Electronic Supplementary Information

Highly efficient Cr₂O₇²⁻ removal of a 3D metal–organic frame-

work fabricated by tandem single-crystal to single-crystal trans-

formations from a 1D coordination array

Cheng-Peng Li,^a Hang Zhou,^a Si Wang,^a Jing Chen,^a Zhong-Liang Wang^{*b}

and Miao Du*a

^a College of Chemistry, Tianjin Normal University, Tianjin 300387, China. E-mail:

dumiao@public.tpt.tj.cn

^b Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin

300387, China. E-mail: zhongliang_wang@163.com

Chem. Commun.

Experimental details

Materials and general methods. All chemicals and solvents were commercially available and used as received, with the exception of the ligand L²⁴³ that was prepared according to the literature method.¹ Fourier transform (FT) IR spectra (KBr pellets) were recorded on an AVATAR-370 (Nicolet) spectrometer. Elemental analyses of C, H, and N were carried out on a CE-440 (Leeman labs) analyzer. Powder X-ray diffraction (PXRD) patterns were taken on a D/Max-2500 diffractometer (Rigaku) at 40 kV and 100 mA for a Cu-target tube ($\lambda = 1.5406$ Å). The calculated PXRD patterns were obtained from the single-crystal diffraction data using the PLATON software package.² Thermogravimetric (TG) analysis was measured on a TG209 thermal analyzer (NETZSCH) in 25–600 °C region at a heating rate of 10 °C/min under nitrogen atmosphere. Solid state fluorescence spectra were taken on a Cary Eclipse spectrofluorimeter (Varian). UV-vis spectra of the solution were collected on a Lambda 35 spectrophotometer (PerkinElmer) to monitor the exchange progress. Inductively coupled plasma mass spectrometry (ICP-MS) measurement analysis was conducted on an Ultima2 spectrometer (HORIBA JY) after degradation of the sample in HNO₃.

Single-crystal X-ray diffraction. Single-crystal X-ray diffraction data for 1–4 were collected on a Bruker Apex II CCD diffractometer at 296(2) K for 1, 3 and 4, or 173(2) K for 2 with Mo K α radiation ($\lambda = 0.71073$ Å). Semi-empirical absorption corrections were used with SADABS and the program SAINT was applied for integration of the diffraction profiles.³ All the structures were solved by direct methods using the SHELXS program of the SHELXTL package and refined with SHELXL.⁴ The final refinements were performed by full-matrix least-squares methods on F^2 with anisotropic thermal parameters for all non-H atoms. The hydrogen atoms of the ligands were generated geometrically and isotropic displacement parameters of hydrogen were derived from their parents. For 2, the nitrite anion and water molecules (O4 and O5) are disordered over two sites with the occupancy factors

of 0.86/0.14, 0.47/0.28, and 0.41/0.09, respectively. The affiliated H atoms of lattice water molecules in **2** were not determined. For **3**, three fluorine atoms (F1–F3) of a trifluoroace-tate are disordered over two sites, with the occupancy factor of 0.61/0.39. The lattice water molecules (O3 and O4) in **3** were assigned to the half occupancy to achieve the appropriate thermal parameters. Crystallographic parameters and selected bond lengths and angles are listed in Table S1 and Table S2.

Syntheses.

[Ag(L^{243})(NO₂)](CHCl₃) (1). A CH₃OH solution (5 mL) of AgNO₂ (15.4 mg, 0.10 mmol) was layered upon a CHCl₃ solution (5 mL) of L^{243} (30.0 mg, 0.1 mmol), which was left to stand under ambient condition. Colorless block-shaped crystals of **1** suitable for X-ray diffraction were obtained upon slow evaporation of the solvents after ca. 1 week in 58% yield. Anal. Calcd for C₁₈H₁₃AgCl₃N₇O₂ (**1**): C, 37.69; H, 2.28; N, 17.09%. Found: C, 37.57; H, 2.39; N, 16.81%. IR (cm⁻¹): 3060m, 1592vs, 1573w, 1505m, 1450s, 1422m, 1270vs, 1169w, 1170w, 991w, 846w, 813w, 791w, 739w, 705m, 636w, 612w.

