7922033 5 2000127	-2.0824080
н ц	1 501272	-3.3030127 E 1920446	0.1072601
п	1.3643223	-5.1620440	0.1972091
	-0.9953108	5.0278895	2.0344080
	-2.3711959	4.9828280	2.9083998
H	-1./512166	4.1093350	1.5254069
H	-4.3/08218	-3.6820801	2.0597353
H	-3.11/5313	-4.5463313	2.9890455
H	-2.6811056	-3.5778936	1.5397423
H	5.3658976	-1.9349192	2.0588403
H	5.4784899	-0.4207341	2.9949660
H	4.4244871	-0.5261595	1.5432264
C	2.63/4/21	3.3060120	-4.2545587
C	3.7608336	2.3101442	-2.2246130
C	0.6460625	4.631/0/4	-4.0730809
C	-0.4239134	5.1498056	-1.8565250
C	-4.1946598	0.6260168	-4.2438838
C	-3.8897028	2.0965232	-2.2144057
C	-4.3432081	-1.7617285	-4.0628418
C	-4.2468124	-2.9482854	-1.8472000
C	1.5606206	-3.9316514	-4.2560393
С	0.1382438	-4.4130360	-2.2262955
С	3.7015200	-2.8639551	-4.0736893
С	4.6826161	-2.1949645	-1.8561095
С	1.6271125	4.0428426	-4.8787804
Н	3.4076455	2.8274156	-4.8655020
Н	4.5014941	2.9451043	-1.7111730
Н	4.2975215	1.7204938	-2.9794562
Н	3.3458251	1.6168151	-1.4756740
Н	-0.1494572	5.2183201	-4.5412915
Н	-1.0588141	4.3871590	-1.3744013
Н	-1.0490914	5.8023767	-2.4799777
Н	0.0068882	5.7546111	-1.0431714
С	-4.3283283	-0.6173213	-4.8681239
Н	-4.1689881	1.5326243	-4.8545224
Н	-4.8098964	2.4195136	-1.7002866
Н	-3.6489032	2.8564662	-2.9693909
н	2 0011 101	2.0845980	-1 4661633
	-3.0811481		1.1001055
Н	-3.0811481 -4.4540774	-2.7439119	-4.5310384
H H	-4.4540774 -3.2666876	-2.7439119 -3.1160310	-4.5310384 -1.3692212
H H H	-3.0811481 -4.4540774 -3.2666876 -4.5011686	-2.7439119 -3.1160310 -3.8159420	-4.5310384 -1.3692212 -2.4699772

Н	-0.2569210	-3.7089944	-1.4766521
Н	4.6061233	-2.4652911	-4.5416141
Н	4.3358829	-1.2661216	-1.3721330
Н	5.5594483	-1.9751576	-2.4791783
Н	4.9936615	-2.8709364	-1.0441396
С	1.5628141	4.1522850	-6.3782260
С	-4.3968768	-0.7272065	-6.3673670
С	2.8296186	-3.4191812	-6.3792034
Н	2.5623547	4.0918538	-6.8309290
Н	1.0937512	5.0947919	-6.6943034
Н	0.9616471	3.3293923	-6.7987702
Н	-4.8481972	0.1678308	-6.8178087
Н	-4.9779562	-1.6058248	-6.6813973
Н	-3.3851847	-0.8339476	-6.7922151
Н	2.2813681	-4.2568955	-6.8323596
н	3.8806791	-3.4792205	-6.6952467
Н	2.4132440	-2.4888022	-6.7992508
SIM	1esPHGatBua	CL (6)	
Ga	6.6426355	2.8415017	7.6661499
Р	4.1911808	3.0369881	7.1193648
CI	7.4488127	4.9915930	7.7589247
C	6.6495620	2.0669212	9.5627158
C	7.5173322	1.8956060	6.0846561
C	8.1024637	1.6981464	9.8896557
C	3.7769979	4.7741680	6.9470919
H	3.7698939	3.0098571	8.4814686
н	5.5733887	6.0932661	9.2858058
С	6.1478279	3.0926487	10.5766559
C	5.7749438	0.8109670	9.6313974
C	7.1145447	2.5639163	4.7728459
C	7.0645268	0.4318435	6.0711522
С	9.0405376	1.9716786	6.2407971
Н	8.4937454	0.9188840	9.2176937
Н	8.1742838	1.3044466	10.9230475
н	8.7719498	2.5697123	9.8222493
Ν	3.2645471	5.5882639	7.9033136
Ν	3.8803654	5.4628269	5.7838526
С	4.9227492	6.5568355	10.0420643
H	6.7450612	4.0160308	10.5518253
н	6.2066264	2.6787977	11.6031590
н	5.0982173	3.3692824	10.3993221
Н	4.7168569	1.0300422	9.4171293
Н	5.8127139	0.3726347	10.6483407
Н	6.1048250	0.0316511	8.9281009
Н	6.0260438	2.5436423	4.6113259
Н	7.5845995	2.0456175	3.9128395
Н	7.4383456	3.6137387	4.7409561
Н	7.3782190	-0.1086099	6.9775803
Н	7.5054075	-0.1000746	5.2048212
Н	5.9696406	0.3401135	5.9855849
Н	9.3908273	3.0143541	6.2790108
Н	9.5384707	1.4820346	5.3804395
Н	9.3930149	1.4664884	7.1526477
С	2.9052772	5.2428845	9.2427213
С	2.8559172	6.8868532	7.3381879
С	4.1621816	4.9257287	4.4899486
С	3.5554208	6.8892461	5.9784496
С	3.6945707	5.7321264	10.3003069

