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Experimental Section
α-hemolysin (α-HL) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and used 
without further purification. EDTA and decane (anhydrous, ≥ 99%) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). 1,2-Diphytanoyl-sn-glycero-3-phosphocholine 
(chloroform, ≥ 99%) was purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA). 
The microRNA21 with sequence of 5’-UAGCUUAUCAGACUGAUGUUGA-3’ was 
synthesized and HPLC-purified by TaKaRa Biotechnology Co. Ltd. (Dalian, China). The 
DNA probe 21 with sequence of 5’-
TTTTTTTTTTTTTTTTTTTTTCAACATCAGTCTGATAAGCTATTTTTTTTTTTTTTT
TTTTT-3’ was synthesized and HPLC-purified by Sangon Biotech Co., Ltd (Shanghai, 
China). All reagents and materials were of analytical grade. All solutions were prepared 
with ultrapure water (18.2 MΩ cm at 25°C) using a Milli-Q System (EMD Millipore, 
Billerica, MA, USA). The ultrapure water used in the preparation of microRNA21 was 
treated with DEPC.

All experiments were carried out at 24±2°C. The formation of lipid bilayer and α-HL pore was 
described in our previous work. 1,2 Both compartments of bilayer apparatus were contained 1 mL 
of 1 M KCl, 10 mM Tris, 1.0 mM EDTA, pH 8.0. The compartments are termed cis and trans. 
The cis compartment was connected to the virtual ground. The potential was applied at 140 mV 
from the trans side by an Ag/AgCl electrode. Once a stable single pore was inserted into the 
bilayer, the analyte was added to the cis solution, proximal to the aperture.

In the real sample detection, the detected microRNA was from the original serum. We dissolved 
probe 21 with DEPC water to 100 μM, premixed the original serum with 10 μL*100 μM probe 21, 
heated the mixture at 95 ℃ for 3 minutes, and then cooled at 55 ℃ for 3 minutes (this annealing 
process was performed for 2~3 times). Finally, the annealed mixture of original serum and probe 
21 was added to the cis chamber and detected.

Currents were amplified under voltage-clamp condition using a ChemClamp instrument (Dagan 
Co., Minneapolis, MN, USA), filtered by a low-pass Bessel filter with cut-off frequency set at 3 
kHz, and digitized at a sampling rate of 100 kHz through a DigiData 1440A converter (Axon 
Instruments, Forest City, CA, USA) with a PC running PClamp 10.2 (Axon Instruments, Forest 
City, CA, USA). Each level in the experimental data was manually identified by Clampfit 
software (Axon Instruments, Forest City, CA, USA).

HMM and nanopore data analysis problem
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The HMM has been successfully applied to the single-channel current recording3,4. It is assumed 
that the nanopore current data is generated by a 1st-order, finite-state, discrete-time, Markovian 
process with unobservable state (submerged in noise) and additive Gaussian white noise. Then it 
can be modelled by the HMM with the observed current data (O1,O2,⋯,OT) and hidden 
(unobservable) state sequence (q1,q2,⋯, qT).

The correspondence between the nanopore data analysis problem and HMM 5 parameters is as 
follows:

1. The observation sequence O= O1,O2,⋯,OT denotes a sequence of data with the length of T. In 
the nanopore problem, the observations correspond to the current data.

2. The hidden states S={S1,S2,⋯,SN}, where N is the number of finite hidden states. The observed 
data Ot, t=1,2,⋯,T can be generated by several hidden state qt∈S with certain probability. We call 
the most likely (with maximum likelihood) hidden state sequence optimal. In the nanopore 
problem, the hidden states correspond to the current levels and N denotes the number of current 
levels in the nanopore event.

3. The N×N state transition probability matrix A={aij}, where aij=P(qt+1=Sj| qt=Si), 1≤i,j≤N denotes 
the transition probability from state Si to Sj at time t. In the nanopore problem, the transition 
probability denotes the transition probability from current level Si to Sj.

4. The initial state distribution π={πi}, where πi=P(qt=Si), 1≤i≤N is a N-dimensional column vector. 
In the nanopore problem, it denotes the probability that the first observed data O1 belongs to each 
of the current levels.

