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1. Materials and Physical Measurements.

All chemicals were purchased from commercial sources and used without further purification. The
reactions were carried out using standard Schlenk techniques under nitrogen atmosphere. The
solvents used were dried and purified. 1, 4, 7, 10-Tetramethyl-1, 4, 7, 10-tetraazacyclododecane (12-
TMC) were synthesized according to literature procedure.5! Elemental analyses for C, H, and N were
performed on a Vario MICRO elemental analyzer. Powder X-ray diffraction (PXRD) data were
recorded on a Bruker D8 ADVANCE X-ray powder diffractometer (Cu-Ka). Inductively coupled
plasma-optical emission spectrometry (ICP OES-Optima 5300DV, PerkinElmer Inc., Waltham, MA,
USA) was employed to confirm the ratio of Zn: Co in the diluted samples.

Magnetic susceptibility measurements were performed using a vibrating sample magnetometer
(VSM) of Quantum Design MPMS SQUID-VSM system. Measurements on 1, 2 and the diluted
compounds 1’ and 2’ were operated with ground microcrystalline powders within a polycarbonate
plastic capsule. Variable temperature direct-current susceptibility data were collected between 1.8
and 400 K under a field of 1000 Oe. The field-dependent magnetizations were measured in a range

of 1-7 T between 1.8 and 5.0 K at applied magnetic fields. The alternative-current magnetic
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susceptibility were measured in the temperature range 1.8 K to 6.0 K under an external dc fields of
2500 Oe using an oscillating ac field of 2.0 Oe at ac frequencies ranging from 1 to 1000 Hz. The data
were collected for diamagnetic contribution from the sample holder, as well as for the sample itself

estimated from Pascal’s constant.S?

2. Synthesis

[Co(12-TMC)(CH;3CN)](BF,), (1).

A solution of AgBF, (2.0 mmol, 0.40 g) in 10 mL of CH3CN was added to a solution of CoCl,
(1.0 mmol, 0.13 g) in 10 mL of CH3CN. After the resulting solid AgCl was separated, 12-TMC (0.8
mmol, 0.20 g) was added to the filtrate. The reaction mixture was stirred at room temperature for 3 h,
filtrated, and allowed the solution to evaporate to give the reddish brown crystals of 1 with a yield of
65 % based on Co. Anal. Calc. for C;4H;,B,CoN;sFg: C, 33.50; H, 6.22; N, 13.95. Found: C, 33.11; H,
6.18; N, 13.88.

[Co(12-TMC)(CH;CN)](PF¢), (2)

Compound 2 was prepared by the same procedure as 1, but using AgPF4 (2.0 mmol, 0.50 g)
instead of AgBF, (2.0 mmol, 0.40 g). The reddish brown crystals of 2 were obtained in 70% yield
based on Co. Anal. Calcd. for C4H;,CoF,NsP,: C, 27.20; H, 5.05; N, 11.33. Found: C, 26.89; H,
4.96; N, 11.21.

[Zn(12-TMC)(CH;CN)](BF,); (3)

Compound 3 was prepared by the same procedure as 1, but using Znl, (1.0 mmol, 0.32 g) instead
of CoCl, (1.0 mmol, 0.13 g). The colorless crystals of 3 were obtained in 71% yield based on Zn.
Anal. Calcd. for C;4H3;B,FsNsZn: C, 33.07; H, 6.15; N, 13.77. Found: C, 33.01; H, 6.15; N, 13.69.

[Zn(12-TMC)(CH3CN)](PFy), (4)

Compound 4 was prepared by the same procedure as 3, but using AgPF¢ (2.0 mmol, 0.50 g)
instead of AgBF, (2.0 mmol, 0.40 g). The colorless crystals of 4 were obtained in 75% yield based
on Zn. Anal. Calcd. for C4H;3;F,NsP»Zn: C, 26.91; H, 5.00; N, 11.21. Found: C, 26.89; H, 5.00; N,
11.20.

[C0¢2Zng(12-TMC)(CH3CN)](A), (A = BF,, 1’; A = PFq, 2°)

The diluted samples 1° and 2’ were prepared by dissolving the crystals of [Co(12-
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TMC)(CH3CN)](A), and [Zn(12-TMC)(CH3CN)](A), with ratio of 1:4. The reaction mixture was
stirred at room temperature for 3 h and filtrated. The light reddish brown crystals were obtained from

the diffusion of diethyl ether into acetonitrile solution with a yield of 50 %. Successful dilution was

confirmed by XRD (Figure S5 and S6) and ICP data.

