Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Catalyst Controlled Site-Selective Asymmetric Epoxidation of Nerylamine and Geranylamine Derivatives

Tomoya Nobuta^a and Takeo Kawabata^b*

^a Research Foundation Itsuu Laboratory, C1232, Kanagawa Science Park R&D building, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan

^b Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

Content

1. General Information	S-2
2. General Procedure	
2. 1. Preparation of starting materials	S-2
2. 2. Preparation of catalysts	S-5
2. 3. General procedure for site- and enantioselective epoxidation	S-13
2. 4. Determination of absolute configuration of 4a	S-17
3. References	S-17
4. ¹ H-NMR and ¹³ C-NMR spectra	S-18
5. HPLC data	S-58

1. General Information

All dry solvents were obtained from Kanto Kagaku Co., Ltd. Other chemicals were obtained from Tokyo Kasei Kogyo Co., Ltd., Wako Pure Chemical Industries, Ltd., and Nacalai Tesque. ¹H NMR and ¹³C NMR spectra were obtained on a JEOL ECZ 400S (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). Chemical shifts (δ) are reported in parts per million (ppm) downfield from internal Me₄Si. Mass spectra were obtained on Thermo Scientific Exactive Plus. Optical rotations were determined on JASCO P-2200. Flash column chromatography was performed on Silica Gel 60N (spherical, neutral, Kanto Kagaku Co., Ltd.) or CHROMATOREX Q-PACK (Fuji Silysia).

List of abbreviation

DIAD	diisopropyl azodicarboxylate
DCM	dichloromethane
THF	tetrahydrofuran
DMEAD	di-2-methoxyethyl azodicarboxylate
DMF	N, N-dimethylformamide
DIBAH	diisobutylaluminum hydride
HOBt	1-hydroxybenzotriazole
NMM	N-methylmorpholine
WSCI ·HCl	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
DMAP	4-dimethylaminopyridine
HBTU	$2\mbox{-}(1\mbox{H-benzotriazol-1-yl})\mbox{-}1,1,3,3\mbox{-}tetramethyluronium hexafluorophosphate}$
DIC	N,N-Dissopropylcarbodiimide

2. General Procedure

2. 1. Preparation of starting materials

Preparation of 3a, 3d, 3g, 3h and 3i

To a solution of nerol (**10**) (2.6 mL, 15 mmol), phthalimide (**11**) (2.4 g, 16.5 mmol, 1.1 equiv) and PPh₃ (4.3 g, 16.5 mmol, 1.1 equiv) in THF (30 mL) was added DIAD (3.3 mL, 16.5 mmol, 1.1 equiv) at 0 °C. After being stirred for 5 h at rt, the reaction mixture was concentrated in *vacuo*. Purification of the crude product by flash

chromatography on silica gel provided *N*-nerylphthalimide (**12**) (3.1 g, 74%). A solution of **12** (3.1 g, 11.1 mmol) and hydrazine monohydrate (0.65 mL, 13.3 mmol, 1.2 equiv) in EtOH (60 mL) was refluxed for 6 h. After cooling, 10% aq. NaOH was added and extracted with CHCl₃. The organic later was washed with H₂O, dried over Na₂SO₄, and concentrated *in vacuo*. To a solution of nerylamine (**13**) (613.0 mg, 4 mmol) and Et₃N (1.12 mL, 8 mmol, 2 equiv) in DCM (6 mL) was added *p*-methoxybenzenesulfonyl chloride (**14**) (826.4 mg, 4 mmol, 1 equiv) at 0 °C. After being stirred for 0.5 h at rt, sat. NaHCO₃ was added and extracted with DCM. The organic later was washed with 2NHCl, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **3a** (1.13 g, 87%) as a colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ 7.78-7.81 (m, 2H), 6.96-7.00 (m, 2H), 5.10 (t, J = 7.2 Hz, 1H), 4.96-5.00 (m, 1H), 4.11-4.14 (m, 1H), 3.88 (s, 3H), 3.48-3.51 (m, 2H), 1.91-2.04 (m, 4H), 1.69 (s, 3H), 1.66 (s, 3H), 1.56 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 162.84, 141.20, 132.61, 131.60, 129.29, 123.50, 119.59, 114.16, 55.59, 40.66, 31.77, 26.17, 25.69, 23.22, 17.63; HRMS (ESI) *m/z* calcd for C₁₇H₂₅NO₃SNa (M+Na) + 346.1447, found 346.1446.