[**Ag**(**L**²⁴³)](**NO**₂)(**H**₂**O**)_{4.25} (**2**). Well-shaped single crystals of **1** (30 mg) were immersed in a water solution (10 mL) in darkness, forming colorless block crystals of **2** after ca. 5 days. Anal. Calcd for C₁₇H_{16.5}AgN₇O_{4.25} (**2**): C, 41.27; H, 3.36; N, 19.82%. Found: C, 41.08; H, 3.51; N, 19.57%. IR (cm⁻¹): 3434b, 1629s, 1591s, 1506w, 1446m, 1418w, 1385m, 1270vs, 1163w, 1083w, 988w, 843w, 787w, 703w, 633w, 608w.

 $[Ag(L^{243})](CF_3CO_2)(H_2O)_2$ (3). Well-shaped single crystals of 1 or 2 were immersed into a water solution (10 mL) of CF₃COONa (0.1 mol L⁻¹) in darkness for ca. 1 week (for 1) or eight hours (for 2), forming colorless block crystals of 3. Anal. Calcd for C₁₉H₁₄AgF₃N₆O₃ (3): C, 41.27; H, 3.36; N, 19.82%. Found: C, 41.12; H, 3.50; N, 19.65%. IR (cm⁻¹): 3421b, 3057m, 1681vs, 1592s, 1569m, 1507m, 1444m, 1423m, 1208s, 1127s, 1026w, 990w, 841m, 794m, 721m, 705m, 631w, 611w, 516w.

Anion exchange studies. Dried single crystals of **3** (0.2 mmol) were immersed in a water solution (10 mL) of K₂Cr₂O₇ (0.1 mmol), which was left to stand at room temperature. The solution was monitored at various time intervals to follow the exchange progress by liquid UV-vis spectroscopy based on the typical sorption of $Cr_2O_7^{2-}$ anion at 352 nm. The water solution (0.1 mL) of K₂Cr₂O₇ was pipetted at different time intervals which was diluted by deionized water (2 mL) to measure the UV-vis intensity. The anion-exchange capacity of **3** was evaluated by measuring the decolorization rate for the solution of K₂Cr₂O₇ according to the Beer's Law. The crystals turn yellow and obscure, which were kept in CH₃CN–H₂O (1 : 1). The yellow crystals suitable for single-crystal X-ray diffraction were determined to be $[Ag(L^{243})](Cr_2O_7)_{0.5}(CH_3CN)$ (**4**).

Compound reference	1	2	3	4
Chemical formula	$C_{18}H_{13}AgCl_3N_7O_2$	C17H16.5AgN7O4.25	C19H14AgF3N6O3	C19H15AgCrN7O3.5
Formula mass	573.57	494.74	539.23	557.25
Crystal system	triclinic	monoclinic	monoclinic	monoclinic
a/Å	9.355(5)	10.0544(6)	10.2840(4)	10.1531(2)
<i>b</i> /Å	9.509(5)	14.8631(9)	14.6472(6)	13.2623(4)
$c/ m \AA$	13.743(7)	13.3957(8)	15.6111(5)	15.5979(3)
$\alpha/^{\circ}$	76.120(7)	90	90	90
$eta/^{\circ}$	84.113(8)	98.2720(10)	118.983(2)	95.662(2)
$\gamma/^{\circ}$	66.219(7)	90	90	90
Unit cell volume/Å ³	1086.1(9)	1981.0(2)	2057.03(14)	2090.07(9)
Temperature/K	296(2)	173(2)	296(2)	296(2)
Space group	<i>P</i> -1	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/n$
Ζ	2	4	4	4
μ/mm^{-1}	1.328	1.058	1.042	1.496
No. of reflections measured	5689	14413	10334	8644
No. of independent reflections	3934	4915	3634	3660
$R_{ m int}$	0.0125	0.0196	0.0140	0.0206
Final R_1 values $(I > 2\sigma(I))$	0.0430	0.0334	0.0442	0.0471
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1088	0.0951	0.1264	0.0985
Final R_1 values (all data)	0.0479	0.0377	0.0487	0.0394
Final $wR(F^2)$ values (all data)	0.1127	0.0985	0.1315	0.0929
Goodness of fit on F^2	1.052	1.046	1.051	1.046

Table S1 Crystallography data and structural refinement summary for 1–4.