3. X-ray structure determination

X-ray diffraction data for 1 and 2 were collected using a Bruker D8 ADVANCE diffractometer
with a CCD area detector (Mo Ka radiation) at low temperature. The APEXII program was used for
collecting frames of data and determining lattice parameters. Data were integrated through the
SAINT.S? The structures were solved using SHELXS-97 and subsequently completed by Fourier
recycling using the SHELXL 97 program.5* All non-hydrogen atoms were refined using anisotropic
displacement parameters. Crystallographic data and refinement parameters for 1, 2 are listed in Table
S1.

We have attempted to solve the crystal structures of 3 and 4. Unfortunately, the crystal structures
of 3 and 4 were not fully refined due to the high disorder of the carbons atom and the poor quality of
diffraction data, but the molecular structures (Figure S2) and crystal parameters have been definitely
determined as shown in the following: 3 (a = 8.7620(7) A, b = 8.7620(7) A, ¢ = 14.410(3) A, a =
90.00°, 8 =90.00°, y = 90.00°, P4/nmm) and 4 (a = 9.1402(12) A, b =9.1402(12) A, ¢ =30.212(8) A,
a=90.00°, =190.00°, y =90.00°, P4/ncc).



Table S1. Crystal data of 1 and 2.

1

2

CCDC No.

1546344

1546345

Empirical formula

Ci4H3,B,CoN;sFy

Ci4H3,CoF,NsP,

Molecular weight 501.99 618.31
Temperature ( K ) 155 155
Crystal system Orthorhombic Tetragonal
Space group Pmn2(1) P-42(1)m
alA 8.794(5) 9.1662(8)
b/ A 14.351(8) 9.1662(8)
clA 16.856(9) 14.722(2)
a (°) 90.00 90.00
L) 90.00 90.00
7(°) 90.00 90.00
V/A3 2127(2) 1237.0(3)
Z 4 2
D4, glem? 1.567 1.660
w/mm! 0.886 0.926
F (000) 1036 630
0 rang (deg) 2.61/27.29 2.62/27.39
Goodness-of-fit on F? 1.185 1.168
R1, wR2(all data) 0.0754/0.2159 0.0770/0.2290
RI1, wR2 [I >207(])] 0.0715/0.2127 0.0723/0.2242




Figure S1 Molecular structure of complex 2. All hydrogen atoms are omitted for clarity. Red, blue,
and gray spheres represent Co, N, and C atoms, respectively.

Figure S2 Molecular structure of complexes 3 (left) and 4 (right). All hydrogen atoms are omitted

for clarity. Purple, blue, and gray spheres represent Zn, N, and C atoms, respectively.

Table S2. The results of the continuous shape measure (CSM) analyses of Co(12-TMC)>" in 1 and 2

by SHAPE softwareS>.
CSM 1 2
Pentagon 32.371 33.089
Vacant octahedron 1.002 1.283
Five-vertex Trigonal bipyramid 5.541 5.458
Square pyramid 0.234 0.036
Johnson trigonal bipyramid 7.868 8.158
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Figure S4 XRD patterns for complex 2.
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Figure S5 Powder XRD patterns for 1’ and 3.
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Figure S6 Powder XRD patterns for 2° and 4.
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Figure S7 Variable-temperature dc susceptibility data under 1000 Oe applied dc field of 2. The solid
lines are fits to the data with the program PHI.S6
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Figure S8 The magnetization measurements in the field range 0-7 T below 5 K for complex 2. The
solid lines are fits to the data with the program PHI.S®
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Figure S9 Variable-temperature dc susceptibility data under 1000 Oe applied dc field of 1’ and 2°.
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Figure S10 The magnetization measurements in the field range 0-7 T at 1.8K for complexes 1’ and
2’. The solid lines are for eye guide.
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Figure S11 Temperature dependence of in-of-phase (y,,’) at different temperature under a 2500 Oe
dc field for 1. The solid lines are for eye guide.
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Figure S12 Temperature dependence of in-of-phase (y,,’) and out-of-phase ac susceptibility (y,,”) at
different ac frequency under a 2500 Oe dc field for 1. The solid lines are for eye guide.
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Figure S13 Frequency dependence of out-of-phase (y,,’’) ac susceptibility at 1.8 K under the
different applied static fields from 0 to 5000 Oe and field dependence of the magnetic parameters