3d; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.75-7.78 (m, 2H), 6.93-6.96 (m, 2H), 5.10 (t, J = 7.2 Hz, 1H), 4.99 (t, J = 7.0 Hz, 1H), 4.60-4.66 (m, 1H), 4.07 (d, J = 5.5 Hz, 1H), 3.50 (t, J = 6.4 Hz, 2H), 1.92-2.03 (m, 4H), 1.69 (s, 3H), 1.66 (s, 3H), 1.56 (s, 3H), 1.54 (s, 3H), 1.38 (s, 3H), 1.36 (s, 3H); ¹³C-

NMR (100 MHz, CDCl₃) & 161.34, 141.14, 132.61, 131.01, 129.29, 123.50, 119.65, 115.53, 70.37, 40.66, 31.77, 26.17, 25.69, 23.22, 21.83, 17.62; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₉NO₃SNa (M+Na) + 374.1760, found 374.1760.

3g; Colorless oil ¹H-NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 1H), 7.33 (s, 1H), 6.94 (d, J = 8.4 Hz, 1H), 5.11 (t, J = 7.3 Hz, 1H), 4.97-5.00 (m, 1H), 4.14 (t, J = 5.6 Hz, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.51 (t, J = 6.5 Hz, 2H), 1.93-2.01 (m, 4H), 1.69 (s, 3H), 1.66 (s, 3H), 1.56 (s, 3H); ¹³C-NMR (100

MHz, CDCl₃) δ 152.51, 149.12, 141.29, 132.65, 131.66, 123.47, 121.10, 119.55, 110.50, 109.70, 56.22, 56.18, 40.71, 31.79, 26.19, 25.69, 23.25, 17.62; HRMS (ESI) *m*/*z* calcd for C₁₈H₂₇NO₄SNa (M+Na) + 376.1553, found 376.1552.

3h; Colorless oil ¹H-NMR (400 MHz, CDCl₃) & 7.79-7.82 (m, 2H), 6.96-6.99 (m, 2H), 5.00-5.08 (m, 2H), 4.20 (d, J = 4.3 Hz, 1H), 3.87 (s, 3H), 3.55 (t, J = 6.4 Hz, 2H), 1.91-2.02 (m, 4H), 1.67 (s, 3H), 1.57 (s, 3H), 1.54 (s, 3H);

¹³C-NMR (100 MHz, CDCl₃) δ 162.85, 141.10, 131.87, 131.65, 129.30, 123.60, 118.61, 114.17, 55.59, 40.95, 39.32, 26.20, 25.65, 17.65, 16.22; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₃SNa (M+Na) + 346.1447, found 346.1447.

Preparation of 3b, 3e, 3f and 3j

To a solution of 3-methyl-2-buten-1-ol (**15**) (125.2 μ L, 1.25 mmol), **16** (388.9 mg, 1.5 mmol, 1.2 equiv) and PPh₃ (393.4 mg, 1.5 mmol, 1.2 equiv) in THF (10 mL) was added DMEAD (351.3 mg, 1.5 mmol, 1.2 equiv) at 0 °C. After being stirred for 1.5 h at rt, H₂O was added and extracted with toluene. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **17** (373.2 mg, 1.14 mmol) in THF (3 mL) and MeOH (6 mL) was added 50% aq. NaOH (4 mL) at 0 °C. After being stirred for 12 h at rt, aq. NH₄Cl was added and extracted with CHCl₃. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude. Purification of the crude product by flash chromatography on silica gel provided **17** (373.2 mg, 1.14 mmol) in THF (3 mL) and MeOH (6 mL) was added 50% aq. NaOH (4 mL) at 0 °C. After being stirred for 12 h at rt, aq. NH₄Cl was added and extracted with CHCl₃. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **3b** ¹ (273.3 mg, 94%) as a colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ 7.78-7.82 (m, 2H), 6.96-7.00 (m, 2H), 5.04-5.08 (m, 1H), 4.11-4.17 (m, 1H), 3.88 (s, 3H), 3.53 (t, J = 6.4 Hz, 2H), 1.64 (s, 3H), 1.55 (s, 3H)

3d; Colorless oil ¹H-NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.09 (t, J = 7.3 Hz, 1H), 4.98 (t, J = 7.0 Hz, 1H), 4.12 (br s, 1H), 3.51 (t, J = 6.4 Hz, 2H), 2.44 (s, 3H), 1.91-2.04 (m, 4H), 1.69 (s, 3H), 1.65 (s, 3H), 1.55 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.31, 141.21,

137.01, 132.60, 129.62, 127.18, 123.49, 119.55, 40.68, 31.75, 26.14, 25.68, 23.19, 21.50, 17.60; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₂SNa (M+Na) + 330.1498, found 330.1497.

