Supporting Information for:

Copper-Catalyzed Mannich-Type Oxidative β-Functionalization of Tertiary Amines

Min-Jie Zhou[†], Shou-Fei Zhu[†] and Qi-Lin Zhou^{*,†,‡}

[†] State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

[‡] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China Email: qlzhou@nankai.edu.cn

Contents:

1.	General Information	S2
2.	Optimization of the Reaction Conditions	S2
3.	Typical Procedure for β-Functionalization of Amines	S3
4.	Analytical Data of Products	S5
5.	Transformations of the Products	S16
6.	The ¹ H NMR Spectra Evidence of the Enamine Intermediates	S19
7.	NMR Spectra of Products	S20
8.	References	S51

1. General Information

Unless otherwise noted, all solvents used in the reactions were distilled from appropriate drying agent prior to use.¹ Copper (II) chloride (Sigma-Aldrich) were used without further purification. Imines²⁻⁵ and amines⁶⁻⁹ were synthesized according to the literature procedures. Melting points were measured on a RY-I apparatus and uncorrected. ¹H NMR and ¹³C NMR spectra were recorded with a Brucker AV 400 spectrometer at 400 MHz (¹H NMR) and 101 MHz (¹³C NMR). Chemical shifts for ¹H NMR spectra were reported in ppm down field from internal Me₄Si (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.26, singlet). Chemical shifts for ¹³C NMR spectra were reported in ppm relative to the signal of chloroform-*d* (δ 77.00, triplet). Multiplicities were given as: s (singlet); brs (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); m (multiplets) and etc. HRMS were recorded on an IonSpec FT-ICR mass spectrometer with ESI resource. NMR yield was calculated by ¹H NMR of crude product using an internal standard (1,3,5-trimethoxylbenzene).

2. Optimization of the Reaction Conditions

Table S	1. Eva	luation	of	cata	lysts
---------	--------	---------	----	------	-------

			1) 10 mol% Catatyst	
			2.5 equiv AcOO ^t Bu	NHTs
PhNFta	+	NTs 	4Å MS, DMSO, 25 °C, 4 h	Ph_N
1 1111212	·	H́Ph	2) 5.0 equiv HOAc	Et
			5.0 equiv NaBH(OAc) ₃	
1a		2a	CH ₂ Cl ₂ , rt, 12 h	4a

entry	Catalyst	4a $(\%)^b$
1	CuCl ₂	68
2	CuCl	67
3	CuBr ₂	25
4	CuBr	24
5	CuI	trace
6	Cu(OAc) ₂	ND^{c}
7	Cu(OTf) ₂	\mathbf{ND}^{c}
8	Cu(acac) ₂	ND^{c}
9	FeCl ₃	ND^{c}

10	CoBr ₂	ND^{c}
11	NiCl ₂	ND^{c}

^{*a*} Reaction conditions: **1a** (1.0 mmol, 5.0 equiv), **2a** (0.2 mmol, 1.0 equiv), metal catalyst (10 mol%), AcOO^{*t*}Bu (2.5 equiv), 4Å MS (50 mg) and DMSO (2.0 mL) at 25 °C for 4 h; ^{*b*} Determined by ¹H NMR using 1,3,5-trimethoxylbenzene as an internal standard; ^{*c*} ND = not detected.

Table S2. Evaluation of Solvent^a

PhNEt ₂	+	NTs ↓	1) 10 mol% CuCl₂ 2.5 equiv AcOO ^t Bu 4Å MS, solvent , 25 °C, 4 h	NHTs
		H´ `Ph	 5.0 equiv HOAc 5.0 equiv NaBH(OAc)₃ 	Ét
1a		2a	CH_2Cl_2 , rt, 12 h	4a

entry	solvent	4a $(\%)^b$
1	DMSO	68
2	DMF	18
3	THF	trace
4	1,4-dioxane	trace
5	DCM	\mathbf{ND}^{c}
6	DCE	ND^{c}
7	toluene	\mathbf{ND}^{c}

^{*a*} Reaction conditions: **1a** (1.0 mmol, 5.0 equiv), **2a** (0.2 mmol, 1.0 equiv), CuCl₂ (10 mol%), AcOO'Bu (2.5 equiv), 4Å MS (50 mg) and solvent (2.0 mL) at 25 °C for 4 h; ^{*b*} Determined by ¹H NMR using 1,3,5-trimethoxylbenzene as an internal standard; ^{*c*} ND = not detected.

3. Typical Procedure for Oxidative β-Functionaliation of Amines

3.1 Typical Procedure for Oxidative β-Functionaliation of Acyclic Amines with Imines

CuCl₂ (1.4 mg, 0.01 mmol, 5 mol%), *N*-benzylidene-4-methylbenzenesulfonamide (**2a**) (51.9 mg, 0.2 mmol) and 4Å MS (50 mg) were introduced into an oven-dried 25 mL Schlenk tube under argon atmosphere. PhNEt₂ (**1a**) (255 uL, 1.6 mmol), DMSO (2 mL) and 50% AcOO^{*t*}Bu (212 mg, 0.8

mmol) were successively added via syringes at room temperature, and the reaction mixture was stirred at 25 °C for 4 h. CH₂Cl₂ (1 mL), NaBH(OAc)₃ (212 mg, 1.0 mmol) and HOAc (60 uL, 1.0 mmol) were then added successively under argon atmosphere. After the mixture was stirred at room temperature for another 12 h, the mixture was diluted with CH₂Cl₂, quenched with 1N NaOH and then extracted with CH₂Cl₂ (3×5 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After the desiccant was filtered off, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA = 5:1 to 3:1) to give **4a** as yellow oil.

3.2 Typical Procedure for Oxidative β-Functionaliation of Cyclic Amines with Imines

CuCl₂ (1.4 mg, 0.01 mmol, 5 mol%), *N*-benzylidene-4-methylbenzenesulfonamide (**2a**) (51.9 mg, 0.2 mmol) and 4Å MS (50 mg) were introduced into an oven-dried 25 mL Schlenk tube under argon atmosphere. *N*-phenyl piperidine **5a** (162 mg, 1.0 mmol), DMSO (2 mL) and 50% AcOO^{*t*}Bu (132 mg, 0.5 mmol) were successively added via syringes at room temperature, and the reaction mixture was stirred at 25 °C for 12 h. Then the mixture was directly purified by column chromatography on silica gel (PE/EA = 5:1 to 3:1) to give **6a** as yellow oil.