	1		
Ag1–N3	2.327(3)	Ag1–N5A	2.404(3)
Ag1–O2	2.460(4)	Ag1–N1B	2.495(4)
Ag1–O1	2.558(4)		
N3–Ag1–N5A	116.51(12)	N3–Ag1–O2	105.53(15)
N5A–Ag1–O2	126.67(15)	N3–Ag1–N1B	91.80(12)
N1B-Ag1-N5A	93.34(12)	N1B-Ag1-O2	117.41(16)
N3-Ag1-O1	152.11(16)	N5A-Ag1-O1	90.25(15)
O2-Ag1-O1	47.96(17)	N1B-Ag1-O1	94.46(15)

 Table S2 Selective bond lengths (Å) and angles (°) for 1–4.

Symmetry codes: A = -x + 1, -y + 2, -z + 1; B = -x + 2, -y + 1, -z + 1.

	2		
Ag1–N5A	2.319(2)	Ag1–N6B	2.354(2)
Ag1–N1	2.381(2)	Ag1–N4C	2.433(2)
N5A-Ag1-N6B	139.13(8)	N5A-Ag1-N1	104.62(8)
N1-Ag1-N6B	113.89(8)	N5A-Ag1-N4C	98.30(8)
N6B-Ag1-N4C	89.66(8)	N1–Ag1–N4C	98.02(8)

Symmetry codes: A = x + 1/2, -y + 3/2, z + 1/2; B = -x + 1, -y + 1, -z + 1; C = -x, -y + 1, -z + 1.

3

Ag1–N5B	2.311(3)	Ag1–N6A	2.332(3)
Ag1–N1	2.504(4)	Ag1–N3C	2.388(3)

N5B-Ag1-N6A	141.41(12)	N5B-Ag1-N3C	105.63(12)
N3C-Ag1-N6A	110.03(12)	N5B-Ag1-N1	95.93(14)
N6A-Ag1-N1	94.50(13)	N1-Ag1-N3C	96.14(12)

Symmetry codes: A = x - 1, y, z; B = -x, y - 1/2, -z + 3/2; C = -x, -y + 1, -z + 1.

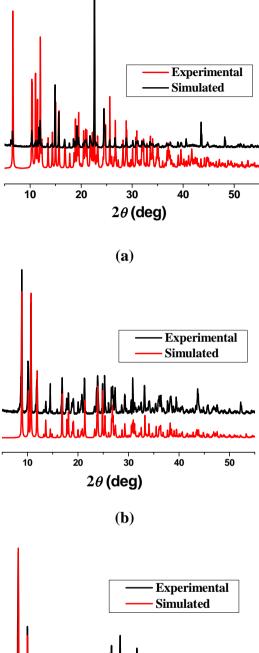
	4		
Ag1–N4A	2.278(3)	Ag1–N6B	2.281(3)
Ag1–N2C	2.488(3)	Ag1–N5	2.519(3)
N4A-Ag1-N6B	158.74(12)	N4A-Ag1-N2C	98.08(11)
N6B-Ag1-N2C	103.17(11)	N4A-Ag1-N5	85.40(12)
N6B-Ag1-N5	91.86(12)	N2C-Ag1-N5	97.39(12)

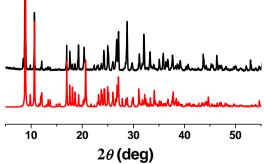
Symmetry codes: A = x - 1/2, -y + 1/2, z + 1/2; B = x - 1, y, z; C = -x, -y + 1, -z + 1.

