Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Co-Catalyzed Highly Selective C(sp³)-H Nitration

Yao Zhou, Zhonghe Tang and Qiuling Song*

Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Materials Science & Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China

Fax:86-592-6162990; email: qsong@hqu.edu.cn

Table of Contents

1. General information	3
2. General procedure for starting materials	4
3. Screening of Conditions	5
4. General process for the synthesis of 2	6
5. The reaction of other heterocycles	7
6. Crystal data of 2a	7
7. Characterization data for products	9
8. NMR spectroscopic data	16

1. General information

All chemicals were purchased from Adamas Reagent, energy chemical company, J&K Scientific Ltd, Bide Pharmatech Ltd and Tansoole. The reagents and solvents were purchased from commercial suppliers and used without further purification. Reactions were monitored by TLC or GC-MS analysis. Flash column chromatography was performed over silica gel (200-300 mesh).

 1 H-NMR and 13 C-NMR spectra were recorded in CDCl₃ on a Bruker Avance 500 spectrometer (500 MHz 1 H, 125 MHz 13 C) at room temperature. Chemical shifts were reported in ppm on the scale relative to CDCl₃ (δ = 7.26 for 1 H-NMR , δ = 77.00 for 13 C-NMR) as an internal reference. High resolution mass spectra were recorded using a Thermo Fisher Scientific LTQ FT Ultra or Waters Micromass GCT Premier instrument. Coupling constants (J) were reported in Hertz (Hz).

General procedure for starting materials 2,

In a dried sealed tube were placed amidine S1 (2 mmol, 1 equiv) and K₃PO₄ (636.8 mg, 3 mmol, 1.5 equiv) in CH₃CN (10 mL). The resulting mixture was stirred at room temperature for 1 h. Then, cyclobutanones S2 (3 mmol, 1.5 equiv) and BF₃•Et₂O (426 mg, 3 mmol, 1.5 equiv) in CH₃CN (5 mL) were added to the resulting solution. The tube was stirred at 80 °C for 18 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, petroleum ether:EtOAc = 50:1, v/v) to give the desired pyrimidine product S3.1

¹ Zhou, Y.; Tang, Z.; Song, Q. Adv. Synth. Catal. 2017, 359, 952.

3. Screening of Conditions

Table S1 Optimization of the reaction with 1a and t-BuONO

		^	NO ₂		NO ₂
N N		N N		N	N N
	t-BuONO			NO ₂	
	cat.			NO ₂	
4-	solvent, T	22		<u>'</u>	200 (N.D.)
1a		2a		a	3aa (N.D.)
entry ^a	catalyst	T (°C)	solvent	product	yield (%) ^b
1	Pd(OAc) ₂	100	PhCl	3a	67 ^c
2^d	[IrCp*Cl ₂] ₂	100	PhCl	N.D.	-
3 ^e	[RhCp*Cl ₂] ₂	100	PhCl	N.D.	-
4	Cp*Co(CO)I ₂	100	PhCl	2a	47
5	Cu(OAc) ₂	100	PhCl	2a	30
6	Co(OAc) ₂	100	PhCl	2a	62 ^c
7	Col ₂	100	PhCl	2a	38
8	CoBr ₂	100	PhCl	2a	56
9	Co(acac) ₂	100	PhCl	2a	35
10	Co(OAc) ₂	80	PhCl	2a	50
11	Co(OAc) ₂	100	TFE	N.D.	-
12	Co(OAc) ₂	100	HFIP	N.D.	-
13	Co(OAc) ₂	100	PhMe	2a	30
14	Co(OAc) ₂	100	DCE	2a	71
15	Co(OAc) ₂	100	Dioxane	2a	46
16	Co(OAc) ₂	100	MeCN	2a	80 ^c
17 ^f	Co(OAc) ₂	100	MeCN	2a	77 ^c
18 ⁹	Co(OAc) ₂	100	MeCN	2a	50%
19 ^h	Co(OAc) ₂	100	MeCN	2a	78 ^c
20 ⁱ	Co(OAc) ₂	100	MeCN	2a	14
21	-	100	MeCN	2a	25 ^c

 $^{^{\}rm a}$ Reaction conditions: **1a** (0.15 mmol), *t*-BuONO (0.45 mmol), catalyst (10 mol%), under O₂, 24 h. $^{\rm b}$ GC yelids. $^{\rm c}$ Isolated yields. $^{\rm d}$ 10 mol% AgNTf₂ was added, under air. $^{\rm e}$ 10 mol% AgSF₆ was added, under air. $^{\rm f}$ 20 mol% Co(OAc)₂. $^{\rm g}$ 5 mol% Co(OAc)₂. $^{\rm h}$ under air. $^{\rm i}$ under N₂

Table S2 Screening of other nitrating agents

Nitro source
$$Co(OAc)_2$$

$$CH_3CN, 100 °C$$

$$N$$
N
2a

Entry ^a	Nitro source	Oxidant	Yield of 2a ^b
1	Ce(NH4) ₂ (NO ₃) ₆	O_2	49%
2	AgNO ₃	O_2	N.D.
3	NaNO ₃	O_2	N.D.
4	$Cu(NO_3)_2$	O_2	31%
5	$Fe(NO_3)_3$ • $6H_2O$	O_2	40%
6	<i>i-</i> BuONO	O_2	76%
7	NaNO ₂	O_2	trace
8	AgNO ₂	O_2	trace
9 ^c	AgNO ₂	$K_2S_2O_8$	17%

Reaction conditions: **1** (0.2 mmol), Nitro source (0.6 mmol), 100 $^{\rm o}$ C, under O₂, 24h. $^{\rm b}$ GC yield. $^{\rm c}$ K₂S₂O₈ (0.6 mmol)

4. General process for the synthesis of 2

To a mixture of $Co(OAc)_2$ (5.3 mg, 10 mol%) and **1** (0.3 mmol, 1 equiv) in CH₃CN (1 mL) was added *t*-BuONO (92 mg, 0.9 mmol, 3 equiv). The resulting mixture was stirred under O₂ at 100 °C for 24 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 25:1, v/v) to give the desired product **2**.

5. The reaction of other heterocycles

6. Crystal data of 2a

Crystallographic data for compound **2a** (CCDC-1526577) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:deposit@ccdc.cam.ac.uk).

Displacement ellipsoids are drawn at 30% probability level

Bond precision:	C-C = 0.0062 A	Wavelength=0.71073
-----------------	-----------------	--------------------

alpha=89.395(10) beta=88.058(10) gamma=89.171(10)

Temperature: 295 K

	Calculated	Reported
Volume	1219.9(2)	1219.9(3)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C13 H13 N3 O2	C13 H13 N3 O2
Sum formula	C13 H13 N3 O2	C13 H13 N3 O2
Mr	243.26	243.26
Dx,g cm-3	1.324	1.325
Z	4	4
Mu (mm-1)	0.092	0.092
F000	512.0	512.0
F000'	512.22	
h,k,lmax	10,13,22	9,13,21
Nref	6545	4325
Tmin,Tmax	0.957,0.973	0.743,1.000
Tmin'	0.955	

Correction method= # Reported T Limits: Tmin=0.743 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 0.661 Theta(max)= 29.106

R(reflections)= 0.0862(2451) wR2(reflections)= 0.2856(4325)

S = 1.056 Npar= 329

7. Characterization data for products

4-(2-nitropropan-2-yl)-2-phenylpyrimidine (2a)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 25:1, which is product as a white solid (58.3 mg, 80%). ¹H NMR (500 MHz, CDCl₃) δ 8.86 (d, N=5.2 Hz, 1H), 8.49 – 8.42 (m, 2H), 7.54 – 7.47 (m, 3H), 7.21 (d, J = 5.2 Hz, 1H), 2.06 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ = 166.8, 164.4, 158.6, 136.8, 131.2, 128.6, 128.3, 114.3, 91.1, 26.0.