3.3 Gram-Sacle Experiment for 4b

CuCl₂ (10.8 mg, 0.08 mmol, 2 mol%), *N*-(4-chlorobenzylidene)-4-methylbenzenesulfonamide (**2b**) (1.2 g, 4.0 mmol) and 4Å MS (1.0 g) were introduced into an oven-dried 250 mL Schlenk tube under argon atmosphere. PhNEt₂ (**1a**) (5.1 mL, 32.0 mmol), DMSO (40 mL) and 50% AcOO'Bu (4.2 g,

16.0 mmol) were successively added via syringes at room temperature, and the reaction mixture was stirred at 25 °C for 4 h. CH₂Cl₂ (20 mL), NaBH(OAc)₃ (4.2 g, 20.0 mmol) and HOAc (1.2 mL, 20 mmol) were then added successively under argon atmosphere. After the mixture was stirred at room temperature for another 12 h, the mixture was diluted with CH₂Cl₂, quenched with 1N NaOH and then extracted with CH₂Cl₂ (3 × 30 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After the desiccant was filtered off, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA = 5:1 to 3:1) to give **4b** as brown oil.

4. Analytical Data of Products

N-(3-(ethyl(phenyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4a)

1H), 3.33–3.20 (m, 3H), 3.16–3.06 (m, 1H), 2.34 (s, 3H), 2.05–1.85 (m, 2H), 1.03 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.5, 142.9, 140.4, 137.4, 129.24, 129.20, 128.5, 127.4, 127.0, 126.4, 116.8, 113.5, 56.9, 47.1, 45.9, 34.5, 21.4, 11.8; ESI-HRMS calcd for [C₂₄H₂₉N₂O₂S, M + H]⁺: 409.1950, Found: 409.1953.

N-(1-(4-chlorophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4b)

6.61 (d, J = 8.0 Hz, 2H), 6.15 (d, J = 7.5 Hz, 1H), 4.36 (dd, J = 14.1, 7.3 Hz, 1H), 3.32–3.18 (m, 3H), 3.16–3.05 (m, 1H), 2.36 (s, 3H), 2.00–1.80 (m, 2H), 1.02 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.5, 143.2, 139.0, 137.3, 133.1, 129.3, 129.2, 128.5, 127.9, 126.9, 117.0, 113.7, 56.4, 47.1, 46.0, 34.3, 21.4, 11.8; ESI-HRMS calcd for [C₂₄H₂₈ClN₂O₂S, M + H]⁺: 443.1560, Found: 443.1562.

N-(3-(ethyl(phenyl)amino)-1-(4-fluorophenyl)propyl)-4-methylbenzenesulfonamide (4c)

Ph NHTs Yellow oil, 69.1 mg, 81% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 7.7 Hz, 2H), 7.18 (t, J = 7.6 Hz, 2H), 7.11–6.99 (m, 4H), 6.83 (t, J = 8.4 Hz, 2H), 6.72 (t, J = 7.2 Hz, 1H), 6.61 (d, J = 8.1 Hz, 2H),

5.99 (d, J = 7.1 Hz, 1H), 4.37 (q, J = 6.9 Hz, 1H), 3.33–3.16 (m, 3H), 3.16–3.03 (m, 1H), 2.35 (s, 3H), 2.02–1.80 (m, 2H), 1.02 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 162.0 (d, $J_{CF} = 246.4$ Hz), 147.6, 143.1, 137.5, 136.4 (d, $J_{CF} = 2.0$ Hz), 129.3, 129.2, 128.2 (d, $J_{CF} = 8.1$ Hz), 127.0, 117.1, 115.2 (d, $J_{CF} = 22.2$ Hz), 113.8, 56.3, 47.2, 46.0, 34.5, 21.4, 11.8; ESI-HRMS calcd for [C₂₄H₂₈FN₂O₂S, M + H]⁺: 427.1856, Found: 427.1857.

N-(3-(ethyl(phenyl)amino)-1-(4-(trifluoromethyl)phenyl)propyl)-4-

methylbenzenesulfonamide (4d)

Ph NHTs Brown oil, 89.7 mg, 94% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.23–7.12 (m, 4H), 7.01 (d, J = 8.1 Hz, 2H), 6.75 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 8.0 Hz,

2H), 6.23 (d, J = 7.3 Hz, 1H), 4.47 (dd, J = 13.8, 7.3 Hz, 1H), 3.37–3.21 (m, 3H), 3.21– 3.07 (m, 1H), 2.31 (s, 3H), 2.02–1.82 (m, 2H), 1.03 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.5, 144.5, 143.3, 137.2, 129.5 (q, $J_{CF} = 32.3$ Hz), 129.29, 129.26, 126.94, 126.93, 125.3 (q, $J_{CF} = 3.4$ Hz), 123.9 (q, $J_{CF} = 273.7$ Hz), 117.6, 114.3, 56.8, 47.3, 46.4, 34.3, 21.2, 11.7; ESI-HRMS calcd for [C₂₅H₂₈F₃N₂O₂S, M + H]⁺: 477.1824, Found: 477.1822.

N-(1-(4-bromophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4e)

NHTsBrown oil, 85.8 mg, 88% yield, ¹H NMR (400 MHz, CDCl₃):
$$\delta$$
 7.47 $Ph_{N_{Et}}$ (d, $J = 8.3$ Hz, 2H), 7.24 (d, $J = 8.4$ Hz, 2H), 7.19 (dd, $J = 8.6$, 7.4 Hz, 2H), 7.07 (d, $J = 8.1$ Hz, 2H), 6.92 (d, $J = 8.4$ Hz, 2H), 6.72 (t, $J = 7.3$

Hz, 1H), 6.61 (d, J = 8.0 Hz, 2H), 6.16 (d, J = 7.5 Hz, 1H), 4.35 (q, J = 7.3 Hz, 1H), 3.34–3.18 (m, 3H), 3.17–3.04 (m, 1H), 2.37 (s, 3H), 2.01–1.79 (m, 2H), 1.02 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.5, 143.2, 139.5, 137.3, 131.4, 129.3, 129.2, 128.3, 126.9, 121.2, 117.1, 113.8, 56.4, 47.1, 46.0, 34.2, 21.4, 11.8; ESI-HRMS calcd for [C₂₄H₂₈BrN₂O₂S, M + H]⁺: 487.1055, Found: 487.1056.