3f; White solid ¹H-NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.8 Hz, 2H), 8.05 (d, J = 8.8 Hz, 2H), 5.08 (t, J = 7.2 Hz, 1H), 4.99 (t, J = 7.0 Hz, 1H), 4.39 (t, J = 5.4 Hz, 1H), 3.60 (t, J = 6.3 Hz, 2H), 1.94-2.05 (m, 4H), 1.70 (s, 3H), 1.66 (s, 3H), 1.57 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.87, 146.12, 141.65,

132.54, 128.28, 124.19, 123.30, 118.94, 40.71, 31.71, 26.06, 25.55, 23.09, 17.51; HRMS (ESI) *m*/*z* calcd for C₁₆H₂₂N₂O₄SNa (M+Na) + 361.1192, found 361.1196.

3i; White solid ¹H-NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.6 Hz, 2H), 8.06 (d, J = 8.6 Hz, 2H), 4.98-5.06 (m, 2H), 4.42 (t, J = 5.5 Hz, 1H), 3.66 (t, J = 6.4 Hz, 2H), 1.91-2.01 (m, 4H), 1.66 (s, 3H), 1.57 (s, 3H), 1.56 (s, 3H);

¹³C-NMR (100 MHz, CDCl₃) δ 149.78, 146.07, 141.34, 131.69, 128.24, 124.11, 123.29, 117.94, 40.93, 39.08, 25.97, 25.41, 17.40, 16.06; HRMS (ESI) *m*/*z* calcd for C₁₆H₂₂N₂O₄SNa (M+Na) + 361.1192, found 361.1195.

Preparation of 3c

To a solution of 1-chloro-3-methyl-2-butene (**18**) (337.4 μ L, 3 mmol) in DMF (5 mL) was added KCN (234.4 mg, 3.6 mmol, 1.2 equiv) at 0 °C. The reaction mixture was warmed to 40 °C. After being stirred for 1.5 h at 40 °C, the reaction mixture was cooled to rt, and stirred for an additional 2 h. H₂O was added and extracted with hexane. The organic later was washed with H₂O, dried over Na₂SO₄, and concentrated *in vacuo*. 4-methylpent-3-enenitrile (**19**) (132.0 mg, 46%) was obtained and used in the next step without further purification. To a solution of **19** (132.0 mg, 1.39 mmol) in Et₂O (5 mL) was added LiAlH₄ (2.5 M in THF, 1.4 mL, 2.5 equiv) at 0 °C. After being stirred for 2 h at rt, H₂O was added at 0 °C and filtered with celite. The organic later was concentrated *in vacuo*. To a solution of crude product and Et₃N (184.5 μ L, 1.32 mmol) in DCM (3 mL) was added *p*-methoxybenzenesulfonyl chloride (**14**) (136.4 mg, 0.66 mmol) at 0 °C. After being stirred for 15 h at rt, sat. NaHCO₃ was added and extracted with DCM. The organic later was washed with 2NHCl, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **3c** (38.0 g, 10%, 2 steps) as a light yellow oil.; ¹H-NMR (400 MHz, CDCl₃) δ 7.77-7.81 (m, 2H), 6.96-7.00 (m, 2H), 4.92 (t, J = 7.2 Hz, 1H), 4.37 (t, J = 5.7 Hz, 1H), 3.87 (s, 3H), 2.93 (q, J = 6.7 Hz, 2H), 2.15 (q, J = 6.7 Hz, 2H), 1.67 (s, 3H), 1.56 (s, 3H); ¹³C-NMR (100MHz, CDCl₃) δ 162.81, 135.68, 131.56, 129.22, 119.71, 114.19, 55.59, 42.87, 28.11, 25.74, 17.85; HRMS (ESI) *m/z* calcd for C₁₃H₁₉NO₃SNa (M+Na) + 292.0978, found 292.0975.