HRMS (EI, m/z) calcd for $C_{13}H_{13}N_3O_2[M]^+$: 243.1008; found: 243.1011.

4-(2-nitropropan-2-yl)-2-(p-tolyl)pyrimidine (2b)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a white solid (53.2 mg, 69%). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.82$ (d, $J_N = 5.2$ Hz, 1H), 8.34 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 5.2 Hz, 1H), 2.42 (s, 3H), 2.05 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 164.5, 158.5, 141.5, 134.2, 129.3, 128.3, 113.9, 91.1, 26.0, 21.5. HRMS (EI, m/z) calcd for C₁₄H₁₅N₃O₂ [M]⁺: 257.1164; found: 257.1162.

2-([1,1'-biphenyl]-4-yl)-4-(2-nitropropan-2-yl)pyrimidine (2c)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, $\frac{1}{2}$) to give the product as a white solid (79.6 mg, 84%). HNMR (500 MHz, CDCl₃) $\frac{1}{8} = \frac{1}{8} = \frac{1}{8} = \frac{1}{2} = \frac{1}{$

2-(3-methoxyphenyl)-4-(2-nitropropan-2-yl)pyrimidine (2d)

The reaction was performed by following the general procedure. The residue was purished by flash column chromatograph (silica gel, petroleum ether:AcOEt = 10:1, \sqrt{v}) to give the product as a yellow oil (54.8 mg, 67%). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.85$ (d, $J_N = 3.2$ Hz, 1H), 8.08 - 8.04 (m, 1H), 8.01 (dd, J = 2.6, 1.5 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.20 (d, J = 5.2 Hz, 1H), 7.05 (ddd, J = 8.2, 2.7, 0.9 Hz, 1H), 3.90 (s, 3H), 2.06 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 166.7$, 164.2, 159.9, 158.5, 138.2, 129.6, 120.9, 117.4, 114.4, 113.1, 91.1, 55.4, 26.0. HRMS (EI, m/z) calcd for $C_{14}H_{15}N_3O_3$ [M]⁺: 273.1113; found: 273.1109.

2-(2-ethoxyphenyl)-4-(2-nitropropan-2-yl)pyrimidine (2e)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow oil (50.8 mg, 59%). H NMR (500 MHz, CDCl₃) δ =

8.88 (d, J = 5.3 Hz, 1H), 7.75 (d, J = 1.8 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.20 (d, J = 5.3 Hz, 1H), 7.07 – 6.99 (m, 2H), 4.10 (q, J = 7.0 Hz, 2H), 2.04 (s, 6H), 1.37 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ = 166.4, 165.6, 158.0, 157.4, 131.9, 131.3, 127.8, 120.5, 113.6, 113.3, 91.1, 64.4, 26.0, 14.8.

HRMS (ESI, m/z) calcd for C₁₅H₁₈FN₃O₃ [M+H]⁺: 288.1343; found: 288.1345.

4-(2-nitropropan-2-yl)-2-(3-(trifluoromethyl)phenyl)pyrimidine (2f)

The reaction was performed by following the general procedure. The residue was profiled by flast column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, v/v) to give the product as a yellow oil (77.4 mg, 83%). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.90$ (d, $\lambda = 5.2$ Hz, 1H), 8.73 (s, 1H), 8.64 (d, J = 7.9 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 5.2 Hz, 1H), 2.08 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 167.0$, 163.0, 158.8, 137.6, 131.5, 129.1, 127.7 (q, J = 7.4, 3.8 Hz), 125.2 (q, J = 7.8, 3.8 Hz), 115.0, 91.0, 26.0.

HRMS (EI, m/z) calcd for $C_{14}H_{12}F_3N_3O_2[M]^+$: 311.0882; found: 311.0884.

2-(4-nitrophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2g)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the product as a white solid (59.6 mg, 69%). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.94$ (d, J = 5.2 Hz, 1H), 8.62 (d, J = 9.0 Hz, 2H), 8.32 (d, J = 9.0 Hz, 2H), 7.34 (d, J = 5.2 Hz, 1H), 2.08 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 167.2$, 162.3, 158.9, 149.5, 142.4, 129.3, 123.7, 115.56, 90.9, 26.0.

HRMS (ESI, m/z) calcd for $C_{13}H_{13}N_4O_4[M+H]^+$: 289.0937; found: 289.0932.

ethyl4'-(4-(2-nitropropan-2-yl)pyrimidin-2-yl)-[1,1'-biphenyl]-4-carboxylate (2h)

The reaction was performed by following the general procedure. The residue was purified by flash column chromotograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the product as a white solid (95 mg, 81%. ¹H NMR (500 MHz, CDCl₃) δ =8.085c(dd, J = 5.2, J = Hz, J = 1Hz, J

HRMS (ESI, m/z) calcd for C₂₂H₂₂N₃O₄ [M+H]⁺: 392.1610; found: 392.1605.

2-(4-chlorophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2i)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 25:1, v/v) to give the product as a yellow oil (47.7 mg, 61%). H NMR (500 MHz, CDCl₃) δ = 8.95 (d, J = 5.2 Hz, 1H), 8.12 (td, J = 7.8, 1.8 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.29 (d, J = 14.3 Hz, 2H), 7.22 (dd, J = 11.2, 8.3 Hz, 1H), 2.08 (s, 6H). The NMR (125 MHz, CDCl₃) δ = 166.9, 163.1 (d, J = 5.0 Hz), 161.4 (d, J = 255.0 Hz), 158.5, 132.3 (d, J = 8.7 Hz), 132.0, 124.1 (d, J = 3.8 Hz), 117.0, 116.9, 114.4, 91.1, 26.0. HRMS (EI, m/z) calcd for C₁₃H₁₂FN₃O₂ [M]⁺: 261.0914; found: 261.0909.

2-(4-chlorophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2j)

The reaction was performed following the general procedure. The residue was purified by flash volumn chromatograph (silica gel, petroleum ether:EtOAc = 25:1, v/v) to give the product as a white solid (59.8 mg, 72%). ¹H NMR (500 MHz, CDCl₃) $\delta \stackrel{Cl}{=} 8.85$ (d, J = 5/2 Hz, 1H), 8.39 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 5.2 Hz, 1H), 2.05 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 166.8$, 163.5, 158.7, 137.5, 135.3, 129.7, 128.8, 114.5, 91.0, 26.0.

HRMS (EI, m/z) calcd for $C_{13}H_{12}CIN_3O_2[M]^+$: 277.0618; found: 277.0619.

2-(4-bromophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2k)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 20:1, $\frac{V_V}{V_S}$) to give the product as a white solid (74.1 mg, 77%). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.84 \pm (d, J_N 5.2 \text{ Hz}, 1\text{H})$, 8.32 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 5.2 Hz, 1H), 2.05 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 166.9$, 163.6, 158.7, 135.8, 131.8, 129.9, 126.0, 114.6, 91.0, 26.0.

HRMS (EI, m/z) calcd for $C_{13}H_{12}BrN_3O_2[M]^+$: 321.0113; found: 321.0118.