N-(3-(ethyl(phenyl)amino)-1-(p-tolyl)propyl)-4-methylbenzenesulfonamide (4f)

Ph NHTs Brown oil, 59.2 mg, 70% yield, ¹H NMR (400 MHz, CDCl₃):
$$\delta$$
 7.48 (d, $J = 8.2$ Hz, 2H), 7.18 (dd, $J = 8.3$, 7.5 Hz, 2H), 7.07 (d, $J = 7.8$ Hz, 2H), 6.95 (dd, $J = 18.8$, 8.0 Hz, 4H), 6.71 (d, $J = 7.2$ Hz, 1H),

6.60 (d, J = 8.2 Hz, 2H), 5.54–5.43 (m, 1H), 4.32 (q, J = 7.0 Hz, 1H), 3.33–3.16 (m, 3H), 3.15–3.05 (m, 1H), 2.35 (s, 3H), 2.28 (s, 3H), 2.05–1.83 (m, 2H), 1.03 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.6, 142.9, 137.5, 137.4, 137.2, 129.24, 129.21, 129.1, 127.0, 126.4, 116.8, 113.6, 56.7, 47.2, 45.9, 34.4, 21.4, 21.0, 11.9; ESI-HRMS calcd for [C₂₄H₃₁N₂O₂S, M + H]⁺: 423.2106, Found: 423.2109.

N-(1-(3-bromophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4g)

NHTsBrown oil, 88.7 mg, 91% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.46PhBrown oil, 88.7 mg, 91% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.46(d, J = 7.9 Hz, 2H), 7.25–7.21 (m, 1H), 7.18 (t, J = 8.0 Hz, 2H), 7.06(d, J = 8.1 Hz, 2H), 7.03–7.00 (m, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.61

(d, J = 8.1 Hz, 2H), 6.11–5.95 (m, 1H), 4.33 (dd, J = 13.9, 7.4 Hz, 1H), 3.33–3.20 (m, 3H), 3.18– 3.06 (m, 1H), 2.34 (s, 3H), 1.99–1.79 (m, 2H), 1.02 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.5, 143.2, 142.7, 137.2, 130.4, 130.0, 129.7, 129.3, 129.2, 126.9, 125.1, 122.4, 117.1, 113.8, 56.5, 47.2, 46.1, 34.4, 21.4, 11.8; ESI-HRMS calcd for [C₂₄H₂₈BrN₂O₂S, M + H]⁺: 487.1055, Found: 487.1051.

N-(3-(ethyl(phenyl)amino)-1-(m-tolyl)propyl)-4-methylbenzenesulfonamide (4h)

6.60 (d, J = 7.9 Hz, 2H), 5.48–5.37 (m, 1H), 4.32 (q, J = 6.9 Hz, 1H), 3.36–3.20 (m, 3H), 3.19–3.07 (m, 1H), 2.34 (s, 3H), 2.18 (s, 3H), 2.06–1.85 (m, 2H), 1.05 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.7, 142.9, 140.3, 138.1, 137.6, 129.3, 129.2, 128.5, 128.2, 127.3, 127.1, 123.5, 116.9, 113.7, 57.0, 47.3, 46.0, 34.5, 21.4, 21.2, 11.9; ESI-HRMS calcd for [C₂₄H₃₁N₂O₂S, M + H]⁺: 423.2106, Found: 423.2105.

N-(1-(2-bromophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4i)

Ph NHTs Br Brown oil, 90.0 mg, 92% yield, ¹H NMR (400 MHz, CDCl₃):
$$\delta$$
 7.54 (d, J = 8.3 Hz, 2H), 7.36 (dd, J = 7.9, 1.0 Hz, 1H), 7.23–7.14 (m, 3H), 7.13–7.02 (m, 3H), 6.99 (td, J = 7.9, 1.7 Hz, 1H), 6.73 (t, J = 7.3 Hz, 1H), 6.66

(d, J = 8.0 Hz, 2H), 6.19 (d, J = 7.6 Hz, 1H), 4.81 (dd, J = 13.3, 7.8 Hz, 1H), 3.39–3.24 (m, 3H), 3.24–3.13 (m, 1H), 2.32 (s, 3H), 2.01–1.81 (m, 2H), 1.05 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.5, 143.1, 139.7, 136.9, 132.9, 129.24, 129.23, 128.6, 128.2, 127.5, 127.0, 122.2, 117.3, 114.1, 56.4, 47.3, 46.3, 33.5, 21.4, 11.8; ESI-HRMS calcd for [C₂₄H₂₈BrN₂O₂S, M + H]⁺: 487.1055, Found: 487.1056.

N-(3-(ethyl(phenyl)amino)-1-(o-tolyl)propyl)-4-methylbenzenesulfonamide (4j)

 NHTsMe
 Brown oil, 62.5 mg, 74% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J

 Ph
 \uparrow = 7.3 Hz, 2H), 7.17 (t, J = 7.2 Hz, 2H), 7.07–6.92 (m, 6H), 6.69 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 8.0 Hz, 2H), 5.69–5.54 (m, 1H), 4.67 (q, J = 7.0 Hz, 1H

1H), 3.38–3.24 (m, 3H), 3.22–3.09 (m, 1H), 2.32 (s, 3H), 2.15 (s, 3H), 1.98–1.85 (m, 2H), 1.05 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.6, 142.9, 138.7, 137.4, 134.6, 130.4, 129.19, 129.16, 127.1, 126.8, 126.3, 125.5, 116.8, 113.5, 52.6, 47.2, 46.0, 34.4, 21.4, 19.0, 11.9; ESI-HRMS calcd for [C₂₄H₃₁N₂O₂S, M + H]⁺: 423.2106, Found: 423.2103.