collected from the y,,” vs. v for 2. The solid lines are for eye guide.
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Figure S14 Frequency dependence of the ac susceptibility from 1.8 to 6.0 K under 2500 Oe dc field
for 2. The solid lines are for eye guide.
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Figure S15 Relaxation time of the magnetization In(t) vs 7"/ plot under 2500 Oe for 2 and those
diluted in a matrix of [Zn(12-TMC)(CH3;CN)](X), under the same field. The solid lines fit by eqn (1).
The data was collected from the maximum of y,,”” against frequency at different temperature.
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Figure S16 Temperature dependence of in-of-phase (y,,’) and out-of-phase ac susceptibility (ya,” ) at
different ac frequency under a 2500 Oe dc field for 2. The solid lines are for eye guide.
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Figure S17 Cole-Cole plot obtained from the ac susceptibility data under 2500 Oe dc field in the
temperature range of 1.8-4.0 K for 2. Solid lines represent the best fits to a generalized Debye model.
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Figure S18 Frequency dependence of the ac susceptibility from 1.8 to 6.0 K under 2500 Oe dc field
for 1°. The solid lines are for eye guide.
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Figure S19 Temperature dependence of in-of-phase (y,,’) and out-of-phase (y,,”) at different ac

frequency under a 2500 Oe dc field for 1°. The solid lines are for eye guide.
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Figure S20 Cole-Cole plot obtained from the ac susceptibility data under 2500 Oe dc field in the
temperature range of 1.8-6.0 K for 1°. Solid lines represent the best fits to a generalized Debye
model.
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Figure S21 Frequency dependence of the ac susceptibility from 1.8 to 6.0 K under 2500 Oe dc field
for 2°. The solid lines are for eye guide.
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Figure S22 Temperature dependence of in-of-phase (y,,’) and out-of-phase (y,,”) at different ac
frequency under a 2500 Oe dc field for 2°. The solid lines are for eye guide.
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Figure S23 Cole-Cole plot obtained from the ac susceptibility data under 2500 Oe dc field in the

temperature range of 1.8-6.0 K for 2°. Solid lines represent the best fits to a generalized Debye

model.

22



-6.0

-6.5-
-7.04
W -7.5 /
£ 1l =
o Data
8.0+ = = Direct
1 Raman
-8.5- = == Direct+Raman
'9-0 T T T T T T
0.3 0.4 0.5 0.6
T'IK'
2.
-3
4-
&Y
£
-5
o Data
] = == Direct
-6 Raman
== == Direct+Raman
'7 Y T v T v T v T v T
0.1 0.2 0.3 04 0.5 0.6

T'IK'
Figure S24 Temperature dependence of the magnetization relaxation rates of 1 (top) and 1’ (bottom)
under the applied dc field of 2500 Oe. The solid blue lines represent the best fit by using eqn (1). The
other solid lines represent data fits using direct process (red) and Raman process (green),
respectively.
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Figure S25 Temperature dependence of the magnetization relaxation rates of 2 (top) and 2’ (bottom)

under the applied dc field of 2500 Oe. The solid blue lines represent the best fit by using eqn (1). The

other solid lines represent data fits using direct process (red) and Raman process (green),
respectively.
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Figure S26 X-band EPR spectra of 1 with g, = 2.38, g, =2.34, g. = 2.06 at 91 K.
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Figure S27 X-band EPR spectra of 2 with g, = 2.37, g, =2.28, g. = 2.04 at 91 K.
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Figure S28 X-band EPR spectra of 1’ with g, = 2.39, g, = 2.26, g. = 1.99 at 91 K.
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Figure S29 X-band EPR spectra of 2° with g, =2.40, g, = 2.27, g. = 1.99 at 91 K.
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Table S3. Relaxation times 7 (s) and a values for 1