D–H…A	D…A (Å)	H····A (Å)	$D-H\cdots A(^{\circ})$	Symmetry code
С5–Н5А…О4	3.292(10)	2.60	132	1/2 - x, $1/2 + y$, $1/2 - z$
O9–H9A…O2	3.403(6)	2.50	164	1 - x, 1 - y, 1 - z
O16–H16A…O4	3.272(9)	2.43	151	3/2 - x, $-1/2 + y$, $1/2 - z$

Table S3 Hydrogen bonding geometries in the crystal structure of 4.

Table S4 Comparison of structural features for 3 and 4.


	3	4
Dihedral angle ^a	44.5°, 58.5°, 48.1°	39.0°, 51.3°, 60.8°
Pore size ^b	$10.135 imes 10.812 \ { m \AA}^2$	$9.769 imes 10.389 ext{ Å}^2$


^{*a*} Dihedral angle between the central triazole ring and 2-, 3-, or 4-pyridyl ring.

^b Calculated from the diagonal distances of the 1D channels.

MOF-Type Adsorbents	Maximum Capacity (mg g ⁻¹)	Ref.	Other Type Adsorbents	Maximum Capacity (mg g ⁻¹)	Ref.
3	207	this work	uncalcined LDHs	6	9
ZJU-101	245	5	Calcined LDHs	17	9
ABT·2ClO ₄	214	6	Amino strach	12.12	13
MOF-867	53.4	7	β -CD and quaternary ammonium groups modified cellulose	61.05	14
FIR-53	74.2	7	Hexadecylpyridinium bromide modi- fied natural zeolites	14.31	15
FIR-54	103.1	8	Modified magnetic chitosan chelating	58.48	16
SLUG-21	60	9	NH ₂ -TNTs	153.85	17
1-ClO ₄	62.9	10	Chitosan-coated fly ash	33.27	18
SLUG-35	68.5	11	Eichhornia crassipes root bio- mass-derived activated carbon	36.34	19
1-SO ₄	166	12	Wheat-residue derived black carbon	21.34	20
			Saw dust	41.5	21
			Ethylenediamine-functionalized Fe ₃ O ₄ magnetic polymers	61.35	22
			Porous Organic Polymers	172	23

Table S5 Adsorption capacities of dichromate anion for the reported materials.

(c)

Fig. S1 Powder X-ray diffraction (PXRD) patterns for 1–3.

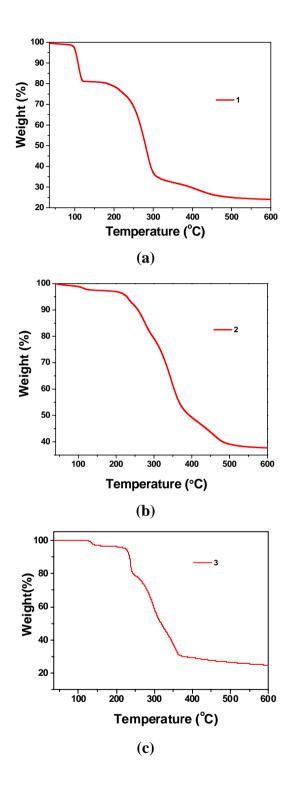


Fig. S2 Thermogravimetric (TG) analysis curves for 1–3.

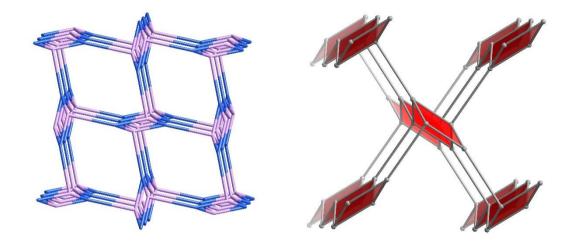


Fig. S3 Topological view of the coordination network for 3.