N-(3-(ethyl(phenyl)amino)-1-(naphthalen-2-yl)propyl)-4-methylbenzenesulfonamide (4k)

Ph NHTs Brown oil, 67.4 mg, 81% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.79– 7.71 (m, 1H), 7.63 (t, J = 7.4 Hz, 2H), 7.42 (dd, J = 15.1, 6.9 Hz, 5H), 7.18 (t, J = 7.9 Hz, 3H), 6.87 (d, J = 7.8 Hz, 2H), 6.71 (t, J =

7.2 Hz, 1H), 6.63 (d, J = 8.1 Hz, 2H), 5.82–5.68 (m, 1H), 4.55 (q, J = 6.9 Hz, 1H), 3.38–3.21 (m, 3H), 3.22–3.06 (m, 1H), 2.14 (s, 3H), 2.10–1.94 (m, 2H), 1.03 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.6, 142.9, 137.4, 137.3, 132.9, 132.7, 129.2, 129.1, 128.5, 127.8, 127.5, 127.0, 126.2, 126.0, 125.9, 123.9, 117.0, 113.8, 57.2, 47.3, 46.0, 34.3, 21.2, 11.9; ESI-HRMS calcd for [C₂₈H₃₁N₂O₂S, M + H]⁺: 459.2106, Found: 459.2108.

J = 5.8 Hz, 1H), 4.48 (dd, J = 15.3, 7.0 Hz, 1H), 3.36–3.25 (m, 3H), 3.23–3.11 (m, 1H), 2.37 (s, 3H), 2.03–1.95 (m, 2H), 1.06 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.7, 147.6, 143.1, 142.0, 137.5, 129.4, 129.3, 127.0, 116.8, 113.4, 110.2, 107.2, 50.4, 46.9, 46.0, 32.1, 21.5, 12.0; ESI-HRMS calcd for [C₂₂H₂₇N₂O₃S, M + H]⁺: 399.1742, Found: 399.1743.

N-(3-(ethyl(phenyl)amino)-1-(thiophen-2-yl)propyl)-4-methylbenzenesulfonamide (4m)

$$\begin{array}{l} \text{Ph}_{N} \\ \text{Figure 1} \\ \text{Figure 2} \\ \text{Figure 2}$$

Hz, 1H), 4.69 (q, J = 6.9 Hz, 1H), 3.34–3.26 (m, 3H), 3.25–3.16 (m, 1H), 2.37 (s, 3H), 2.03 (q, J = 6.9 Hz, 2H), 1.05 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.6, 144.5, 143.2, 137.5, 129.4, 129.3, 127.0, 126.7, 125.1, 124.9, 117.1, 113.9, 52.5, 47.1, 46.2, 34.9, 21.5, 11.8; ESI-HRMS calcd for [C₂₂H₂₇N₂O₂S₂, M + H]⁺: 415.1514, Found: 415.1508.

N-(1-cyclohexyl-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4n)

NHTs**3s**, yellow oil, 43.7 mg, 52% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.69Ph(d, J = 8.0 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 7.16 (t, J = 7.9 Hz, 2H), 6.66(t, J = 7.2 Hz, 1H), 6.55 (d, J = 8.1 Hz, 2H), 4.63 (d, J = 8.9 Hz, 1H),

3.24–3.16 (m, 2H), 3.13–3.02 (m, 2H), 2.41 (s, 1H), 2.38 (s, 3H), 1.74–1.63 (m, 4H), 1.50 (d, J = 12.2 Hz, 2H), 1.38–1.27 (m, 2H), 1.09–1.05 (m, 2H), 1.01 (t, J = 7.1 Hz, 3H), 0.96–0.81 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.6, 143.2, 138.5, 129.6, 129.3, 127.0, 116.3, 112.8, 57.6, 47.4, 45.6, 41.9, 29.1, 28.62, 28.59, 26.3, 26.2, 26.1, 21.5, 12.1; ESI-HRMS calcd for [C₂₄H₃₅N₂O₂S, M + H]⁺: 415.2419, Found: 415.2418.

N-(1-(ethyl(phenyl)amino)octan-3-yl)-4-methylbenzenesulfonamide (40)

1H), 3.32–3.24 (m, 3H), 3.22–3.13 (m, 1H), 2.49–2.40 (m, 4H), 1.77–1.69 (m, 1H), 1.57–1.51 (m, 1H), 1.44–1.33 (m, 2H), 1.24–1.11 (m, 6H), 1.08 (t, J = 7.0 Hz, 3H), 0.84 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.7, 143.3, 138.2, 129.6, 129.3, 127.0, 116.4, 113.0, 52.9, 46.9, 45.6, 35.4, 32.3, 31.5, 25.0, 22.4, 21.5, 13.9, 12.0; ESI-HRMS calcd for [C₂₃H₃₅N₂O₂S, M + H]⁺: 403.2419, Found: 403.2418.

N-(3-(ethyl(4-methoxyphenyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4p)

Brown oil, 49.0 mg, 55% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.1 Hz, 2H), 7.20–7.14 (m, 3H), 7.11–7.03 (m, 4H), 6.86–6.78 (m, 4H), 6.71 (d, *J* = 3.8 Hz, 1H), 4.41 (dd, *J* = 12.1,

6.0 Hz, 1H), 3.79 (s, 3H), 3.18–3.08 (m, 2H), 3.04 (t, J = 6.2 Hz, 2H), 2.34 (s, 3H), 1.90–1.72 (m, 2H), 0.97 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.9, 142.7, 142.1, 140.9, 137.6, 129.2, 128.3, 127.2, 127.0, 126.5, 119.9, 114.6, 57.8, 55.6, 49.0, 48.8, 33.7, 21.4, 11.6; ESI-HRMS calcd for [C₂₅H₃₁N₂O₃S, M + H]⁺: 439.2055, Found: 439.2057.

N-(3-((4-bromophenyl)(ethyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4q)

Br NHTs NHTs NHTs 7.49 (d, J = 8.3 Hz, 2H), 7.18-7.12 (m, 3H), 7.09-6.96 (m, 6H), 6.49-6.40 (m, 2H), 5.65 (d, J = 7.7 Hz, 1H), 4.34 (q, J = 7.2 Hz, 1H)

1H), 3.30–3.15 (m, 3H), 3.14–3.00 (m, 1H), 2.33 (s, 3H), 2.06–1.80 (m, 2H), 1.00 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 146.2, 143.1, 140.3, 137.5, 129.3, 129.0, 128.6, 127.7, 127.0, 126.4, 121.5, 114.5, 56.8, 47.3, 46.0, 34.5, 21.5, 11.8; ESI-HRMS calcd for [C₂₄H₂₈BrN₂O₂S, M + H]⁺: 487.1055, Found: 487.1057.