Preparation of 3j

To a solution of **3a** (204.8 mg, 0.63 mmol) and K₂CO₃ (174.1 mg, 1.26 mmol, 2 equiv) in DMF (4 mL) was added MeI (78.4 μ L, 1.26 mmol, 2 equiv) at rt. After being stirred for 18 h at rt, H₂O was added and extracted with toluene. The organic later was washed with Na₂S₂O₃, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **3j** (183.2 mg, 86%) as a colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ 7.70-7.74 (m, 2H), 6.97-7.01 (m, 2H), 5.09 (t, J = 7.0 Hz, 1H), 5.04 (br s, 1H), 3.88 (s, 3H), 3.59 (d, J = 7.0 Hz, 2H), 2.63 (s, 3H), 1.98-2.05 (m, 4H), 1.71 (s, 3H), 1.66 (s, 3H), 1.56 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 162.76, 141.03, 132.13, 129.60, 129.23, 123.58, 119.31, 114.10, 55.57, 47.43, 34.00, 31.81, 26.34, 25.68, 23.43, 17.60; HRMS (ESI) *m/z* calcd for C₁₈H₂₇NO₃SNa (M+Na) + 360.1604, found 360.1604.

2. 2. Preparation of catalysts

Preparation of methyl (2S)-1-(4-nitrophenyl)-5-oxopyrrolidine-2-carboxylate (23)

A solution of methyl L-pyroglutamate (**21**) (10 g, 70 mmol), 1-bromo-4-nitrobenzne (**22**) (28 g, 140 mmol, 2 equiv), CuI (6.7 g, 35 mmol, 50 mol%), Cs₂CO₃ (45.6 g, 140 mmol, 2 equiv) and N,N'-dimethylethylenediamine (3.8 mL, 35 mmol, 0.5 equiv) was refluxed for 5 h. After cooling to rt, the reaction mixture was filtered with celite, and concentrated in *vacuo*. 0.5 NHCl was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **23** (9.0 g, 48%) as a yellow solid.; $[\alpha]^{27}_{D} = -43.1$ (c 1.50, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 8.22-8.26 (m, 2H), 7.71-7.75 (m, 2H), 4.83 (dd, J = 9.0, 2.6 Hz, 1H), 3.78 (s, 3H), 2.77-2.86 (m, 1H), 2.50-2.68 (m, 2H), 2.22-2.29 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 174.43, 171.35, 143.82, 143.57, 124.50, 119.50, 60.62, 52.83, 30.79, 22.75; HRMS (ESI) *m/z* calcd for C₁₂H₁₂N₂O₅Na (M+Na) + 287.0638, found 287.0640.

Preparation of methyl (25,55)-5-cyano-1-(4-nitrophenyl)pyrrolidine-2-carboxylate (25)

To a solution of **23** (7.8 g, 29.4 mmol) in THF (85 mL) was added DIBAH (1M in hexane, 44.1 mL, 44.1 mmol, 1.5 equiv) at -75 °C. After being stirred for 0.5 h at -75 °C, the reaction mixture was poured to aq. NaK tartrate, and stirred for 2 h. The mixture was extracted with EtOAc. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. To a solution of crude product in DCM (140 mL) were added TMSCN (9.2 mL, 73.5 mmol, 2.5 equiv) and TMSOTf (13.3 mL, 73.5 mmol, 2.5 equiv) at 0 °C. After being stirred for 15 h at rt, the reaction mixture was quenched by addition of sat. NaHCO₃, and stirred for 3 h. The mixture was extracted with CHCl₃. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **25** (1.9 g, 23%, 2steps) as a yellow solid.; $[\alpha]^{28}_{D} = -301.1$ (c 0.32, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 8.18-8.22 (m, 2H), 6.62-6.66 (m, 2H), 4.75 (d, J = 7.8 Hz, 1H), 4.51-4.53 (m, 1H), 3.77 (s, 3H), 2.54-2.71 (m, 2H), 2.47-2.51 (m, 1H), 2.36-2.40 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.89, 148.32, 139.90, 126.16, 117.64, 112.25, 77.32, 77.00, 76.67, 60.62, 52.88, 49.42, 29.69, 29.56; HRMS (ESI) *m/z* calcd for C₁₃H₁₃N₃O₄Na (M+Na) + 298.0798, found 298.0798.

Preparation of (25,55)-1-(4-nitrophenyl)pyrrolidine-2,5-dicarboxylic acid (26)

A solution of **25** (1.9 g, 6.8 mmol) and conc. HCl (14 mL) in acetic acid (6 mL) was refluxed for 15 h. After cooling to rt, sat. NaHCO₃ (20 mL) was added and stirred for 3 h. The reaction mixture was extracted with EtOAc. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. **26** (1.4 g) was obtained and used in the next step without further purification.