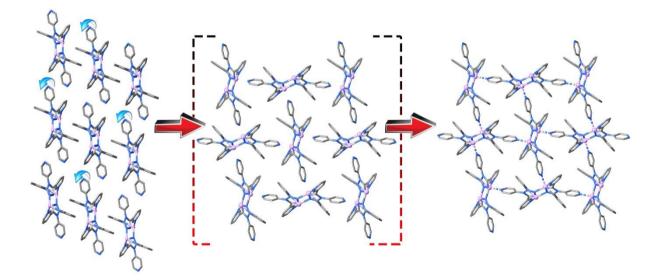


Fig. S4 Rotation of the 1D chain SBUs during the structural transformation from 1 to 3.

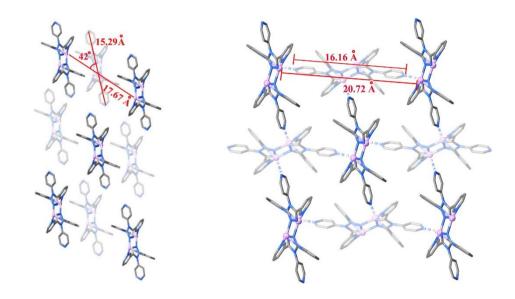
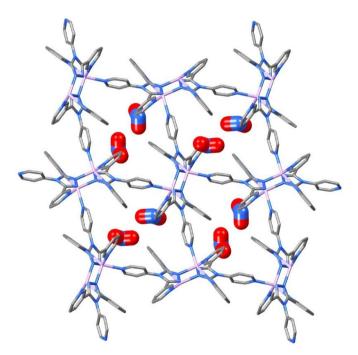



Fig. S5 Comparison of the structural parameters between the 1D SBUs in 1 and 3.

Fig. S6 3D cationic framework with the inclusion of lattice NO_2^- anions in **2**.

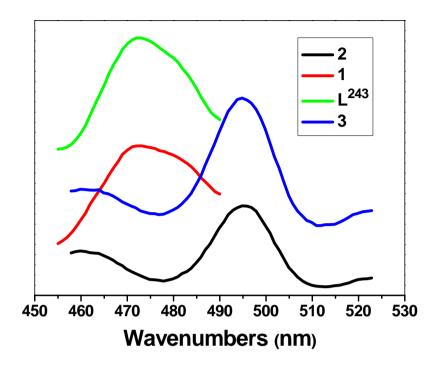


Fig. S7 Solid state fluorescent emission spectra for 1-3 and L^{243} ligand at room temperature.

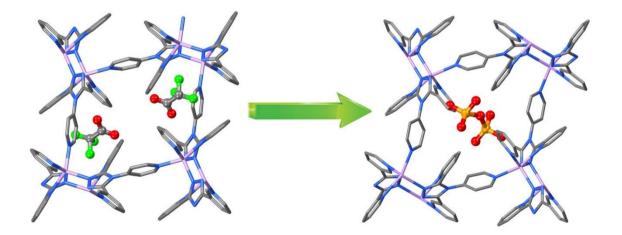


Fig. S8 A portion view of the voids for anion inclusion in 3 and 4.



Fig. S9 H-bonding interactions between $Cr_2O_7^{2-}$ and the cationic framework in 4.

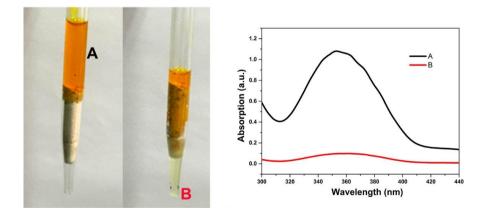
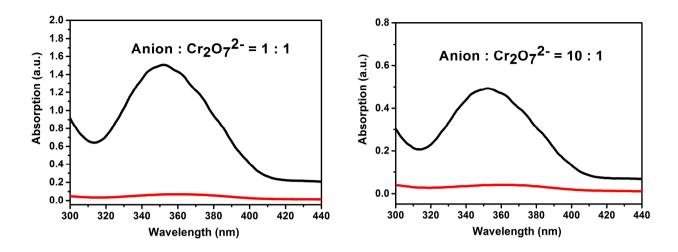
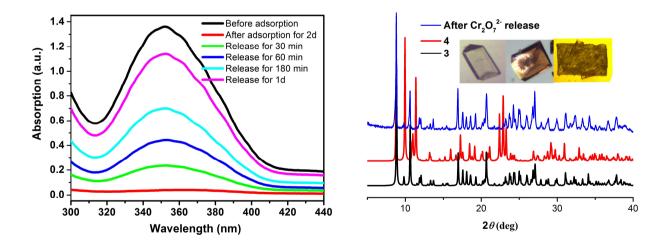




Fig. S10 Column-chromatographic sorption for K₂Cr₂O₇ and the corresponding UV-vis spectra.