N-(3-(ethyl(p-tolyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4r)

Brown oil, 64.4 mg, 76% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* = 7.6 Hz, 2H), 7.20–7.13 (m, 3H), 7.11–6.97 (m, 6H), 6.60 (d, *J* = 8.5 Hz, 2H), 6.03–5.89 (d, *J* = 6.8 Hz, 1H), 4.39 (q,

J = 6.8 Hz, 1H), 3.30–3.12 (m, 3H), 3.12–3.02 (m, 1H), 2.34 (s, 3H), 2.26 (s, 3H), 1.97–1.81 (m, 2H), 1.00 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 145.6, 142.8, 140.6, 137.5, 129.8, 129.2, 128.4, 127.3, 127.2, 127.0, 126.5, 115.4, 57.3, 47.6, 46.9, 34.2, 21.4, 20.3, 11.7; ESI-HRMS calcd for [C₂₅H₃₁N₂O₂S, M + H]⁺: 423.2106, Found: 423.2104.

4-methyl-N-(2-methyl-1-phenyl-3-(phenyl(propyl)amino)propyl)benzenesulfonamide (4s)

1H), 4.17–4.05 (m, 1H), 3.36–3.21 (m, 3H), 3.17–3.07 (m, 1H), 2.30 (s, 3H), 2.15–2.07 (m, 1H), 1.54– 1.46 (m, 2H), 0.88 (t, J = 7.1 Hz, 3H), 0.65 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 148.4, 142.6, 139.7, 137.7, 129.3, 129.0, 128.1, 127.4, 127.3, 127.1, 118.9, 116.5, 64.3, 57.3, 56.1, 36.3, 21.4, 19.2, 15.8, 11.6; ESI-HRMS calcd for [C₂₆H₃₃N₂O₂S, M + H]⁺: 437.2263, Found: 437.2260. [for more polar diastereomer (major)] ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.1 Hz, 2H), 7.21–7.17 (m, 2H), 7.12–7.09 (m, 3H), 7.01 (d, J = 8.4 Hz, 2H), 6.94–6.89 (m, 2H), 6.72 (t, J = 6.9 Hz, 1H), 6.62 (d, J = 8.6 Hz, 2H), 5.55 (d, J = 9.1 Hz, 1H), 4.39 (dd, J = 9.0, 5.0 Hz, 1H), 3.29–3.23 (m, 2H), 3.18– 3.10 (m, 1H), 3.02–2.94 (m, 1H), 2.30 (s, 3H), 2.24–2.16 (m, 1H), 1.48 (dd, J = 14.8, 7.3 Hz, 2H), 0.87– 0.83 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 148.1, 142.8, 139.3, 137.6, 129.2, 128.1, 127.0, 127.0, 126.8, 117.2, 114.4, 60.6, 55.3, 54.6, 37.5, 21.4, 19.4, 13.7, 11.5; ESI-HRMS calcd for [C₂₆H₃₃N₂O₂S, M + H]⁺: 437.2263, Found: 437.2260.

4-methyl-*N*-(**phenyl**(**1-phenyl-1,4,5,6-tetrahydropyridin-3-yl**)**methyl**)**benzenesulfonamide** (6a) NHTs Yellow solid, mp: 143–144 °C, 66.5 mg, 79% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.30–7.22 (m, 7H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.88 (t, *J* = 7.3 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.38 (s, 1H), 5.26 (dd, *J* = 13.1, 7.2 Hz, 1H), 5.01 (d, *J* = 7.3 Hz, 1H), 3.38–3.27 (m, 1H), 3.25–3.14 (m, 1H), 2.34 (s, 3H), 1.84–1.73 (m, 3H), 1.70–1.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 146.3, 143.1, 139.7, 137.7, 129.2, 129.1, 129.0, 128.3, 127.4, 127.2, 126.7, 119.7, 114.8, 109.4, 62.3, 44.8, 21.7, 21.4, 21.0; ESI-HRMS calcd for [C₂₅H₂₇N₂O₂S, M + H]⁺: 419.1793, Found: 419.1788.

N-((4-bromophenyl)(1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)methyl)-4-

methylbenzenesulfonamide (6b)

Ρh

NHTs Yellow oil, 82.6 mg, 83% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.26–7.21 (m, 2H), 7.13 (dd, J = 13.5, 8.3 Hz, 4H), 6.87 (t, J = 7.3 Hz, 1H), 6.72 (d, J = 7.9 Hz, 2H), 6.31 (s, 1H), 5.33–5.17 (m, 1H), 4.92 (d, J = 7.3 Hz, 1H), 3.35–3.25 (m, 1H), 3.24–

3.15 (m, 1H), 2.33 (s, 3H), 1.83–1.71 (m, 3H), 1.71–1.63 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 146.2, 143.3, 138.8, 137.5, 131.4, 129.31, 129.29, 129.2, 128.6, 127.4, 121.1, 119.9, 115.0, 108.8, 61.9, 44.8, 21.7, 21.4, 21.0; ESI-HRMS calcd for [C₂₅H₂₄BrN₂O₂S, M – H]⁺: 495.0742, Found: 495.0745.

N-((4-fluorophenyl)(1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)methyl)-4-

methylbenzenesulfonamide (6c)

3.26 (m, 1H), 3.24–3.14 (m, 1H), 2.32 (s, 3H), 1.83–1.71 (m, 3H), 1.70–1.65 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 161.9 (d, J_{CF} = 246.4 Hz), 146.2, 143.2, 137.6, 135.5 (d, J_{CF} = 3.0 Hz), 129.3, 129.19, 129.15, 128.5 (d, J_{CF} = 8.1 Hz), 127.4, 119.8, 115.1 (d, J_{CF} = 21.2 Hz), 114.9, 109.2, 61.7, 44.8, 21.7, 21.4, 21.0; ESI-HRMS calcd for [C₂₅H₂₆FN₂O₂S, M + H]⁺: 437.1699, Found: 437.1689.

