Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Homogeneous CO₂ Hydrogenation to Methanol - A Highly Productive Tandem Catalytic Approach via Amide Intermediates

Matthew Everett and Duncan F. Wass*

School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K.

E-mail: duncan.wass@bristol.ac.uk

Homepage: http://www.wassresearchgroup.com/

Contents

Experimental	S2
General considerations	S2
Synthesis	S2
Preparation of Complex 6	S2
Catalysis	S2
Typical Catalytic Run	S2
Spectral Data	S5
References	S6

Experimental

General considerations

All procedures were carried out under an inert atmosphere (N₂) using standard Schlenk line techniques or in an inert atmosphere glovebox (Ar). Chemicals were purchased from Sigma-Aldrich and used without further purification unless otherwise stated. Solvents were purified using an anhydrous Engineering Grubbs-type solvent system except anhydrous ethanol and methanol which were purchased from Sigma-Aldrich and used as received. Complexes **1**,¹ **2**,² **3**,³ **4**⁴ and **5**⁵ were synthesised by literature methods. NMR spectra were recorded on a Jeol ECS300 or ECS400 spectrometer. ¹H and ¹³C{¹H} NMR chemical shifts were referenced relative to the residual solvent resonances in the deuterated solvent. ³¹P{¹H} NMR spectra were referenced relative to 85% H3PO4 external standard. Mass spectra (ESI) were recorded on a Bruker Daltonics micrOTOF II. All catalytic samples were analysed by GC-FID, using an Agilent 7820A GC, fitted with a DB-WAX capillary column, 30 m x 0.32 mm, I.D. 0.25 µm. Method: starting oven temp 30 °C, heat to 50 °C at 15 °C min⁻¹, hold at 50 °C for 2 min, heat to 250 °C at 75 °C min⁻¹. Flow rate: 2.5 mL min⁻¹.

Synthesis

Preparation of Complex 6

A solution of 2-(diphenylphosphino)-N-pyrrolidine (0.51 g, 2.1 mmol) in toluene (10 mL) was added to a stirred solution of tris(triphenylphosphine)ruthenium(II) dichloride (1.00 g, 1.04 mmol) in toluene (30 mL). The mixture was stirred at 100 °C for 6 h, after which time the resulting suspension was allowed to cool and then filtered. The solid was washed with toluene (4 × 20 mL), until the filtrate was colourless, and dried under reduced pressure to give complex **6** (0.41 g, 60%) as an orange solid; 1H NMR (300 MHz, CD₂Cl₂) δ 7.25-6.97 (m, 20H, Ar*H*), 3.41-3.18 (m, 8H, C*H*₂), 2.92-2.68 (m, 8H, C*H*₂), 2.04-1.74 (m, 8H, C*H*₂). ³¹P NMR (122 MHz, CD₂Cl₂): δ 58.7 ppm.

Catalysis

Catalytic reactions were carried out either in a 100 mL Parr stainless steel autoclave with aluminium heating mantle and using magnetic stirring, or in an 8 x 62 mL HEL CHEMScan II stainless steel multicell autoclave. A typical procedure for both is shown below. Full catalytic results are shown in Table S1.

Typical Catalytic Run

In a glove box, *trans*-[RuCl₂(dppea)₂] (3.2 mg, 5.1 μ mol) and sodium ethoxide (10 mg, 0.16 mmol) were weighed into a clean and oven dried PTFE insert. The insert was then sealed inside an autoclave, which was then evacuated and refilled with N₂ 3 times. Toluene (10 mL) and amine (2 mL) were then injected into the autoclave through a septum. The autoclave was then pressurised with CO₂ (10 bar) and H₂ (30 bar), then placed in a pre-heated (180 °C) aluminium heating mantle for 20 h.

After the reaction time, the autoclave was cooled rapidly in an ice-water bath, then vented. 1 mL of reaction mixture was then analysed by gas chromatography (25 μ L hexadecane standard). The GC peaks were then integrated against the standard and then compared to the appropriate calibration plots.