5. The observation probability distribution matrix in the state Sj: B={bj(Ot)}, where Ot is the 
observation at time t and bj(Ot)= P(Ot | qt=Si), 1≤j≤N. In the nanopore problem, the distribution of 
the observation in state Si is assumed to be a Gaussian distribution N(μi, σi

2), where μi is the mean 
of the data belonging to hidden state Si and σi

2 its variance.1,2 The probability of observation Ot 
generated by Si can be calculated by: 

2

2

( )1( ) exp
ˆ22

t i
i t

ii

O
b O




 
  

 
;                    (1)

The following three typical problems are related to a HMM:

Problem 1. Given the HMM λ=(π, A, B), how to determine the occurrence probability P(O|λ) of 
observation sequence O1,O2,⋯,OT,? This problem can be solved by using the Forward and 
Backward algorithm. 6,7 
Problem 2. Given the HMM λ=(π, A, B) and observation sequence O1,O2,⋯,OT, how to find the 
optimal state sequence such that the probability P(O,S|λ) is maximized? This problem is typically 
solved by using the Viterbi algorithm.8

Problem 3. How to adjust the parameters in the HMM λ=(π, A, B) such that the probability P(O|λ) 
is maximized? There are two typical methods to optimize the HMM parameters: One is the Viterbi 
training algorithm (aka. segmental k-means) 9,10 and another is the Baum-Welch algorithm.5

The nanopore data analysis problem is to recover the blockages by assigning each data point to 
the most probable current level (hidden state), i.e., to estimate the optimal state sequence of the 
observation sequence. A typical solution to this problem is the Viterbi algorithm. Another problem 
is related to the optimization of HMM parameters, which can be solved by the Viterbi algorithm 
as well. The parameter optimization procedure is described in detail as follows.



Viterbi algorithm and Viterbi training procedure
Two algorithms, viz., Baum-Welch and Viterbi training algorithm, have been widely used for the 
HMM parameter optimization. Many previous studies showed that the Baum-Welch algorithm 
usually produces a better performance than the Viterbi training algorithm, but its computation 
complexity is much higher than the latter. In our previous work,11 we made a comprehensive 
performance comparison between the Viterbi and Baum-Welch algorithms using the simulated 
nanopore data. The results showed that the two algorithms achieved comparable accuracy, but the 
Viterbi training is faster than the Baum-Welch algorithm by a factor of about 5 and thus more 
suitable for online nanopore data analysis. In this work we still use the Viterbi training algorithm 
to optimize the HMM parameters.

Firstly we briefly introduce the Viterbi algorithm, which is used to estimate the optimum hidden 
state (i.e., to find the most likely class label of each sample data). 

To find the optimal state sequence q1, q2,⋯,qt of observation sequence O1,O2,⋯,OT, we define 
the maximum probability along a single path at time t which accounts for the first t observations 
by the hidden state Si as:
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Furthermore, let ( )t j be the optimal state that maximizes ( )t j . The procedure of the Viterbi 
algorithm comprises the following computational steps:
Step 1 - Initialization:
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Step 2 - Recursion:
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Step 3 - Termination:
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Step 4 - Path (state sequence) backtracking:
 .                     (7)* *
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Given the initial HMM parameters, we obtain the class label (finite, discrete state) of each data 
point using the Viterbi algorithm. Then we can further recalculate the model parameters according 
to the new class label and Eqs. (3)-(6). This iterative process continues until the algorithm’s 
convergence, that is, the difference of the values of the objective function P(O,S |λ) between two 
consecutive iterations is smaller than certain threshold (set as 0.0001 here). The flowchart of the 
Viterbi training algorithm is shown in Fig. S1. 
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Fig. S1  Flowchart of Viterbi training that alternately executes parameter re-estimation and 
Viterbi algorithm until convergence.

Standard DBSCAN algorithm
In the DBSCAN algorithm, each cluster is assumed to possess a density (defined as the number of 
neighboring points within a given radius and) that is considerably higher than out of the cluster. 
This algorithm regards the high-density sample region as the target cluster and the low-density 
region as the boundary between two clusters.

