Supporting information

Direct Conversion of Syngas to Aromatics

Junhao Yang^{[a] [b]}, Xiulian Pan*^[a], Feng Jiao^{[a] [b]}, Jian Li^{[a] [b]}, Xinhe Bao*^[a]

[a] State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaboative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China

[b] University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China

Email: panxl@dicp.ac.cn, xhbao@dicp.ac.cn

Experimental Details

Catalyst preparation

The mixed metal oxide was prepared by co-precipitation method, similar to our previous report. ^[1] Briefly, 12.48 g $Zn(NO_3)_2 \cdot 6H_2O$, 5.61 g $Cr(NO_3)_3 \cdot 9H_2O$, 5.27 g $Al(NO_3)_3 \cdot 9H_2O$ were dissolved in 100 ml distilled water and $(NH_4)_2CO_3$ aqueous solution was used as the precipitant. After precipitation, it was aged for 3 h at the same temperature, followed by filtration and washing by distilled water. The resulting product was dried over night at 383 K and then calcined at 773 K for 4 h.

ZSM-5 was synthesized hydrothermally. Typically, NaAlO₂, 25% tetrapropylammonium hydroxide (TPAOH), tetraethyl orthosilicate (TEOS) and urea were dissolved in 26.7 ml distilled water with a molar ratio of SiO₂ : Al₂O₃ : TPAOH : H_2O : urea = 1 : 0.0025 : 0.4 : 45 : 2.8 unless otherwise stated.^[2] Then the mixture was transferred into a Teflon-lined autoclave, and kept for 4 days at 453 K. After filtering and washing by distilled water, the resulting product was dried over night at

383 K, and then it was calcined for 4 h at 773 K.

The composite catalyst is prepared by mixing and grinding of the two components in an agate mortar with the mass ratio of $ZnCrO_x/ZSM-5 = 3/1$ unless otherwise stated.

Catalytic reaction tests

Catalytic reactions were performed with fixed-bed stainless steel reactor furnished with a quartz tube (outside diameter = 7 mm) lining in a continuous flow. Typically 280 mg composite catalyst (20 – 40 mesh) with ZnCrO_x/ZSM-5 = 3/1 (mass ratio) was used. The catalyst was subjected to in situ reduction in H₂ for 4 h at 623 K. A premixed syngas was used as the feed with CO/H₂ = 1/1 (molar) containing 5% Ar as the internal standard for online gas chromatography (GC) analysis. Reaction was carried out at 4.0 MPa, 623 K and 1500 ml h⁻¹·g_{cat}⁻¹ unless otherwise stated. Data were collected after at least 4 hours on stream.

MTA was performed on the same ZSM-5 for comparison at atmospheric pressure. Methanol was introduced into the catalyst bed with He as the carrier gas. The weight hourly space velocity of methanol was 0.3 h⁻¹, equivalent to the CO converted in the OX-ZEO process assuming 100% methanol conversion.

Products were analyzed by an online GC (Agilent 7890B) equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). Porapak Q and 5 Å molecular sieves packed columns were connected to TCD while HP-FFAP and HP-AL/S capillary columns were connected to FID. Oxygen-containing compounds and hydrocarbons up to C_{17} were analyzed by FID, while CO, CO_2 , C_2H_4 , and C_2H_6 were analyzed by TCD. C_2H_4 and C_2H_6 were taken as a reference bridge between FID and TCD. CO conversion was calculated on a carbon atom basis, i.e.

$$Con_{co} = \frac{CO_{inlet} - CO_{outlet}}{CO_{inlet}} \times 100\%$$

Where CO_{inlet} and CO_{outlet} represent moles of CO at the inlet and outlet, respectively. CO₂ selectivity (Sel_{CO_2}) was calculated according to:

$$Sel_{CO_2} = \frac{CO_{2outlet}}{CO_{inlet} - CO_{outlet}} \times 100\%$$

Where CO_2 outlet denotes moles of CO_2 at the outlet.

The selectivity of individual hydrocarbon C_nH_m ($Sel_{C_nH_m}$) was obtained according

to:

$$Sel_{C_nH_m} = \frac{nC_nH_{m \text{ outlet}}}{\sum_{i=1}^{n}nC_nH_{m \text{ outlet}}} \times 100\%$$

The selectivity to oxygenates were below 1% C and therefore were not reported in the product selectivity. The carbon balance was over 95%.

Catalyst characterization

Temperature-programmed-desorption of NH₃ (NH₃–TPD) was performed on a Micromeritics AutoChem 2910 equipped with a thermal conductivity detector (TCD). The catalyst was first pretreated in a flowing He at 723 K for 1.5 h. After cooling down to 373 K under flowing He, the sample was exposed to 15% NH₃/He at 373 K. Then the sample was swept by He at 373 K till a stable baseline was obtained. Subsequently, signal was recorded while the temperature was increased from 373 to 1073 K at a heating rate of 10 K/min.

X-ray diffraction (XRD) was measured on a PANalytical X'pert PPR diffractometer equipped with CuK α radiation source ($\lambda = 1.5418$ Å), operated at 40 mA and 40 kV. XRD patterns were recorded in the range of $2\theta = 5 - 40^{\circ}$.

Scanning electron microscope (SEM) was performed on an FEI QUANTA 200FEG microscope at 20 kV.

X ray fluorescence (XRF) was measured on PANalytical ZETIUM operated at 3 kW.

Figure S1. XRD patterns of ZSM-5 with different SiO₂/Al₂O₃ ratios.

Table	S1 .	The	specific	production	selectivity	of	syngas	conversion	over
ZnCrO	x–ZSN	M-5-5	33. ^[a]						

CO Conversion [%]	16.0					
CO ₂ Selectivity [%]	46.9					
Selectivity in hydrocarbons [%]						
CH ₄	1.7					
$C_2^{=}-C_4^{=}$	7.1					
C ₂ -C ₄	8.0					
Total C ₅₊	83.2					
Toluene	1.7					
Xylenes	13.0					
Trimethylbenzenes	34.2					
Tetramethylbenzenes	10.2					
Other aromatics (C_8-C_{10})	14.8					
Total aromatics	73.9					
Non-aromatic C ₅₊	9.3					

[a] Reaction conditions: ZnCrO_x–ZSM-5-533 (containing 50 wt% ZnCrO_x), 623 K, 4.0 MPa, GHSV = 1500 ml h⁻¹·g_{cat}⁻¹, H₂/CO = 1/1. There are no C₁₁₊ hydrocarbons detected.

Figure S2. Reproducibility test of catalysts, which have been prepared and evaluated in different batches under the same reaction conditions. Reaction conditions: 623 K, 4.0 MPa and GHSV 1500 ml $h^{-1} \cdot g_{cat}^{-1}$.

References

- F. Jiao, J. J. Li, X. L. Pan, J. P. Xiao, H. B. Li, H. Ma, M. M. Wei, Y. Pan, Z. Y. Zhou, M. R. Li, S. Miao, J. Li, Y. F. Zhu, D. Xiao, T. He, J. H. Yang, F. Qi, Q. Fu, X. H. Bao, *Science* 2016, 351, 1065-1068.
- Y. Liu, X. Zhou, X. Pang, Y. Jin, X. Meng, X. Zheng, X. Gao, F. S. Xiao, *Chemcatchem*. 2013, 5, 1517-1523.