1-(2-fluorobenzyl)-3-(4-(2-nitropropan-2-yl)pyrimidin-2-yl)-1H-

pyrazolo[4,3-b]pyridine (21)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 2:1, v/v) to give the product as a yellow oil (77.6 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ = 8.17 (d) J = 5.2 Hz, 1H1), 8.76 (dd, J = 8.1, 1.6 Hz, 1H), 8.61 (dd, J = 4.5, 1.6 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.23 – 7.27 (m, 1H), 7.04 (dd, J = 16.9, 8.5 Hz, 2H), 6.96 (t, J = 8.0 Hz, 1H), 5.96 (s, 2H), 2.10 (s) 6H). ¹³C NMR (125 MHz, CDCl₃) δ = 167.2, 161.2, 160.8, 159.2, 151.6, 149.5, 140.7, 132.6, 129.3 (d, J = 8.0 Hz), 129.2 (d, J = 3.6 Hz),

124.1 (d, J = 3.6 Hz), 123.8 (d, J = 14.5 Hz), 118.8, 115.4, 115.3 (d, J = 6.6 Hz), 114.6, 90.8, 44.9 (d, J = 5.0 Hz), 26.0.

HRMS (ESI, m/z) calcd for $C_{20}H_{18}FN_6O_2[M+H]^+$: 393.1475; found: 393.1470.

4-(2-nitropropan-2-yl)-2-(1H-pyrazol-1-yl)pyrimidine (2m)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a yellow oil (54.5 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ = 8.86 (d, J = 0.9 Hz, 1H), 8.57 (dd, J = 2.7, 0.6 Hz, 1H), 7.86 (d, J = 0.9 Hz, 1H), 7.24 (d, J = 5.2 Hz, 1H), 6.52 (dd, J = 2.7, 1.6 Hz, 1H), 2.07 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ = 168.6, 160.6, 155.6, 144.1, 129.4, 114.0, 109.0, 90.7, 25.9. HRMS (EI, m/z) calcd for C₁₀H₁₁N₅O₂ [M]⁺: 233.0913; found: 233.0910.

4-(3-nitropentan-3-yl)-2-phenylpyrimidine (20)

The reaction was performed by following the general procedure. The residue was purified by flashneolumn chromatograph (silica gel, petroleum ether:EtOAc = 25:1, v/v) to give the product as a yellow oil (58.4 mg, 71%). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.87$ ($\delta_1 J = 5.2$ Hz, 1H), 8.50 - 8.45 (m, 2H), 7.52 (dd, J = 5.4, 1.9 Hz, 3H), 7.19 (d, J = 5.2 Hz, 1H), 2.57 (dq, J = 14.3, 7.1 Hz, 4H), 0.90 (t, J = 7.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 165.8$, 164.3, 158.1, 136.9, 131.1, 128.6, 128.3, 115.9, 98.6, 27.6, 8.1.

HRMS (ESI, m/z) calcd for $C_{15}H_{18}N_3O_2[M+H]^+$: 272.1399; found: 272.1394.

4-(2-nitrobutan-2-yl)-2-phenylpyrimidine (2p)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 25:1, v/v) to give the product as a yellow oil (59.6 mg, 77%). 1 H NMR (500 MHz, CDCl₃) δ = 8.85 (d, J = 5.2 Hz, 1H), 8.48 – 8.42 (m, 2H), 7.52 – 7.47 (m, 3H), 7.18 (d, J = 5.2 Hz,

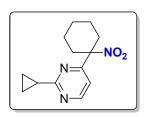
1H), 2.59 (dq, J = 14.7, 7.4 Hz, 1H), 2.51 – 2.40 (m, 1H), 2.00 (s, 3H), 0.99 (t, J = 7.4 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ = 166.6, 164.3, 158.4, 136.8, 131.2, 128.6, 128.3, 114.8, 95.0, 31.4, 22.5, 8.5.

HRMS (ESI, m/z) calcd for $C_{15}H_{18}N_3O_2[M+H]^+$: 258.1237; found: 272.1238.

4-(1-nitrocyclohexyl)-2-phenylpyrimidine (2q)

The reaction was performed by following the general procedure. The residue was purified by (lash) column chromatograph (silica gel, petroleum ether:EtOAc = 25:1,

12


v/v) to give the product as a yellow oil (62.8 mg, 74%). ¹H NMR (500 MHz, CDCl₃) δ = 8.83 (d, J = 5.2 Hz, 1H), 8.46 (dd, J = 6.6, 3.2 Hz, 2H), 7.49 (dd, J = 5.2, 1.9 Hz, 3H), 7.21 (d, J = 5.2 Hz, 1H), 2.78 (d, J = 14.1 Hz, 2H), 2.37 (t, J = 14.3 Hz, 2H), 1.81 – 1.66 (m, 4H), 1.61 – 1.55 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ = 166.2, 164.4, 158.6, 136.9, 131.2, 128.6, 128.3, 114.5, 94.9, 33.9, 24.4, 22.4. HRMS (ESI, m/z) calcd for C₁₆H₁₈N₃O₂[M+H]⁺: 284.1399; found: 284.1394.

4-(1-nitrocyclopentyl)-2-phenylpyrimidine (2r)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 25:1, $\frac{1}{2}$ v/v) to give the product as a yellow oil (64.4 mg, 80%). H NMR (500 MHz, CDCl₃) $\frac{1}{2}$ S.2 Hz, 1H), 8.52 – 8.42 (m, 2H), 7.55 – 7.45 (m, 3H), 7.17 (d, J = 5.2 Hz, HI), 3.06 – 2.96 (m, 2H), 2.61 – 2.50 (m, 2H), 1.99 – 1.89 (m, 4H). $\frac{13}{2}$ C NMR (125 MHz, CDCl₃) $\frac{1}{2}$ = 165.9, 164.3, 158.4, 136.9, 131.1, 128.6, 128.3, 115.0, 103.0, 37.7, 24.1.

HRMS (EI, m/z) calcd for $C_{15}H_{15}N_3O_2[M]^+$: 269.1164; found: 269.1168.

2-cyclopropyl-4-(1-nitrocyclohexyl)pyrimidine (2u)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: EtOAc = 25:1, v/v) to give the product as a yellow oil (50.4 mg, 69%). ¹H NMR (500 MHz, CDCl₃) δ = 8.57 (d, J = 5.3 Hz, 1H), 7.03 (d, J = 5.3 Hz, 1H), 2.66 (d, J = 14.1 Hz, 2H), 2.28 – 2.18 (m, 3H),

1.70 - 1.64 (m, 3H), 1.57 - 1.48 (m, 2H), 1.43 - 1.34 (m, 1H), 1.13 - 1.09 (m, 2H), 1.09 - 1.05 (m, 2H). 13 C NMR (125 MHz, CDCl₃) $\delta = 172.3$, 165.7, 157.9, 113.2, 94.7, 33.7, 24.3, 22.3, 18.2, 11.3.

HRMS (ESI, m/z) calcd for $[C_{13}H_{18}N_3O_2]$: 248.1394; found: 248.1390.

2-cyclopropyl-4-(1-nitrocyclopentyl)pyrimidine (2v)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: EtOAc = 25:1, v/v) to give the product as a yellow oil (56.6 mg, 81%). H NMR (500 MHz, CDCl₃) δ = 8.56 (d, J = 5.2 Hz, 1H), 7.00 (d, J = 5.2 Hz, 1H), 2.94 – 2.84 (m, 2H), 2.45 – 2.35 (m, 2H)N2-27 – 2.19 (m, 1H), 1.91 – 1.82 (m, 4H), 1.13 – 1.09 (m, 2H), 1.09 – 1.04 (m, 2H). H NMR (125 MHz, CDCl₃) δ = 172.2, 165.4, 157.7, 113.8, 102.8, 37.4, 23.9, 18.2, 11.3.