In the DBSCAN algorithm, we make the following definitions:12

Def. 1- Eps-neighborhood of point p. For the point p in the sample space D and the given radius 
Eps, the Eps-neighborhood of point p is the set of points within the radius Eps, defined by:

 ( ) | ( , )EpsN p q D dist p q Eps   ;                  (8)

where dist(p, q) is the Euclidean distance between point p and point q, the cardinality of NEps(p) is 
called the density of the point p given Eps. If the density of p is larger than the threshold MinPts, 
then p is regarded as the core point; otherwise it would be regarded as a boundary point or an 
outlier.

Def. 2- Directly density-reachable. If the two points p and q in the sample space D satisfy the 
following two conditions, q is said to be directly density-reachable from p

                         (9)
( )

( )
Eps

Eps

q N p

N p MinPts





Def. 3- Density-reachable. Given the sample sequence p1,p2,⋯,pn，and let p= p1, q= pn. If pi+1 
(i=1,2,⋯,n-1) is directly density-reachable from pi, we say q density-reachable from p. We can 
find that the density-reachability can be regarded as a canonical extension of direct density-
reachability. Both relations are transitive but non-symmetric, which means that q is density-
reachable from p does not necessarily imply p is density-reachable from q. The symmetricity 



would be satisfied only if both p and q are core points.
Def. 4- Density-connected. Given the three points p, q and o in the sample space D, if both p and 
q are density-reachable from o, we say p and q are density-connected. We can find that density-
connectedness satisfies the symmetricity. The DBSCAN clustering is realized by finding the 
largest set of density-connected samples.

Computational procedure of the modified DBSCAN algorithm
The DBSCAN starts with an arbitrary sample point p. Depending on the parameters Eps and 
MinPts, it finds all the density-reachable points from p if p is a core point. Then we add the 
neighboring points of p to a set (called seed), followed by traversing all the points in the seed and 
performing the same operation for the next point. If p is not a core point, DBSCAN would access 
the next data point. Although the DBSCAN algorithm does not require the initial knowledge of the 
number of clusters, the parameters Eps and MinPts must be pre-set instead. A simple yet effective 
heuristic approach to setting the two parameters was proposed in previous research.12 The 
approach determines the parameters Eps and MinPts according to the sorted k-dist graph of 
samples. The parameter Eps is the k-dist value of the first inflection point in the sorted k-dist graph. 
The parameter MinPts is the same as k, which usually has little influence on the result. In the 
following section, we will further examine the effect of parameters using the experimental data.
Step 1. Set the parameters Eps and MinPts. All the samples are marked as unvisited, and set the 
cluster number as i=1.
Step 2. Given the two parameters Eps and MinPts find the unvisited core point p. Set its cluster 
number as i, and mark p as visited. Then add the maximum and minimum points in the 
neighborhood of p to the set seed.
Step 3. Expand the current cluster: select a point q from seed, set its cluster number as i, and mark 
it as visited, then remove q from the set seed. 
Step 4. Judge whether or not q is the core point. If so, add the maximum and minimum points in 
the neighborhood of q to the set seed.
Step 5. Repeat Step 3 and Step 4 until the set seed becomes empty.
Step 6. Class number i = i + 1, Repeat Step 2-5 until all the core points are visited.
Step 7. Output clustering results, and mark the unvisited points as outliers.

Based on the clustering results of the DBSCAN algorithm, we can determine the initial model 
parameters in the following way.

If the class label of the first point in the observation sequence O1,O2,⋯,OT is i, we can 
determine

                             (10)( ) 1 , 1i i N  π

The entries in the transition probability matrix A can be determined by2
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We can calculate the mean and variance of each current level by:
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Then we can determine B from μi and σi by Gaussian distribution function. After determining 
the initial values of the HMM parameters, we can use the Viterbi training algorithm to further 
optimize them.

Optimized the DBSCAN algorithm parameters.