4-methyl-*N*-((1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(p-tolyl)methyl)benzenesulfonamide (6d)

3.22–3.13 (m, 1H), 2.32 (s, 3H), 2.30 (s, 3H), 1.80–1.69 (m, 3H), 1.66–1.60 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 146.4, 143.0, 137.8, 136.9, 136.7, 129.2, 129.1, 129.0, 128.9, 127.4, 126.7, 119.6, 114.9, 109.6, 62.1, 44.8, 26.9, 21.8, 21.4, 21.0; ESI-HRMS calcd for [C₂₆H₂₇N₂O₂S, M – H]⁺: 431.1793, Found: 431.1796.

4-methyl-*N*-((1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(m-tolyl)methyl)benzenesulfonamide (6e)

3H), 1.83–1.70 (m, 3H), 1.67–1.55 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 146.3, 143.0, 139.6, 137.9, 137.8, 129.2, 129.1, 128.8, 128.2, 127.9, 127.44, 127.41, 123.8, 119.6, 114.8, 109.6, 62.3, 44.7, 21.7, 21.4, 21.3, 21.0; ESI-HRMS calcd for [C₂₆H₂₉N₂O₂S, M + H]⁺: 433.1950, Found: 433.1939.

4-methyl-*N*-((1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(*o*-tolyl)methyl)benzenesulfonamide (6f)

1.77 (m, 3H), 1.74–1.64 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 146.4, 143.0, 137.8, 137.4, 135.4, 130.6, 129.3, 129.18, 129.15, 127.3, 127.1, 126.2, 125.8, 119.7, 115.0, 109.1, 58.8, 45.0, 22.3, 22.0, 21.5, 19.3; ESI-HRMS calcd for [C₂₆H₂₉N₂O₂S, M + H]⁺: 433.1950, Found: 433.1941.

4-methyl-N-(naphthalen-2-yl(1-phenyl-1,4,5,6-tetrahydropyridin-3-

yl)methyl)benzenesulfonamide (6g)

467.1793, Found: 467.1796.

4-methyl-N-((1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(thiophen-2-

yl)methyl)benzenesulfonamide (6h)

NHTs Yellow oil, 43.3 mg, 51% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.29–7.26 (m, 2H), 7.19–7.15 (m, 3H), 6.91–6.86 (m, 3H), 6.80–6.76 (m, 2H), 6.48 (s, 1H), 5.23 (d, *J* = 7.6 Hz, 1H), 5.06 (brs, 1H), 3.39–3.30 (m, 1H), 3.19–3.10 (m, 1H), 2.33 (s, 3H), 1.95–1.87 (m, 1H), 1.83–1.75 (m, 1H), 1.74–1.64 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 146.3, 144.9, 143.3, 137.8, 129.4, 129.3, 129.2, 127.5, 126.9, 125.0, 124.9, 120.0, 115.1, 108.9, 58.9, 44.9, 21.7, 21.5, 20.6; ESI-HRMS calcd for [C₂₃H₂₅N₂O₂S₂, M + H]⁺: 425.1357, Found: 425.1359.

N-((1-(4-bromophenyl)-1,4,5,6-tetrahydropyridin-3-yl)(phenyl)methyl)-4-

methylbenzenesulfonamide (6i)

NHTsYellow solid, mp: 155–156 °C, 93.3 mg, 93% yield, ¹H NMR (400 MHz,CDCl₃): δ 7.68 (d, J = 6.6 Hz, 2H), 7.34–7.28 (m, 2H), 7.26–7.17 (m, 5H), 7.13(d, J = 7.0 Hz, 2H), 6.64–6.55 (m, 2H), 6.31 (s, 1H), 5.27 (d, J = 7.0 Hz, 1H),4.97 (d, J = 6.8 Hz, 1H), 3.31–3.20 (m, 1H), 3.20–3.08 (m, 1H), 2.32 (s, 3H),1.82–1.71 (m, 3H), 1.69–1.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 145.3,

143.1, 139.5, 137.7, 131.9, 129.3, 128.4, 128.2, 127.4, 127.3, 126.7, 116.3, 111.7, 110.7, 62.2, 44.8,

21.7, 21.4, 21.1; ESI-HRMS calcd for [C₂₅H₂₆BrN₂O₂S, M – H]⁺: 497.0898, Found: 497.0898.

4-methyl-*N*-(phenyl(1-(p-tolyl)-1,4,5,6-tetrahydropyridin-3-yl)methyl)benzenesulfonamide (6j)

21.1, 20.4; ESI-HRMS calcd for $[C_{26}H_{29}N_2O_2S, M + H]^+$: 433.1950, Found: 433.1948.

4-methyl-*N*-(phenyl(1-phenyl-4,5,6,7-tetrahydro-1H-azepin-3-yl)methyl)benzenesulfonamide (6k)

Yellow oil, 60.6 mg, 70% yield, ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.29–7.20 (m, 9H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.69 (d, *J* = 8.1 Hz, 2H), 6.21 (s, 1H), 5.11–5.02 (m, 1H), 4.99 (d, *J* = 7.2 Hz, 1H), 3.60–3.45 (m, 2H), 2.37 (s, 3H), 1.94 (t, *J* = 5.7 Hz, 2H), 1.70–1.64 (m, 2H), 1.48–1.37 (m,

2H); ¹³C NMR (101 MHz, CDCl₃): δ 146.1, 143.3, 139.9, 137.7, 133.6, 129.5, 129.2, 128.5, 127.4, 127.3, 126.7, 122.5, 118.8, 113.9, 62.9, 48.0, 27.3, 26.7, 23.9, 21.5; ESI-HRMS calcd for [C₂₆H₂₉N₂O₂S, M + H]⁺: 433.1950, Found: 433.1948.