Run	Autoclave used	Complex (µmol)	Co-catalyst (mmol)	Base (mmol)	mmol amide (TON) [TOF]	mmol methano (TON) [TOF]
1	HEL Multicell	1 (5)	Me ₂ NH	NaOEt (0.15)	72(14000)[700]	0.0(0)[0]
2	HEL Multicell	2 (5)	Me ₂ NH	NaOEt (0.15)	6.5(1300)[65]	0.0(0)[0]
3	HEL Multicell	2 (5)	Me ₂ NH	NaOEt (0.15)	52(10000)[500]	0.0(0)[0]
ļ	HEL Multicell	2 (5)	Et ₂ NH	NaOEt (0.15)	3.8(760)[38]	0.0(0)[0]
5	HEL Multicell	2 (5)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.038(7.5)[0.38]	0.0(0)[0]
5	HEL Multicell	2 (5)	ⁿ Pr ₂ NH	NaOEt (0.15)	0.071(14)[0.7]	0.0(0)[0]
7	HEL Multicell	2 (5)	Pyrrolidine	NaOEt (0.15)	0.75(150)[7.5]	0.0(0)[0]
3	HEL Multicell	2 (5)	Et₃N	NaOEt (0.15)	0.0(0)[0]	0.0(0)[0]
)	HEL Multicell	3 (5)	Me ₂ NH	NaOEt (0.15)	0.62(120)[60]	0.55(110)[5.5]
10	HEL Multicell	3 (5)	Me ₂ NH	NaOEt (0.15)	2.8(550)[28]	1.9(370)[18]
11	HEL Multicell	3 (5)	Et₂NH	NaOEt (0.15)	1.3(260)[13]	1.0(200)[10]
12	HEL Multicell	3 (5)	Pr₂NH	NaOEt (0.15)	0.0(0)[0]	1.1(220)[11]
13	HEL Multicell	3 (5)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	12(2300)[120]
L4	HEL Multicell	3 (5)	Pyrrolidine	NaOEt (0.15)	0.0(0)[0]	3.0(590)[30]
15	HEL Multicell	2/3 (5)	Me ₂ NH	NaOEt (0.15)	3.7(730)[37]	0.23(46)[2.3]
16	HEL Multicell	3 (5)	DMF	NaOEt (0.15)	-	0.12(23)[1.2]
17	HEL Multicell	3 (5)	DEF	NaOEt (0.15)	-	0.75(150)[7.5]
18	HEL Multicell	3 (5)	DIPF	NaOEt (0.15)	-	1.1(210)[11]
19	HEL Multicell	3 (5)	Me₂NH	NaOEt (0.15)	1.6(320)[16]	1.2(240)[22]
20	HEL Multicell	4 (5)	Me₂NH	NaOEt (0.15)	1.7(330)[17]	9.1(1800)[90]
21	HEL Multicell	5 (5)	Me ₂ NH	NaOEt (0.15)	2.2(430)[22]	0.0(0)[0]
22	HEL Multicell	6 (5)	Me₂NH	NaOEt (0.15)	0.39(77)[39]	0.0(0)[0]
23	HEL Multicell	3 (5)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	12(2300)[120]
24*	HEL Multicell	4 (5)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	21(4000)[2000]
25	HEL Multicell	5 (5)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	0.0(0)[0]

Table S1. Ruthenium catalysed conversion of carbon dioxide to amide and methanol.

26	HEL Multicell	6 (5)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	0.0(0)[0]
27	100 mL Parr	3 (0.05)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	0.25(5100)[260]
28*	100 mL Parr	4 (0.05)	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	0.44(8900)[4500]
29	100 mL Parr	none	Me ₂ NH	NaOEt (0.15)	0.0(0)[0]	0.0(0)[0]
30	100 mL Parr	none	ⁱ Pr ₂ NH	NaOEt (0.15)	0.0(0)[0]	0.0(0)[0]
31	100 mL Parr	3 (5)	none	NaOEt (0.15)	0.0(0)[0]	0.0(0)[0]
32	100 mL Parr	3 (5)	Me ₂ NH	none	0.0(0)[0]	0.0(0)[0]
33	100 mL Parr	3 (5)	Me ₂ NH	NaOEt (15)	0.0(0)[0]	0.0(0)[0]

*2 h catalytic run.

Figure S3. ³¹P{¹H} NMR spectrum of $[RuCl_2(Ph_2P(CH_2)_2N(C_4H_8))_2]$, 6 in CD_2Cl_2 .

References

- (1) Jessop, P.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1994**, 1460, 8851–8852.
- (2) Kröcher, O.; Köppel, R.; Baiker, A. *Chem. Commun.* **1997**, *2*, 453–454.
- (3) Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. *Angew. Chemie Int. Ed.* **2007**, *46*, 7473–7476.
- (4) Morris, R.; Habtemariam, A.; Guo, Z.; Parsons, S.; Sadler, P. J. *Inorganica Chim. Acta* **2002**, *339*, 551–559.
- (5) Wingad, R.; Bergstrom, E.; Everett, M.; Pellow, K.; Wass, D. *Chem. Commun.* **2016**, *52*, 5202–5204.