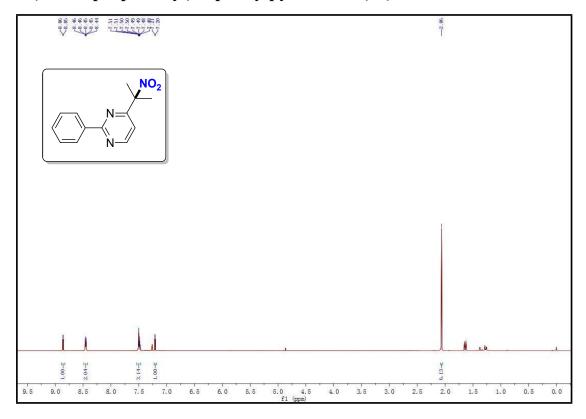
HRMS (ESI, m/z) calcd for $C_{12}H_{16}N_3O_2[M+H]^+$: 234.1237; found: 234.1232.

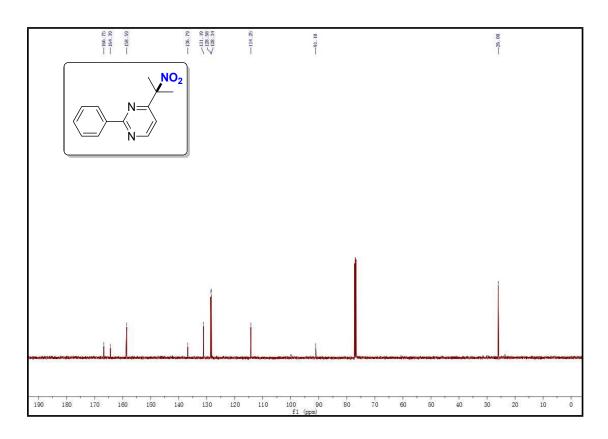
2-cyclopropyl-4-(2-nitropropan-2-yl)pyrimidine (2w)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: EtOAc = 25:1, $\sqrt{}$) to give the product as a yellow oil (46.6 mg, 75%). H NMR (500 MHz, CDCl₃) δ 8.60 (d, M=5.2 Hz, 1H), 7.04 (d, J=5.3 Hz, 1H), 2.27 – 2.21 (m, 1H), 1.94 (s, 6H), 1.13 – 1.09 (m, 2H), 1.09-1.05 (m, 2H). 13 C NMR (125 MHz, CDCl₃) δ = 172.3, 166.3, 157.9, 113.0, 90.9, 25.89, 18.19, 11.39.

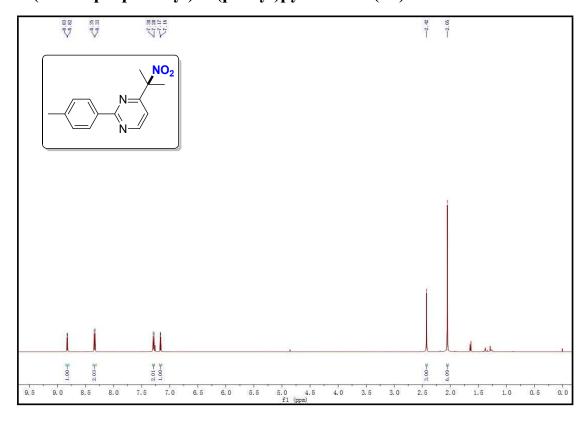
HRMS (ESI, m/z) calcd for $C_{10}H_{14}N_3O_2[M+H]^+$: 208.1081; found: 208.1080.

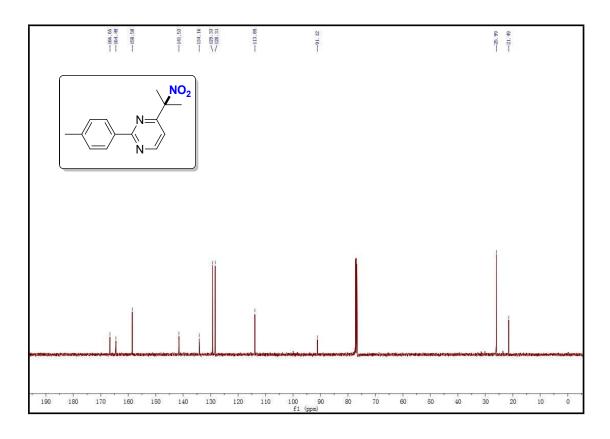
2-(2-cyclopropylpyrimidin-4-yl)propan-2-amine (5) (CAS: No.

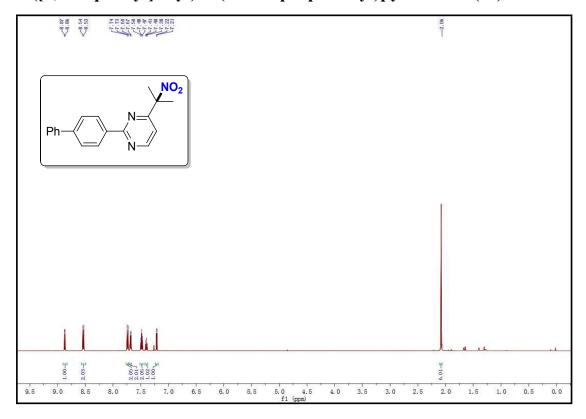

 $1192801-28-7)^2$

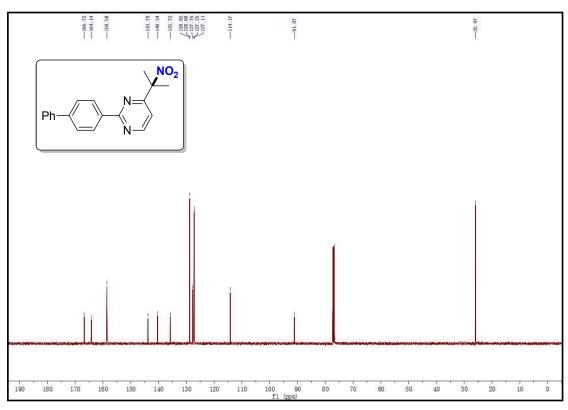

2w (0.3 mmol) and NiCl₂ (10 mol %) were dissolved in MeOH (2 mL), NaBH₄ (4.5 mmol) was stowly added (in portions) at 0 °C and the mixture was continued to react for another 3h. Upon completion of the reaction, the solvent was evaporated under reduced bressure and the residue was purified by flash column chromatography on silica gel using EtoAc as eluent to give the product **5** as a yellow oil (47.5 mg, 89%). ¹H NMR (500 MHz, CDCl₃) δ = 8.48 (d, J = 5.3 Hz, 1H), 7.13 (d, J = 5.3 Hz, 1H), 4.48 (br s, 2H), 2.24 – 2.19 (m, 1H), 1.51 (s, 6H), 1.15 – 1.12 (m, 2H), 1.03 – 0.99 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ = 173.6, 171.5, 157.2, 112.3, 54.7, 29.1, 18.1, 10.9.

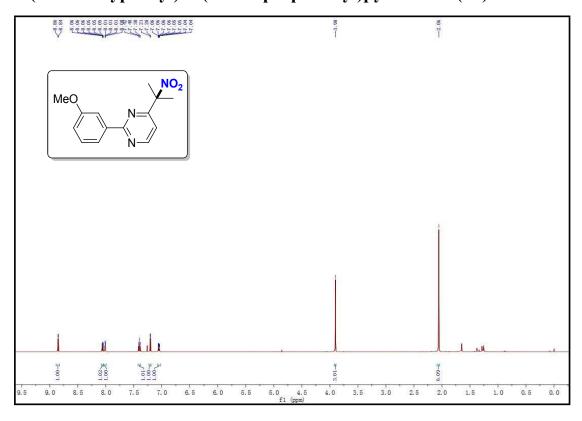
² B. Schaus and J. Mehnert, 2009, WO2009/131815 A1.