5. Transformations of the products

 N^1 -ethyl- N^1 ,3-diphenylpropane-1,3-diamine (7)

Sodium metal (22.3 mg, 0.97 mmol) and dry degassed THF (2 mL) was added into an oven-dried 25 mL Schlenk tube under argon atmosphere. Then a solution of naphthalene in dry THF (0.5 mL) was added. After the mixture was stirred for approximately 1 hour at room temperature, formation of the naphthalene anion radical was indicated by the intense green color observed. At this time, a solution of *N*-(3-(ethyl(phenyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (**4a**, 99.4 mg, 0.24 mmol) in dry THF (0.5 mL) was added and the mixture was stirred for another 8 hours at room temperature. The mixture was quenched by addition of a small amount of water and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 20:1) to give **7** as light yellow oil, 56.0 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.29 (m, 4H), 7.30–7.23 (m, 1H), 7.21–7.13 (m, 2H), 6.66–6.57 (m, 3H), 3.95 (t, *J* = 6.9 Hz, 1H), 3.38–3.25 (m, 3H), 3.24–3.13 (m, 1H), 2.15 (brs, 2H), 2.02–1.92 (m, 2H), 1.09 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 147.8, 145.6, 129.2, 128.6, 127.3, 126.2, 115.6, 112.1, 54.5, 47.5, 44.9, 36.3, 12.2; ESI-HRMS calcd for [C₁₇H₂₃N₂, M + H]⁺: 255.1861, Found: 255.1856.

N-(3-(ethylamino)-1-phenylpropyl)-4-methylbenzenesulfonamide (8)

To *N*-(3-(ethyl(4-methoxyphenyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide **4p** (46.3 mg, 0.11 mmol) in acetonitrile/water (1:1, 2 mL) at 0 °C was added a solution of ceric ammonium nitrate (179 mg, 0.33 mmol) in acetonitrile/water (1:1, 2 mL) and the mixture was stirred at 0 °C for 5 min. After completion of the reaction, the mixture was diluted with water (10 mL) and ethyl acetate (10 mL). The aqueous phase was extracted with ethyl acetate (3 × 10 mL), diluted with

saturated sodium bicarbonate solution (10 mL) and further extracted with ethyl acetate (2 × 10 mL). The combined organic phase was dried over anhydrous MgSO₄, concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH = 10:1) to give **8** as brown oil, 27.8 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.2 Hz, 2H), 7.09–6.98 (m, 5H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.79 (brs, 2H), 4.49–4.38 (m, 1H), 3.23–3.11 (m, 1H), 3.04–2.88 (m, 3H), 2.46–2.33 (m, 1H), 2.30–2.18 (m, 4H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 142.7, 139.3, 137.4, 129.1, 128.4, 127.4, 126.9, 126.5, 56.6, 45.2, 43.5, 33.5, 21.3, 11.3; ESI-HRMS calcd for [C₁₈H₂₅N₂O₂S, M + H]⁺: 333.1637, Found: 333.1636.

N-(1-(4-chlorophenyl)-3-oxopropyl)-4-methylbenzenesulfonamide (9)

CuCl₂ (1.4 mg, 0.01 mmol, 5 mol%), *N*-benzylidene-4-methylbenzenesulfonamide (**2a**) (51.9 mg, 0.2 mmol) and 4Å MS (50 mg) were introduced into an oven-dried 25 mL Schlenk tube under argon atmosphere. PhNEt₂ (**1a**) (255 uL, 1.6 mmol), DMSO (2 mL) and 50% AcOO'Bu (212 mg, 0.8 mmol) were successively added via syringes at room temperature, and the reaction mixture was stirred at 25 °C for 4 h. CH₂Cl₂ (1 mL) and 3N HCl (~ 0.5 mL) were added and the mixture was stirred for about 5 min at 25 °C. The mixture was diluted with water (3 mL) and CH₂Cl₂ (3 mL), and the aqueous phase was separated and extracted with CH₂Cl₂ (2 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 3:1 to 2:1) to give **9** as brown oil, 37.8 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃): δ 9.63 (s, 1H), 7.61–7.54 (m, 2H), 7.20–7.13 (m, 5H), 7.09–7.02 (m, 2H), 5.45 (brs, 1H), 4.80 (q, J = 7.0 Hz, 1H), 3.06–2.97 (m, 1H), 2.94–2.83 (m, 1H), 2.37 (s, 3H).

Typical procedure for producing $E - \alpha, \beta$ -unsaturated aldehydes (10)

CuCl₂ (1.4 mg, 0.01 mmol, 5 mol%), *N*-benzylidene-4-methylbenzenesulfonamide (**2a**) (51.9 mg, 0.2 mmol) and 4Å MS (50 mg) were introduced into an oven-dried 25 mL Schlenk tube under argon atmosphere. PhNEt₂ (**1a**) (255 uL, 1.6 mmol), DMSO (2 mL) and 50% AcOO'Bu (212 mg, 0.8 mmol) were successively added via syringes at room temperature, and the reaction mixture was stirred at 25 °C for 4 h. Then 3 mL water was added into the mixture and the mixture was stirred at 80 °C for about 10 hours. After completion of the reaction, the mixture was cooled to room temperature and extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phase was dried over anhydrous Na₂SO₄, concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 20:1) to give **10**.

Cinnamaldehyde (10a)

6.73 (dd, J = 16.0, 8.0 Hz, 1H).

(E)-3-(4-chlorophenyl)acrylaldehyde (10b)

CHO Yellow solid, 26.9 mg, 81% yield, ¹H NMR (400 MHz, CDCl₃): δ 9.70
 (d, J = 7.6 Hz, 1H), 7.55–7.35 (m, 5H), 6.69 (dd, J = 16.0, 7.6 Hz, 1H).

(E)-3-(p-tolyl)acrylaldehyde (10c)

Yellow solid, 17.8 mg, 67% yield, ¹H NMR (400 MHz, CDCl₃): δ 9.69 (d, J = 7.8 Hz, 1H), 7.54–7.41 (m, 3H), 7.29–7.21 (m, 2H), 6.99 (dd, J = 15.9, 7.8 Hz, 1H), 2.39 (s, 3H).

(E)-3-(naphthalen-2-yl)acrylaldehyde (10d)

Yellow solid, 30.2 mg, 83% yield, ¹H NMR (400 MHz, CDCl₃): δ 9.77 (d, J = 7.7 Hz, 1H), 8.00 (s, 1H), 7.93–7.83 (m, 3H), 7.72–7.61 (m, 2H),

7.59–7.51 (m, 3H), 6.84 (dd, J = 15.9, 7.7 Hz, 1H).