T (K) Xs Xr 7(s) a
1.8 0.034 0.22 0.00089 0.23
1.9 0.029 0.21 0.00079 0.24
2.0 0.027 0.20 0.00072 0.24
2.1 0.024 0.20 0.00065 0.23
2.2 0.022 0.19 0.00058 0.23
2.3 0.020 0.19 0.00053 0.22
2.4 0.019 0.18 0.00049 0.21
2.5 0.019 0.17 0.00044 0.19
2.6 0.018 0.17 0.00041 0.18
2.7 0.017 0.16 0.00038 0.18
2.8 0.015 0.16 0.00034 0.18
2.9 0.014 0.16 0.00032 0.17
3.0 0.012 0.15 0.00029 0.17
3.2 0.011 0.14 0.00025 0.16
34 0.009 0.14 0.00022 0.15
3.6 0.007 0.13 0.00019 0.14
3.8 0.008 0.12 0.00017 0.13
4.0 0.51E-14 0.12 0.00014 0.14
4.5 0.31E-14 0.11 0.00011 0.12
5.0 0.62E-14 0.10 0.000088 0.09
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Table S4. Relaxation times 7 (s) and a values for 2

T (K) Xs Xr 7(s) a
1.8 0.40E-16 0.21 0.00055 0.27
1.9 0.73E-16 0.20 0.00049 0.27
2.0 0.87E-16 0.20 0.00043 0.26
2.1 0.98E-16 0.19 0.00040 0.27
2.2 0.15E-15 0.18 0.00036 0.27
2.3 0.18E-15 0.18 0.00032 0.26
2.4 0.23E-15 0.17 0.00030 0.26
2.5 0.38E-15 0.16 0.00028 0.26
2.6 0.50E-15 0.16 0.00026 0.26
2.7 0.42E-15 0.15 0.00024 0.26
2.8 0.69E-15 0.15 0.00023 0.25
2.9 0.10E-14 0.15 0.00022 0.25
3.0 0.18E-14 0.14 0.00020 0.23
3.2 0.27E-14 0.13 0.00018 0.23
34 0.39E-14 0.13 0.00017 0.23
3.6 0.55E-14 0.12 0.00015 0.22
3.8 0.76E-14 0.11 0.00014 0.21

4.0 0.10E-13 0.10 0.00013 0.19
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Table S5. Relaxation times 7 (s) and a values for 1’

T (K) Xs Xr 7(s) a
1.8 0.059 0.29 0.054 0.19
2.0 0.056 0.26 0.043 0.15
2.2 0.052 0.23 0.033 0.16
2.4 0.048 0.21 0.024 0.15
2.6 0.043 0.20 0.021 0.15
2.8 0.040 0.18 0.016 0.12
3.0 0.037 0.17 0.015 0.16
3.2 0.035 0.16 0.012 0.13
34 0.033 0.15 0.0097 0.13
3.6 0.032 0.14 0.0077 0.11
3.8 0.030 0.13 0.0065 0.11
4.0 0.028 0.12 0.0056 0.13
4.5 0.026 0.11 0.0038 0.11
5.0 0.024 0.10 0.0027 0.096
5.5 0.023 0.09 0.0020 0.084
6.0 0.022 0.08 0.0015 0.059
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Table S6. Relaxation times 7 (s) and a values for 2’

T (K) Xs Xr 7(s) a
1.8 0.64E-03 0.22 0.0023 0.097
2.0 0.13E-03 0.20 0.0018 0.098
2.2 0.50E-03 0.18 0.0015 0.096
2.4 0.49E-11 0.17 0.0013 0.10
2.6 0.74E-11 0.15 0.0010 0.090
2.8 0.10E-10 0.14 0.00089 0.090
3.0 0.17E-10 0.13 0.00075 0.087
3.2 0.31E-10 0.13 0.00066 0.087
34 0.35E-10 0.12 0.00057 0.083
3.6 0.59E-10 0.11 0.00050 0.080
3.8 0.90E-10 0.11 0.00045 0.083
4.0 0.12E-09 0.10 0.00040 0.080
4.5 0.25E-09 0.09 0.00031 0.080
5.0 0.31E-09 0.08 0.00024 0.082
5.5 0.58E-09 0.07 0.00020 0.079

6.0 0.13E-08 0.06 0.00017 0.083
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