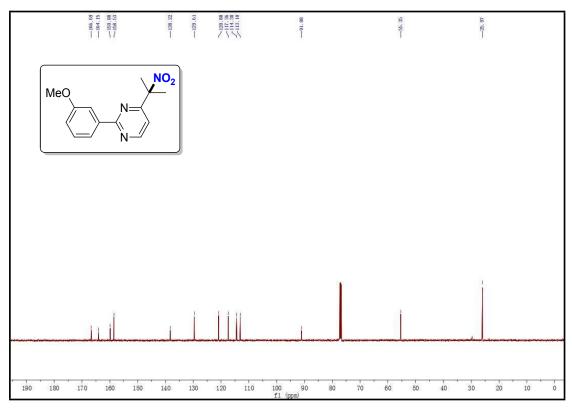

8. NMR spectroscopic data

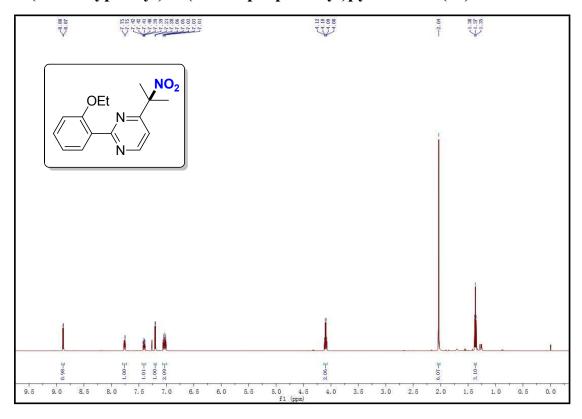

4-(2-nitropropan-2-yl)-2-phenylpyrimidine (2a)

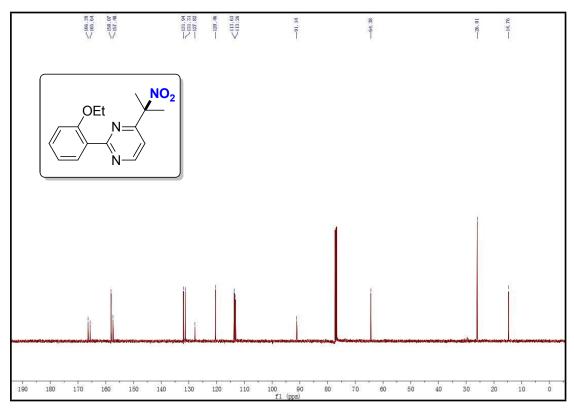


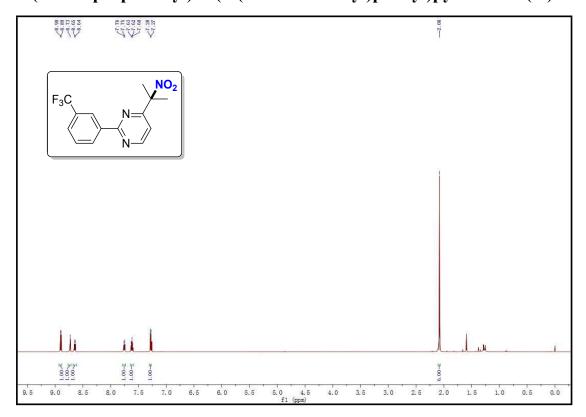

4-(2-nitropropan-2-yl)-2-(p-tolyl)pyrimidine (2b)

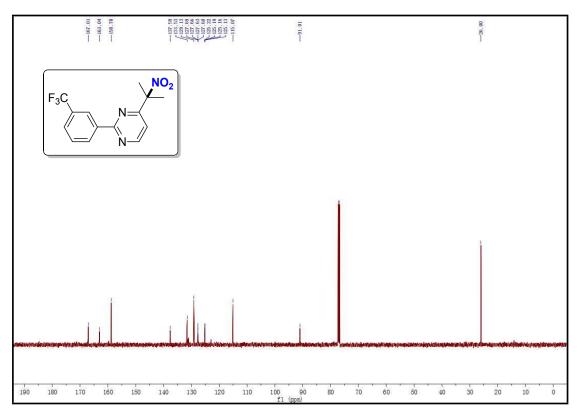


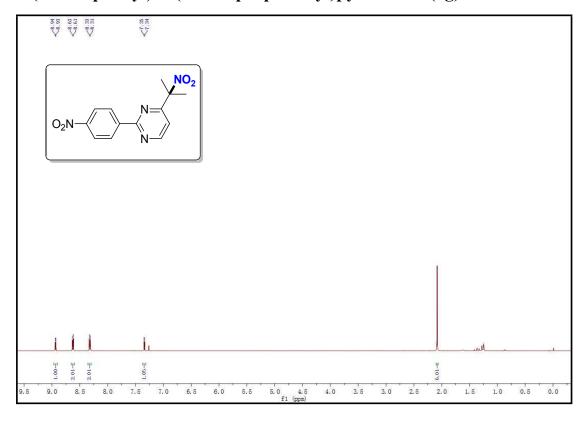

2-([1,1'-biphenyl]-4-yl)-4-(2-nitropropan-2-yl)pyrimidine (2c)

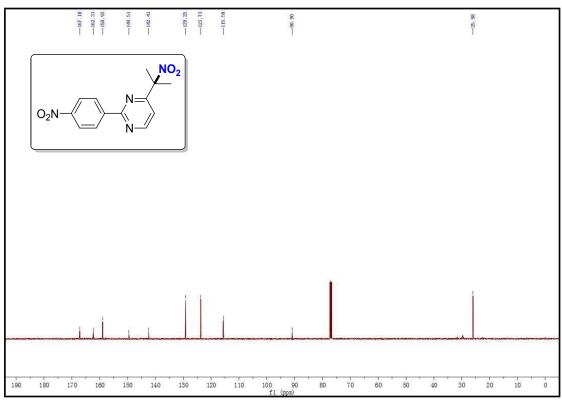


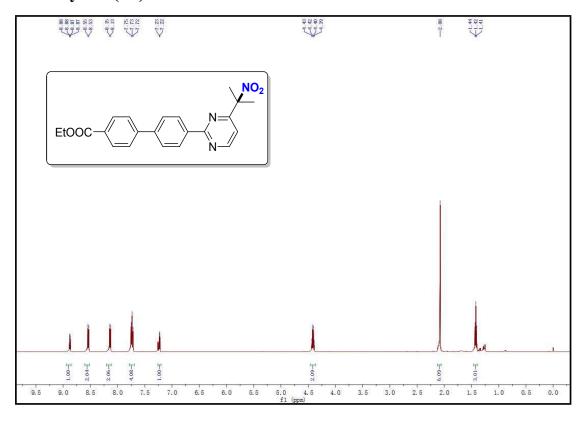

2-(3-methoxyphenyl)-4-(2-nitropropan-2-yl)pyrimidine (2d)