Preparation of (2*S*,5*S*)-2,5-Bis[(2*S*)-3-(naphthyl-2-yl)-1-octyloxy-1-oxopropan-2-ylaminocarbonyl]- 1-(4-nitrophenyl)pyrrolidine (28a)

To a solution of **26** (750 mg, 2.68 mmol), (*S*)-**27** (2 g, 5.36 mmol, 2 equiv), HOBt (905.4 mg, 6.7 mmol, 2.5 equiv), NMM (3 mL, 26.8 mmol, 10 equiv) in DMF (27 mL) was added WSCI HCl (1.3 g, 6.7 mmol, 2.5 equiv) at 0 °C. After being stirred for 6 h at rt, aq. citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **28a** (1.51 g, 63%) as a yellow solid.; $[\alpha]^{26}{}_{D}$ = -107.2 (c 0.22, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 7.80-7.82 (m, 2H), 7.68-7.74 (m, 4H), 7.59 (d, J = 9.1 Hz, 2H), 7.44-7.51 (m, 6H), 7.13 (dd, J = 8.3, 1.3 Hz, 2H), 6.05 (d, J = 9.1 Hz, 2H), 5.93 (d, J = 7.8 Hz, 2H), 4.81 (q, J = 6.8 Hz, 2H), 4.03-4.13 (m, 6H), 3.34 (dd, J = 14.2, 5.7 Hz, 2H), 3.15 (q, J = 6.8 Hz, 2H), 1.85-2.00 (m, 4H), 1.54-1.58 (m, 4H), 1.25-1.30 (m, 20H), 0.88 (t, J = 6.9 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.06, 170.65, 148.89, 139.20, 133.19, 132.97, 132.46, 128.52, 127.77, 127.24, 126.71, 126.62, 126.22, 125.67, 112.06, 77.20, 66.07, 62.99, 52.58, 37.61, 31.73, 29.10, 29.02, 28.43, 25.76, 22.60, 14.07; HRMS (ESI) *m*/*z* calcd for C₅₄H₆₆N₄O₈Na (M+Na) + 921.4773, found 921.4785.

Preparation of (2*S*,5*S*)-2,5-Bis[(2*S*)-3-(naphthyl-2-yl)-1-octyloxy-1-oxopropan-2-ylaminocarbonyl]- 1-(4-aminophenyl)pyrrolidine (29a)

To a solution of **28a** (600 mg, 0.67 mmol) in DCM (30 mL) were added Zn (218.4 mg, 3.34 mmol, 5 equiv) and AcOH (381.5 μ L, 6.67 mmol, 10 equiv) at 0 °C. After being stirred for 6 h at 0 °C, the reaction mixture was filtered with celite, and washed with sat. NaHCO₃, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **29a** (526.7 mg, 90%) as a brown solid.; [α]²⁷_D = -89.1 (c 0.24, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 7.78-7.81 (m, 2H), 7.71 (t, J = 8.2 Hz, 4H), 7.45-7.48 (m, 6H), 7.14 (dd, J = 8.5, 1.6 Hz, 2H), 6.33 (d, J = 8.9 Hz, 2H), 6.16-6.19 (m, 4H), 4.77 (q, J = 6.8 Hz, 2H), 3.98-4.02 (m, 6H), 3.30 (dd, J = 14.0, 5.9 Hz, 2H), 3.19 (br s, 1H), 3.11 (q, J = 6.8 Hz, 2H), 1.68-1.83 (m, 4H), 1.48 (t, J = 6.8 Hz, 4H), 1.17-1.31 (m, 20H), 0.88 (t, J = 7.0 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.71, 170.94, 138.31, 136.48,

133.39, 133.28, 132.42, 128.27, 127.83, 127.67, 127.37, 126.94, 126.28, 125.79, 116.78, 114.18, 65.70, 62.86, 52.79, 37.77, 31.74, 29.10, 28.90, 28.33, 25.71, 22.60, 14.06; HRMS (ESI) m/z calcd for C₅₄H₆₉N₄O₆ (M+H) + 869.5212, found 869.5212.

