Methyl pivalate based electrolyte for non-aqueous lithium-oxygen battery

Taoran Li,^a Zhiqun Wang,^a Huanhuan Yuan,^b Lei Li^{ab*} and Jun Yang^b

^a School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 20024,

China.

^b Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

E-mail: lilei0323@sjtu.edu.cn

1. Experimental

1.1 Preparation of methyl pivalate based electrolyte

Both Methyl pivalate (MP) and LiTFSI salt were purchased from Sigma-Aldrich. MP was first distilled and then dried with freshly activated 4 Å molecular sieves prior to use. LiTFSI was dried in vacuo at 150 °C for 24 h, then 1.0 M LiTFSI in MP used as electrolyte was prepared in argon-filled glove box.

1.2 Electrochemical measurements

The cathodes were composed with multi-wall carbon nanotubes (Shenzhen Nanotech Port Co., Ltd., China) and poly(vinylidene fluoride) (PVDF). The weight ratio of MWCNTs: PVDF was 8: 2. The loading of MWCNTs in a cathode was about 1.0 mg \cdot cm⁻². A Li-O₂ battery was comprised of a modified 2032 coin-cell with six holes put in a glove box under high-purity oxygen (99.9%) atmosphere, a lithium metal anode (1.56 cm diameter and 0.45 mm thick), a Whatman glass filter separator (~28 mm diameter) impregnated with electrolyte and a prepared cathode. After assembling in an argon-filled glove box, the batteries were placed in a gastight box continuously saturated with 1.0 atm of high-purity oxygen and tested on Land CT2001A test system (Wuhan, China).

1.3 Potassium superoxide (KO₂) and lithium peroxide (Li₂O₂) screening method

Potassium superoxide (KO₂) screening method was employed to evaluate the chemical stability of MP based electrolyte in the presence of peroxy radical. Briefly, in a 5 ml vial, about 0.45 g of KO₂ power was added in 5 ml of the based electrolyte (1.0 M LiTFSI in MP), and stirred throughout the experiments. Next 0.3 ml of the mixture of Electrolyte At the different time points, 0.3 ml of this mixed solution was transferred to a NMR tube containing 0.3 ml CDCl₃ and test for ¹³C and ¹H Nuclear Magnetic

Resonance (NMR) analysis. All experiments (except ¹³C and ¹H NMR) were performed in an argon-filled glove box. The NMR experiments were carried out on the AVANCE III HD 400 MHz Bruker (BioSpin Corp., Germany) instrument at room temperature. The ¹³C spectra in CDCl₃ were referenced to the residual CHCl₃ at 77.2 ppm. The ¹H spectra in CDCl₃ were referenced to the residual CHCl₃ at 7.26 ppm. The ¹H peroxide (Li₂O₂) screening method is no different, but about 0.1 g of Li₂O₂ was dissolved in 2 ml electrolyte In a 5 mL vial.

1.4 Characterization

The ionic conductivity was measured with a ZAHNER Zennium conductivity meter at room temperature. To evaluate the electrochemical window of the MP based electrolyte, Cyclic Voltammetry (CV) measurement was carried out in a three electrode glass cell on CHI 660D potentiostat. 1.0 M LiTFSI in MP was used as electrolyte. A glass carbon electrode, platinum wire and Ag⁺/Ag non-aqueous reference electrode (10 mM AgNO₃ in acetonitrile, from CHI, Inc.) were used as working, counter and reference electrodes, respectively. CV measurement was performed at a scan rate of 1 mV s⁻¹ and room temperature. X-ray diffraction (XRD) measurements were applied on an X-ray diffractometer (D/max-2200/PC, Japan) with CuKa radiation from 10° to 80° at a scanning rate of 0.1° sec-1. After the cycled test in Li-O₂ cells, the Whatman glass filter containing the MP based electrolyte was impregnated in CDCl₃ for 24h, and then 0.6 ml of the mixed solution was transferred to a NMR tube for ¹³C and ¹H NMR analysis.

Fig. S1 Proposed mechanism for the decomposition of propylene carbonate (PC) by superoxide radicals (O₂-) attack.^{S1}

Fig. S2 (a) Photographic images of (i) MP solvent, MP based electrolyte before (ii) and (iii) after reacting with Li_2O_2 for 72h. ¹H NMR (b) and ¹³C NMR (c) spectrum of MP based electrolyte before (ii) and (iii) after reacting with Li_2O_2 for 72h

Reference

S1. S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák and P. G. Bruce, J. Am. Chem. Soc., 2011, 133, 8040