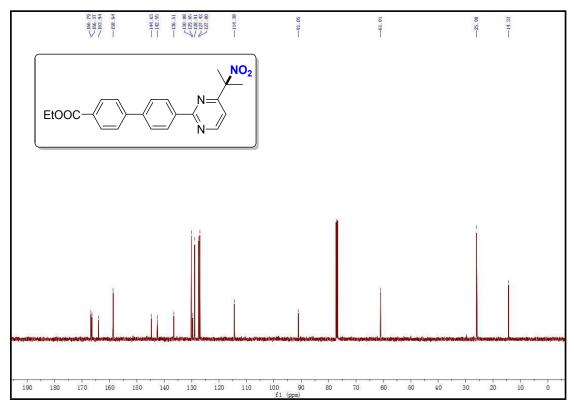


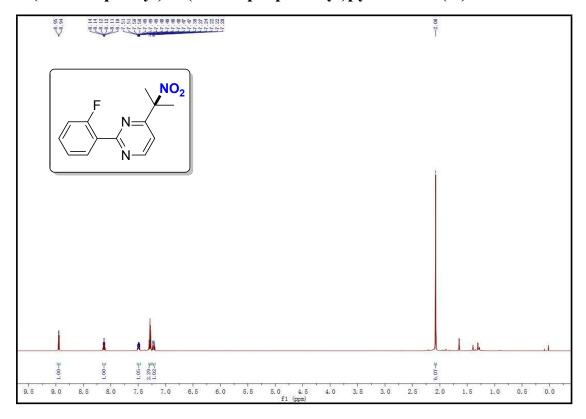

2-(2-ethoxyphenyl)-4-(2-nitropropan-2-yl)pyrimidine (2e)

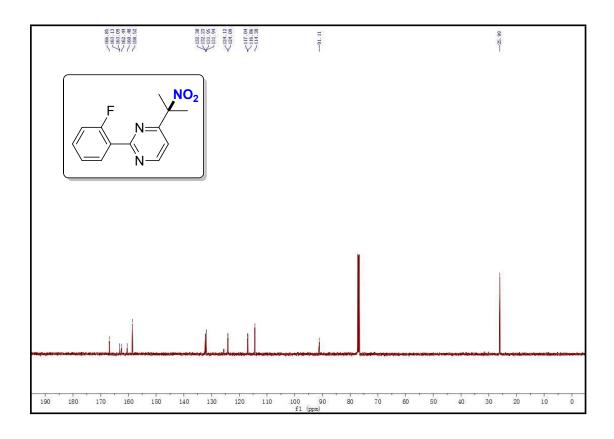


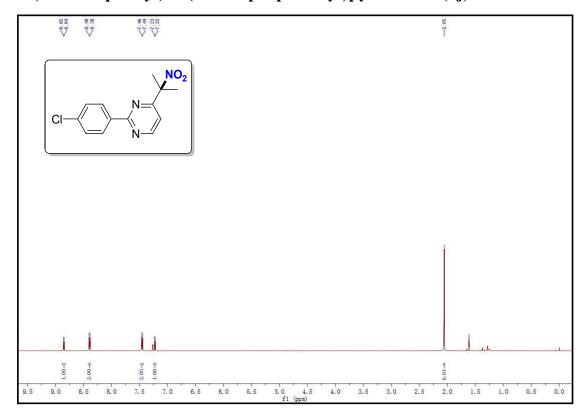

4-(2-nitropropan-2-yl)-2-(3-(trifluoromethyl)phenyl)pyrimidine (2f)

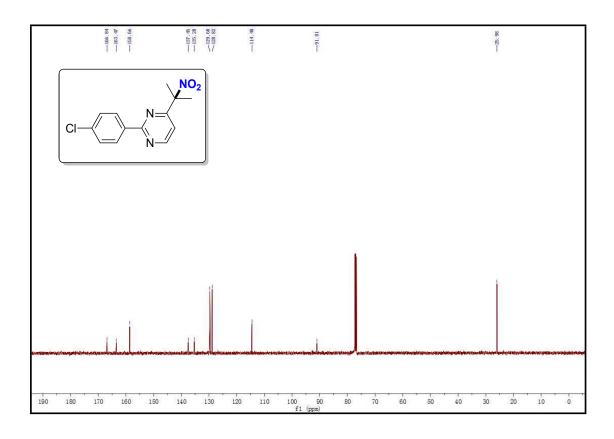


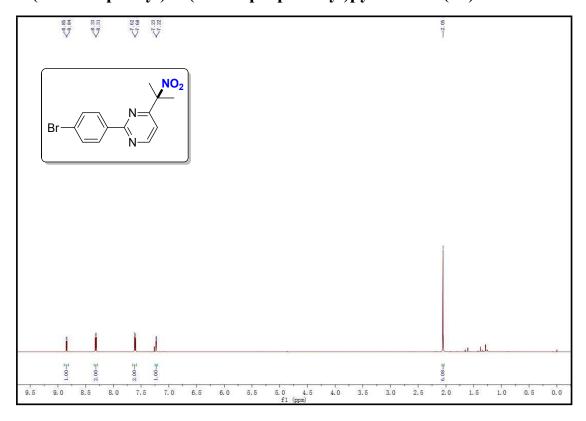

2-(4-nitrophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2g)

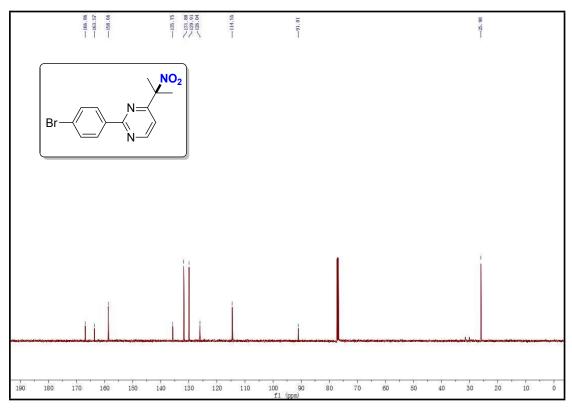


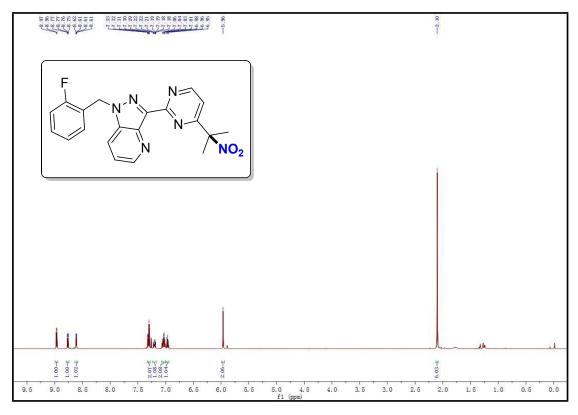

ethyl4'-(4-(2-nitropropan-2-yl)pyrimidin-2-yl)-[1,1'-biphenyl]-4-carboxylate (2h)

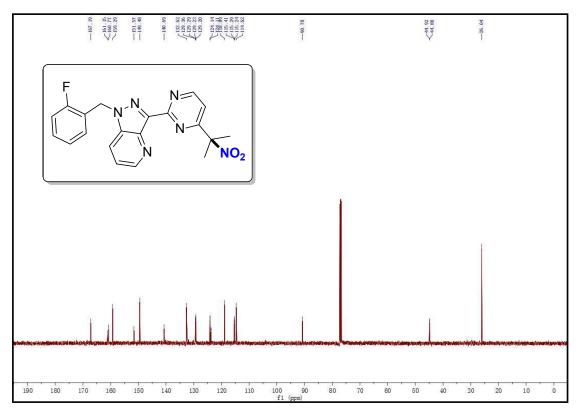


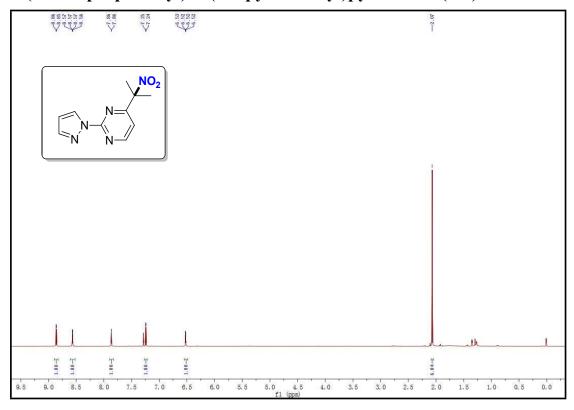

2-(4-chlorophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2i)