As describe previously, the proposed method only requires the pre-setting of two parameters, Eps 
and MinPts, involved in the DBSCAN clustering algorithm. To examine the effect of the two 
parameters using the standard control variable method, we chose the typical event of 
microRNA21∙Probe21. Firstly we fix one parameter MinPts to 3 and consider the effect of varying 
another parameter Eps (set as 0.7, 1.5 and 3, respectively). The results under the three different 
values of Eps are compared in Fig. S6a. It is found that if Eps is too small (0.7) the noise may be 
wrongly recognized as current level, but the current level with small amplitude would miss if it is 
too large (3). Therefore, the optimal value of Eps is 1. Then we fixed Eps to 1, and varied MinPts 
from 3 to 10 and 30. The results under the three values of the parameter MinPts are compared in 
Fig. S6b. We can see that the manipulation of the parameter MinPts hardly influences the 
recognition results even if it is varied in a wide range between 3 and 30. However, an excessively 
small MinPts would lead to the improper increase of the number of the recognized current levels. 
The parameters Eps and MinPts are recommended to take a value in the range [0.5, 3] and larger 
than 2, respectively. In this work the parameters Eps and MinPts were set as 1 and 3, respectively.

Computational efficiency of the algorithm
To examine the computational efficiency of the proposed method, we compared the time 
consumption of the standard and modified DBSCAN algorithm under different sizes of dataset on 
such a computing hardware/software platform: Intel(R) Core(TM) i5-2450 CPU @2.5GHz, 4G 
RAM, 64-bit Win7 Pro OS, and Matlab R2013a. We also calculated the total time consumption 
(DBSCAN + Viterbi training of the HMM) between the standard and modified DBSCAN 
algorithm. The comparative results are presented in Table S1 and Fig. S7. The results demonstrate 
that the modified DBSCAN algorithm is at least 3 times faster than the standard DBSCAN. In 
comparison, the standard DBSCAN algorithm took most of the computational time, while the 
modified DBSCAN algorithm only account for 7.8% of the total time consumption (the size of the 
dataset analyzed is 23,378).



Fig. S2  Typical events acquired by manual analysis of microRNA21 (green box), Probe21 (blue 
box) and microRNA21·Probe21 (red box). The manual data analysis procure comprises the 
following steps: Step 1: Load a segment of experimental data; Step 2: Scan the entire signal trace 
and identify the signal which is identical to the target signal; and Step 3: Finally, evaluate the 
blockage current amplitude and duration using the cursor in Clampfit.



Fig. S3  Current levels’ amplitude histogram (a) and duration histogram (b) of 
miRNA21∙Probe21 events acquired by our method (red) and manual analysis (grey). Level 1-4 in 
order is from left to right.



Fig. S4  Current levels’ amplitude histogram (a) and duration histogram (b) of Probe21 events 
acquired by our method (red) and manual analysis (grey). Level 1-4 in order is from left to right.



Fig. S5  Current levels’ amplitude histogram (a) and duration histogram (b) of microRNA21∙ 
events acquired by our method (red) and manual analysis (grey). 



Fig. S6  The results of the DBSCAN algorithm with different parameters: (a) MinPts=3; Eps=0.7, 
1.5, and 3. (b) Eps=1; MinPts=3, 10, and 30.



Table S1  Comparison of time consumption (s) between the standard and modified DBSCAN 

algorithm

Time consumption of 

DBSCAN algorithm

Total time consumption of 

DBSCAN and Viterbi algorithms
# of data 

analyzed
Standard Modified Standard Modified

761 0.1504 0.0285 0.305 0.182
1974 0.1789 0.0657 0.4296 0.3707
6040 1.305 0.0935 1.8987 0.7304
8457 2.173 0.1169 3.1359 1.1206
13608 5.1679 0.1535 6.6964 1.6886
18653 9.2841 0.2062 11.2618 2.2505
23378 16.6092 0.2679 19.5275 3.4076



Fig. S7  (a) Time consumption of standard (black) and modified DBSCAN algorithm (red); (b) 
The total time consumption of the presented method incorporating standard (black) and modified 
(red) DBSCAN algorithm.
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