Fig. S11 UV-vis absorbance spectra of Cr₂O₇²⁻ in mixture solutions with disturbing anions (F⁻, Cl⁻, Br⁻, OAc⁻, SO₄²⁻, NO₃⁻, BF₄⁻, CH₃SO₃⁻, CF₃SO₃⁻, and ClO₄⁻) in different molar ratios.

Fig. S12 UV-vis spectra and powder X-ray diffraction (PXRD) patterns for Cr₂O₇²⁻ release experiment. The inset photographs show the change of one single crystal in adsorption-desorption cycle.

References

- (1) M. H. Klingele and S. Brooker, *Eur. J. Org. Chem.*, 2004, 3422.
- (2) A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- (3) AXS Bruker, SAINT Software Reference Manual, Madison, WI, 1998.
- G. M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- (5) Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, *Chem. Commun.*, 2015, **51**, 14732.
- (6) X. Li, H. Xu, F. Kong and R. Wang. Angew. Chem. Int. Ed., 2013, 52, 13769.
- (7) K. M. Choi, H. M. Jeong, J. H. Park, Y. B. Zhang, J. K. Kang and O. M. Yaghi, ACS Nano, 2014, 8, 7451.
- (8) H.-R. Fu, Z.-X. Xu and J. Zhang, *Chem. Mater.*, 2015, 27, 205.
- (9) H. Fei, M. R. Bresler and S. R. J. Oliver, J. Am. Chem. Soc., 2011, 133, 11110.
- (10) P.-F. Shi, B. Zhao, G. Xiong, Y.-L. Hou and P. Cheng, Chem. Commun., 2012, 48, 8231.
- (11) H. Fei, C. S. Han, J. C. Robins and S. R. J. Oliver, *Chem. Mater.*, 2013, 25, 647.
- (12) A. V. Desai, B. Manna, A. Karmakar, A. Sahu and S. K. Ghosh, Angew. Chem. Int. Ed., 2016, 55, 7811.
- (13) A. Dong, J. Xie, W. Wang, L. Yu, Q. Liu and Y. Yin, J. Hazard. Mater., 2010, 181, 448.
- (14) Y. Zhou, Q. Jin, T. Zhu and Y. Akama, J. Hazard. Mater., 2011, 187, 303.
- (15) Y. Zeng, H. Woo, G. Lee and J. Park, *Micropor. Mesopor. Mater.*, 2010, 130, 83.
- (16) Y. G. A. El-Reash, M. Otto, I. M. Kenawy and A. M. Ouf, Int. J. Biol. Macromol., 2011, 49, 513.
- (17) L. Wang, W. Liu, T. Wang and J. Ni, Chem. Eng. J., 2013, 225, 153.
- (18) Y. Wen, Z. Tang, Y. Chen and Y. Gu, *Chem. Eng. J.*, 2011, **175**, 110.
- (19) A. K. Giri, R. Patel and S. Mandal, *Chem. Eng. J.*, 2012, **185**, 71.
- (20) X. S. Wang, L. F. Chen, F. Y. Li, K. L. Chen, W. Y. Wan and Y. J. Tang, J. Hazard. Mater., 2010, 175, 816.
- (21) S. Gupta and B. V. Babu, Chem. Eng. J., 2009, 150, 352.
- (22) Y. G. Zhao, H. Y. Shen, S. D. Pan and M. Q. Hu, J. Hazard. Mater., 2010, 182, 295.
- (23) Y. Su, Y. Wang, X. Li, X. Li and R. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 18904.