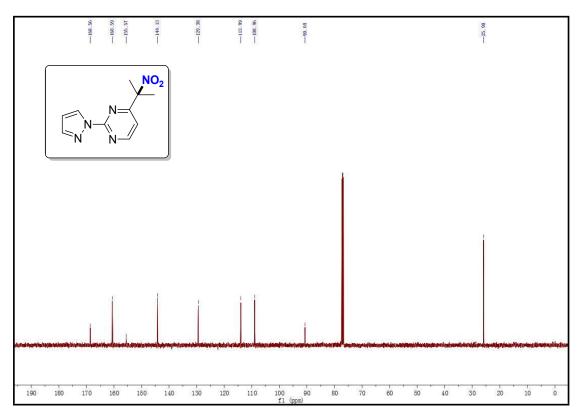


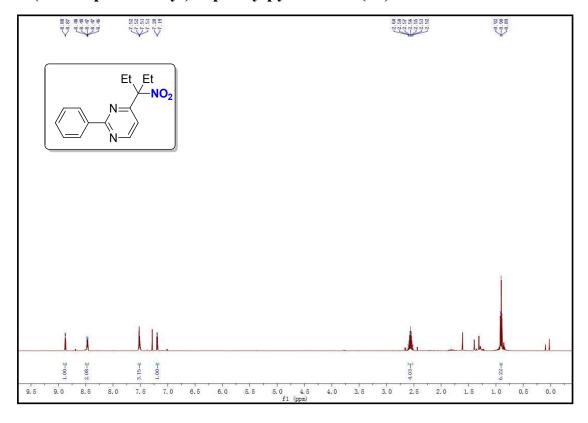

2-(4-chlorophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2j)

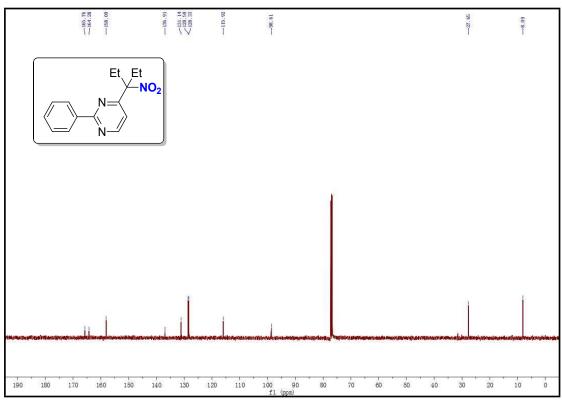


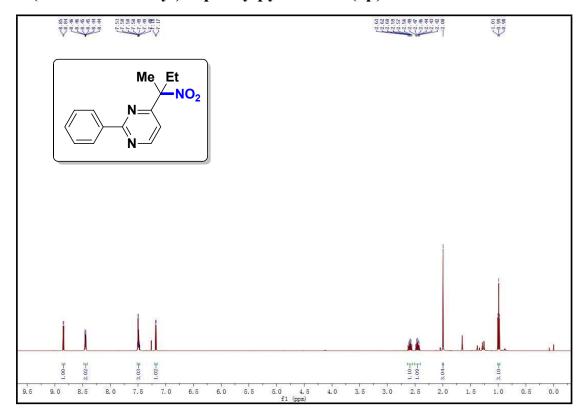

2-(4-bromophenyl)-4-(2-nitropropan-2-yl)pyrimidine (2k)

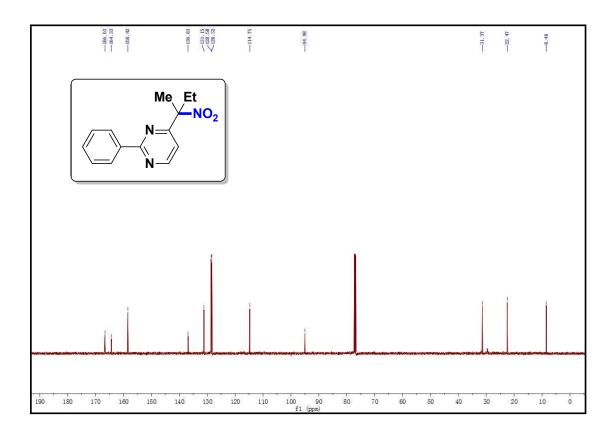


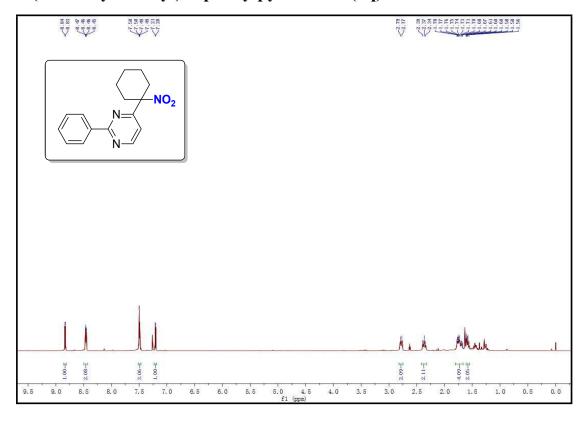

1-(2-fluorobenzyl)-3-(4-(2-nitropropan-2-yl)pyrimidin-2-yl)-1H-pyrazolo[4,3-b]pyridine (2l)