H 5.5026215 6.6803493 10.9652281

C2.7026152-3.4214728-4.8797601H0.7622831-4.3610783-4.8673538H0.3211416-5.3718061-1.7137857H-0.6403160-4.5850496-2.9810926

Н	4.6632661	7.5645557	9.6786376
С	1.7380163	4.4902956	9.4778376
Н	3.1834502	7.7088022	7.9858071
Н	1.7565437	6.9245885	7.2544817
С	3.2074032	4.0923067	3.8691873
С	5.3399468	5.3135711	3.8214798
Н	2.9138171	7.2431169	5.1620411
н	4.4771530	7.4893860	5.9924064
С	3.3093694	5.4143961	11.6068646
С	1.4028374	4.1934937	10.8027140
C	0.8720076	4.0100106	8.3467396
c	3 4993244	3 5912625	2 5964059
c	1 89/9051	3 75917/7	4 5206285
c	5 5603712	4 8015176	2 5/00/05
c	6 24/0925	4.0013170	1 1522602
ц	2 0 2 5 0 2 4 5	5 7745222	4.4552052
п С	3.9250245	5.7745225	12.4549200
L L	2.1790444	4.0308019	11.8/98419
н	0.5031466	3.6036287	10.9964935
н	0.6340836	4.8186089	7.6399816
Н	-0.0/19008	3.6025750	8.7297633
Н	1.3757697	3.2198424	7.7674179
Н	2.7698139	2.9360719	2.1131449
С	4.6777349	3.9224109	1.9194014
Н	2.0268253	3.0086307	5.3161145
Н	1.1912393	3.3575890	3.7805934
Н	1.4380272	4.6433159	4.9891577
Н	6.4919670	5.0816053	2.0261644
Н	6.0233327	7.2868925	4.3878689
Н	7.3096609	6.1587542	3.9354210
н	6.5088450	5.9951926	5.5140871
С	1.8220486	4.2654577	13.2934609
C	4.9878366	3.3325744	0.5707212
н	0.7438173	4.0856372	13.4020662
н	2 1188909	5 0506839	14 0021497
н	2 3416285	3 3411880	13 5935212
н	5 5821851	2 /109927	0.6797502
н	5 5728244	1 0260848	-0.0460385
 Ц	1 0709021	2 0697214	0.0403383
	4.0708031	5.0087214	0.0203327
CIN		~ I (7)	
SIIV			7 6664 400
Ga	6.6426355	2.8415017	7.6661499
CI	3.4278206	-11.6/16445	6.4244907
AI	5.3181357	-12.8238080	6.3089833
Н	1.8810399	-13.2396936	4.8812662
Р	4.7572192	-15.2389421	6.6945840
С	6.5374099	-12.2849968	7.8263509
С	6.0088777	-12.8425512	4.4014615
С	1.2501507	-13.7475432	4.1372796
С	2.9939457	-15.4011088	6.9865284
Н	4.6188330	-15.5531283	5.3107175
С	5.9060857	-12.6540826	9.1715671
С	7.8886774	-13.0020731	7.7025146
С	6.7636443	-10.7654093	7.7974962
С	4.8678149	-13.0566658	3.4020408
C	7.0686321	-13.9302595	4.1792259
c	6.6451144	-11.4681203	4.1336987
c	1 8225709	-15 0698850	2 7275257
ц	0.2/02/20	-12 8662040	1 5020206
LI LI	0.249240/	12 0003048	4.3023230
i I Ni	1.14/4U3Z	15 205/3202	3.20/1033
IN N	2.4140810	-13.2834338	0.2054070
	2.04/0/58	-15./194681	0.0094539
н	4.9423539	-12.1452042	9.320/516
н	0.5085153	-12.3550939	10.0100910
н	5./291975	-13./365606	9.2686441