6. The ¹H NMR Spectra Evidence of the Enamine Intermediates

CuCl₂ (1.4 mg, 0.01 mmol), 4-methyl-*N*-(naphthalen-2-ylmethylene)benzenesulfonamide (**2k**) (61.9 mg, 0.2 mmol) and 4Å MS (50 mg) were introduced into an oven-dried 25 mL Schlenk tube under argon atmosphere. PhNEt₂ (**1a**) (225 uL, 1.6 mmol), DMSO (2 mL) and 50% AcOO'Bu (212 mg, 0.8 mmol) were successively added via syringes at room temperature. A little amount of the mixture was taken out intermediately via syringe and monitored by ¹H NMR in CDCl₃ (Figure S1, a). After stirring at 25 °C under argon atmosphere for 4 hours, a little amount of the mixture was taken out again via syringe and monitored by ¹H NMR in CDCl₃ (Figure S1, b). Then the reaction mixture was stirred in air for another 10 hours. A little amount of the mixture was taken out at this time and monitored by ¹H NMR in CDCl₃ (Figure S1, c).

7

Figure S1. The ¹H NMR spectra evidence of the enamine intermediates. a) after 0 hour; b) after 4 hours, signals of enamine intermediate $4\mathbf{k}$ can be observed; c) after 14 hours, signals of enamine intermediate $4\mathbf{k}$ were disappeared due to hydrolysis in air.

8. NMR Spectra of Products

N-(3-(ethyl(phenyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4a)

N-(1-(4-chlorophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4b)

N-(3-(ethyl(phenyl)amino)-1-(4-fluorophenyl)propyl)-4-methylbenzenesulfonamide (4c)

N-(3-(ethyl(phenyl)amino)-1-(4-(trifluoromethyl)phenyl)propyl)-4-

methylbenzenesulfonamide (4d)

N-(1-(4-bromophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4e)

N-(3-(ethyl(phenyl)amino)-1-(p-tolyl)propyl)-4-methylbenzenesulfonamide (4f)

N-(1-(3-bromophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4g)

N-(3-(ethyl(phenyl)amino)-1-(m-tolyl)propyl)-4-methylbenzenesulfonamide (4h)

N-(1-(2-bromophenyl)-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4i)

N-(3-(ethyl(phenyl)amino)-1-(o-tolyl)propyl)-4-methylbenzenesulfonamide (4j)

N-(3-(ethyl(phenyl)amino)-1-(naphthalen-2-yl)propyl)-4-methylbenzenesulfonamide (4k)

N-(3-(ethyl(phenyl)amino)-1-(furan-2-yl)propyl)-4-methylbenzenesulfonamide (4l)

N-(3-(ethyl(phenyl)amino)-1-(thiophen-2-yl)propyl)-4-methylbenzenesulfonamide (4m)

N-(1-cyclohexyl-3-(ethyl(phenyl)amino)propyl)-4-methylbenzenesulfonamide (4n)

N-(1-(ethyl(phenyl)amino)octan-3-yl)-4-methylbenzenesulfonamide (40)

N-(3-(ethyl(4-methoxyphenyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4p)

N-(3-((4-bromophenyl)(ethyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4q)

N-(3-(ethyl(p-tolyl)amino)-1-phenylpropyl)-4-methylbenzenesulfonamide (4r)

4-methyl-N-(2-methyl-1-phenyl-3-(phenyl(propyl)amino)propyl)benzenesulfonamide (4s)

4-methyl-N-(phenyl(1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)methyl)benzenesulfonamide (6a)

N-((4-bromophenyl)(1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)methyl)-4-

N-((4-fluorophenyl)(1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)methyl)-4-

methylbenzenesulfonamide (6c)

4-methyl-N-((1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(p-tolyl)methyl)benzenesulfonamide

(6d)

(6e)

 $\label{eq:linear} 4-methyl-N-((1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(o-tolyl) methyl) benzenesulfon a mide (1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(o-tolyl) methyl benzenesulfon a mide (1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(0-tolyl) methyl benzenesulfon a mide (1-phenyl-1,4,5,6-tetrahydr$

(**6f**)

4-methyl-N-(naphthalen-2-yl(1-phenyl-1,4,5,6-tetrahydropyridin-3-

yl)methyl)benzenesulfonamide (6g)

4-methyl-N-((1-phenyl-1,4,5,6-tetrahydropyridin-3-yl)(thiophen-2-

yl)methyl)benzenesulfonamide (6h)

N-((1-(4-bromophenyl)-1,4,5,6-tetrahydropyridin-3-yl)(phenyl)methyl)-4-

methylbenzenesulfonamide (6i)

4-methyl-N-(phenyl(1-(p-tolyl)-1,4,5,6-tetrahydropyridin-3-yl)methyl)benzenesulfonamide

(6j)

 $\label{eq:linear} 4-methyl-\textit{N-(phenyl(1-phenyl-4,5,6,7-tetrahydro-1H-azepin-3-yl)} methyl) benzene sulfon a mide a start of the second start of$

(6k)

N^1 -ethyl- N^1 ,3-diphenylpropane-1,3-diamine (7)

N-(3-(ethylamino)-1-phenylpropyl)-4-methylbenzenesulfonamide (8)

9. Reference

- (1) W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory chemicals-Six Edition; Elsevier Inc., London, 2009.
- (2) A. Zwienak and A. Napieraj, *Tetrahedron*, 1996, 52, 8789.
- (3) C.-Y. Zhou, S.-F. Zhu, L.-X. Wang and Q.-L. Zhou, J. Am. Chem. Soc., 2010, 132, 10955.
- (4) J. H. Wynne, S. E. Price, J. R. Rorer and W. M. Stalick, Synth. Commun., 2003, 33, 341.
- (5) Z. Cui, H.-J. Yu, R.-F. Yang, W.-Y. Gao, C.-G. Feng and G.-Q. Lin, *J. Am. Chem. Soc.*, 2011, 133, 12394.
- (6) T. Saitoh and J. Ichikawa, J. Am. Chem. Soc., 2005, 127, 9696.
- (7) Y. H. Lv, Y. Y. Zheng, Y. Li, T. Xiong, J. P. Zhang, Q. Liu and Q. Zhang, Chem. Commun.,
- 2013, **49**, 8866.
- (8) Y. L. Wang, T. L. Liu, L. Y. Bu, J. F. Li, C. Yang, X. J. Li, Y. Yao and W. J. Yang, *J. Phys. Chem. C*, 2012, **116**, 15576.
- (9) N. Takasu, K. Oisaki and M. Kanai, Org. Lett., 2013, 15, 1918.