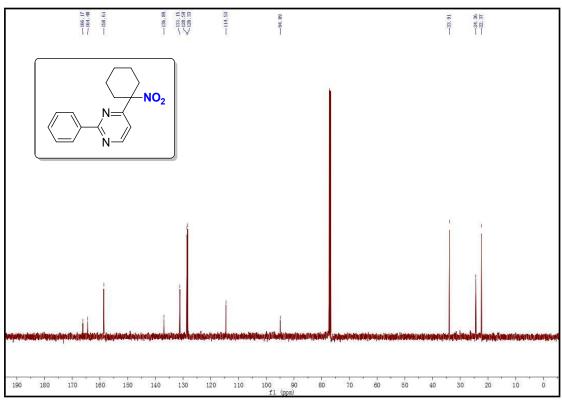


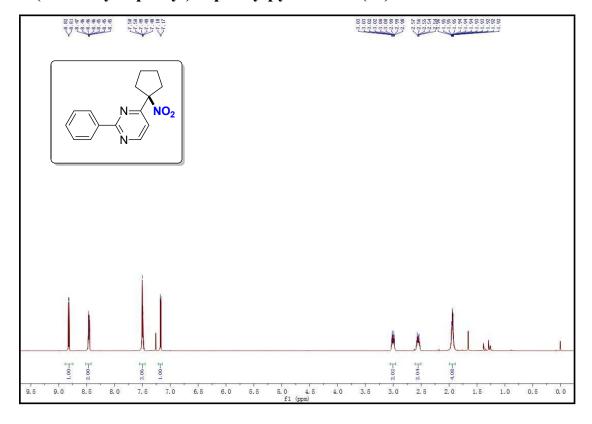

$\hbox{$4$-(2-nitropropan-2-yl)-2-(1H-pyrazol-1-yl)pyrimidine (2m)$}$

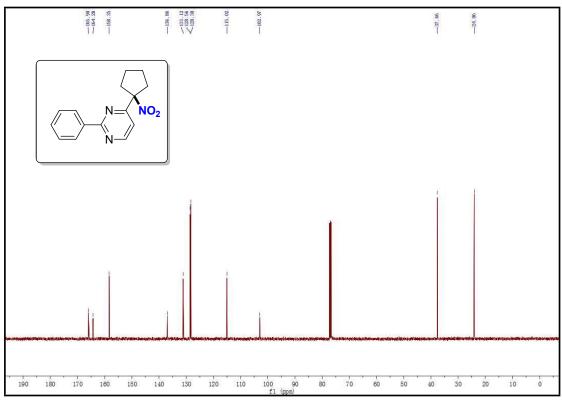


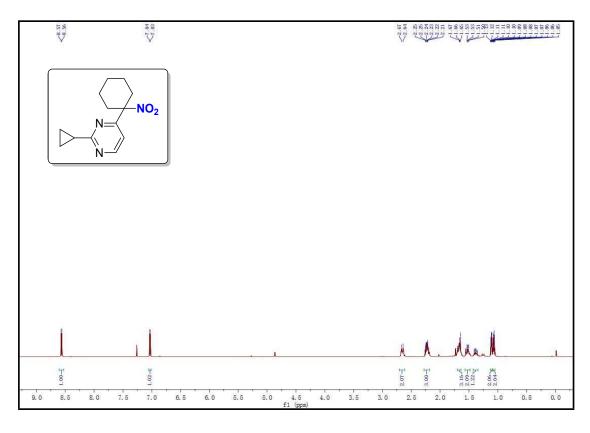

4-(3-nitropentan-3-yl)-2-phenylpyrimidine (20)

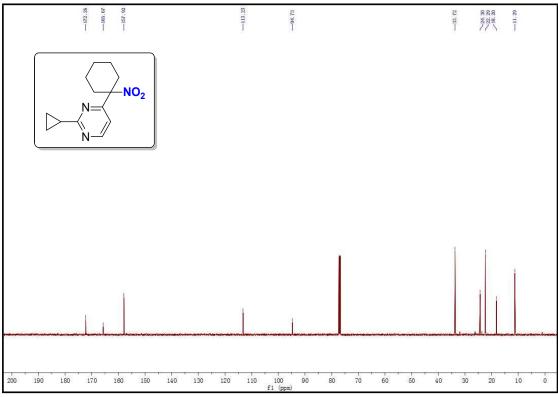


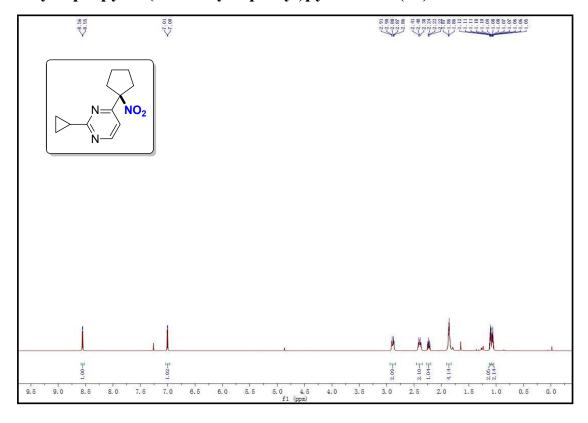

4-(2-nitrobutan-2-yl)-2-phenylpyrimidine (2p)

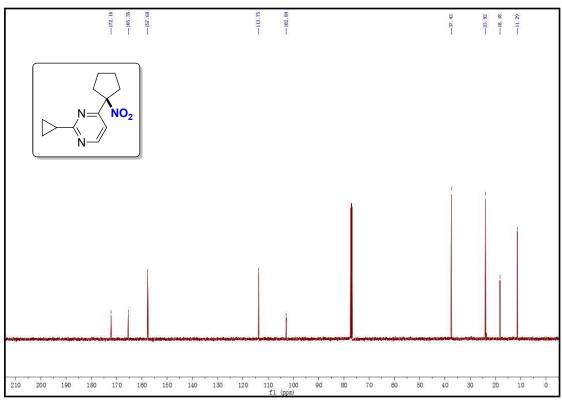


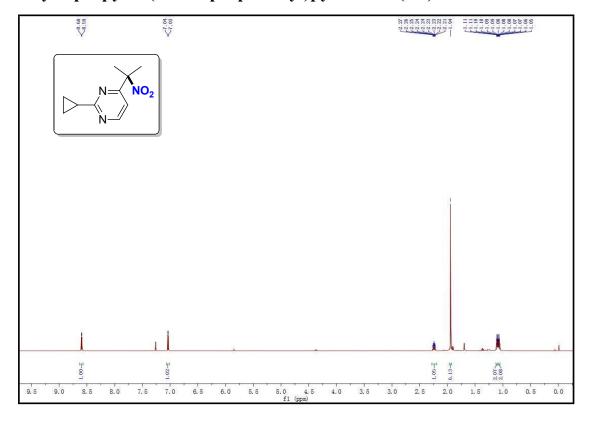

4-(1-nitrocyclohexyl)-2-phenylpyrimidine (2q)

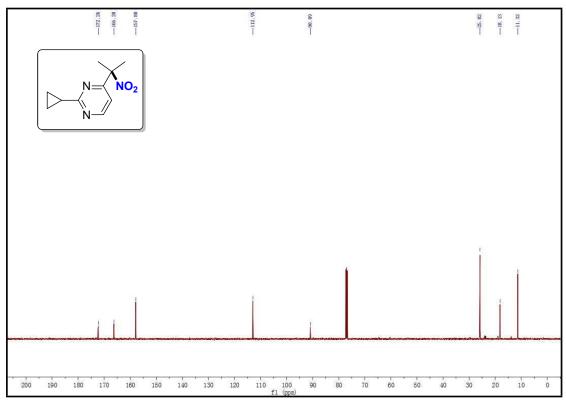


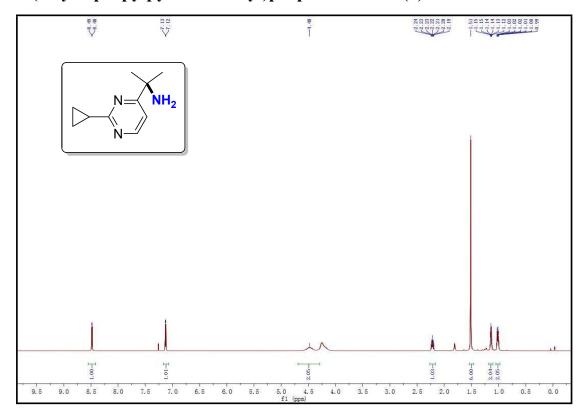

4-(1-nitrocyclopentyl)-2-phenylpyrimidine (2r)

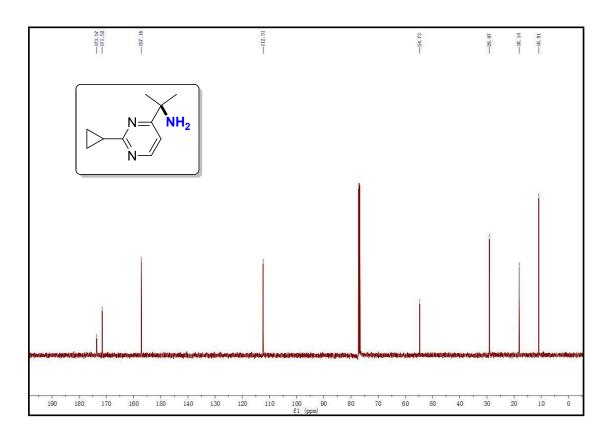



2-cyclopropyl-4-(1-nitrocyclohexyl)pyrimidine (2u)




2-cyclopropyl-4-(1-nitrocyclopentyl)pyrimidine (2v)




2-cyclopropyl-4-(2-nitropropan-2-yl)pyrimidine(2w)

2-(2-cyclopropylpyrimidin-4-yl)propan-2-amine (6)