Н	7.7769960	-14.0990349	7.7005144
Н	8.5463919	-12.7440460	8.5573545
Н	8.4269792	-12.7194093	6.7844233
Н	7.2603565	-10.4324453	6.8733430
Н	7.4077023	-10.4539070	8.6449112
Н	5.8157541	-10.2114849	7.8834387
н	4,3919911	-14.0418699	3.5206749
н	5.2490904	-13.0048070	2.3617457
н	4 0810330	-12 2940904	3 5061893
н	7 9313777	-13 82108/3	1 8535368
н	7 4570495	-13 8856700	3 1/151/0
 Ц	6 6611211	14 0442016	1 2217950
LI LI	E 0226E20	10 6422010	4.3217833
п u	5.9520550 6.001E767	-10.0452605	4.2955777
	0.9915/0/	-11.4007497	3.0823745
H C	7.5214110	-11.2842946	4.7745768
C	2.2428943	-16.0159853	4.6848413
C	1.99991//	-15.3899131	2.3763909
С	3.0800509	-15.1716968	9.4650203
С	0.9456167	-15.4005005	8.1127026
С	0.7440929	-15.9742430	6.7085224
С	2.7739475	-17.2654433	4.3106279
Н	1.7006134	-14.6554983	1.6244639
С	2.5559464	-16.6058804	1.9648827
С	3.7961703	-16.2796126	9.9653569
С	2.9312961	-13.9929713	10.2211758
Н	0.4798504	-14.4101695	8.2238555
Н	0.5704139	-16.0585297	8.9063774
Н	0.5395184	-17.0580448	6.7143175
Н	-0.0594280	-15.4727196	6.1557662
С	2.9275339	-17.5320709	2.9464862
С	3.1771121	-18.2855958	5.3387279
С	2.7749545	-16.8980640	0.5053787
С	3.8752584	-17.5809360	9.2179725
C	4.4253824	-16.1492004	11.2075364
Ċ	3.5623914	-13.9257846	11.4667871
c	2 1371194	-12 8214885	9 7161625
н	3 3459389	-18 4955905	2 6441100
н	4 0655561	-17 95/1/198	5 89969/8
 Ц	2 4144002	10 2425710	4 9506074
 Ц	2 201/755	19.2433710	6.0770096
 Ц	2.3014733	16 / 100255	0.0779080
	2.0086310	17 0701155	-0.1193142
	2.7646452	-17.9781155	0.3053522
н	3.7531606	-16.511/292	0.1766447
H	2.8986358	-17.8718838	8.8036495
н	4.2218360	-18.3832812	9.8813650
H	4.5736824	-17.5077987	8.3692353
С	4.3316388	-14.9794531	11.9690530
Н	4.9920118	-16.9985819	11.5979367
Н	3.4692328	-13.0054506	12.0488875
Н	2.3156019	-12.6384002	8.6471986
Н	2.4088401	-11.9110122	10.2653015
Н	1.0553088	-12.9769598	9.8588620
С	5.0577464	-14.8489141	13.2799499
Н	6.0498944	-14.3942094	13.1273775
Н	5.2147770	-15.8281888	13.7523931
Н	4.5089255	-14.2057649	13.9815351

References

- [1] M. R. Willcott, J. Am. Chem. Soc. 2009, 131, 13180.
- [2] K. M. Kuhn, R. H. Grubbs, Org. Lett. 2008, 10, 2075–2077.
- [3] F. F. Puschmann, D. Stein, D. Heift, C. Hendriksen, Z. A. Gal, H. Grützmacher, *Angew. Chemie Int. Ed.* **2011**, *50*, 8420–8423.
- [4] P. J. Bailey, R. A. Coxall, C. M. Dick, S. Fabre, L. C. Henderson, C. Herber, S. T. Liddle, D. Loroño-González, A. Parkin, S. Parsons, *Chem. - A Eur. J.* 2003, 9, 4820–4828.
- [5] a) M. Kapitein, M. Balmer, C. von Hänisch, *Z. Anorg. Allg. Chem.* **2017**, in press; b) H. Lehmkuhl, O. Olbrysch, *H.* Nehl, *Liebigs Ann. Chem.* **1973**, 708-714.
- [6] G. M. Sheldrick, SHELXL14, Program for the Refinement of Crystal Structures, Universität Göttingen, 2014.
- [7] O. V. Dolomanov, L. J. Bourhis, R. J. Hildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- [8] H. Putz, K. Brandenburg, Diamond Crystal and Molecular Structure Visualization, Crystal Impact, Kreuzherrenstr. 102, 53227 Bonn, Germany.
- [9] TURBOMOLE V7.1 2016, a development of University of Karlsruhe and. Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007.
- [10] J. P. Perdew, K. Burke; M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865–3868.
- [11] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
- [12] A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 1993, 2, 799-805.
- [13] K. B. Wiberg, J. D. Hammer, K. W. Zilm, J. R. Cheeseman and T. A. Keith, J. Phys. Chem. A, 1998, 102, 8766-8773.
- [14] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys, 2010, 132, 154104.
- [15] A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100; J. P. Perdew, Phys. Rev. B, 1996, 33, 8822-8824.
- [16] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- [17] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.