Preparation of catalyst 2a

To a solution of **29a** (521.5 mg, 0.6 mmol), (*R*)-6,6'-dinitrodiphenic acid (**30**) (398.7 mg, 1.2 mmol, 2 equiv), HOBt (24.3 mg, 0.18 mmol, 30 mol%) and DMAP (22.0 mg, 0.18 mmol, 30 mol%) in DCM (15 mL) was added WSCI HCl (126.5 mg, 0.66 mmol, 1.1 equiv) at rt. After being stirred for 15 h at rt, aq. citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃, 0.5 NHCl and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **2a** (300.2 mg, 42%) as a yellow solid.; $[\alpha]^{25}_{D} = +11.1$ (c 0.60, MeOH); ¹H-NMR (400 MHz, acetone-d6) δ 9.06 (br s, 1H), 8.19-8.28 (m, 3H), 7.93 (d, J = 7.1 Hz, 1H), 7.76-7.79 (m, 2H), 7.64-7.72 (m, 6H), 7.58 (s, 2H), 7.35-7.45 (m, 6H), 7.25 (dd, J = 8.5, 1.6 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 6.00 (d, J = 9.0 Hz, 2H), 4.69 (td, J = 8.7, 5.2 Hz, 2H), 4.09 (d, J = 7.8 Hz, 2H), 3.85-3.99 (m, 4H), 3.23 (dd, J = 14.0, 5.5 Hz, 2H), 3.03 (dd, J = 14.0, 9.0 Hz, 2H), 1.98-2.00 (m, 2H), 1.52-1.57 (m, 2H), 1.41 (t, J = 6.3 Hz, 4H), 1.14-1.21 (m, 20H), 0.79 (t, J = 7.0 Hz, 6H); ¹³C-NMR (100 MHz, acetone-d6) δ 171.34, 169.27, 164.03, 162.13, 147.72, 147.20, 140.56, 135.87, 132.95, 132.56, 131.62, 130.90, 130.61, 130.24, 129.30, 127.25, 127.18, 126.97, 126.14, 125.86, 125.56, 125.40, 124.24, 123.72, 123.57, 119.81, 110.84, 63.03, 60.96, 51.32, 35.19, 29.80, 27.16, 23.77, 20.57, 11.66; HRMS (ESI) *m/z* calcd for C₆₈H₇₅N₆O₁₃ (M+H) + 1183.5387, found 1183.5392.

Preparation of catalyst 2b

To a solution of **29a** (521.5 mg, 0.6 mmol), (*S*)-6,6'-dinitrodiphenic acid (**30**) (398.7 mg, 1.2 mmol, 2 equiv), HOBt (24.3 mg, 0.18 mmol, 30 mol%) and DMAP (22.0 mg, 0.18 mmol, 30 mol%) in DCM (15 mL) was added WSCI ·HCl (126.5 mg, 0.66 mmol, 1.1 equiv) at rt. After being stirred for 15 h at rt, aq. citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃, 0.5 NHCl and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **2b** (263.6 mg, 37%) as a yellow solid.; $[\alpha]^{26}_{D} = -97.2$ (c 0.26, MeOH); ¹H-NMR (400 MHz, acetone-d6) δ 9.69 (br s, 1H), 8.12-8.22 (m, 3H), 7.73-7.88 (m, 7H), 7.65-7.72 (m, 4H), 7.43-7.52 (m, 6H), 7.34 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 8.5 Hz), 7.05

2H), 6.17 (d, J = 8.7 Hz, 2H), 4.85 (dd, J = 14.1, 8.1 Hz, 2H), 4.27 (d, J = 6.6 Hz, 2H), 3.91-4.07 (m, 4H), 3.31 (dd, J = 13.8, 5.4 Hz, 2H), 3.15 (dd, J = 13.8, 8.6 Hz, 2H), 2.16 (brs, 2H), 1.66-1.71 (m, 2H), 1.47 (t, J = 5.9 Hz, 4H), 1.12-1.30 (m, 20H), 0.88 (t, J = 7.0 Hz, 6H); ¹³C-NMR (100 MHz, acetone-d6) δ 171.03, 169.31, 164.22, 162.27, 147.59, 147.03, 140.69, 136.19, 133.01, 132.54, 131.64, 131.42, 130.63, 130.14, 130.03, 129.11, 127.28, 127.23, 127.11, 126.14, 125.91, 125.87, 125.57, 125.44, 125.27, 124.23, 123.71, 123.52, 119.41, 110.87, 62.99, 61.01, 51.27, 35.24, 29.80, 27.16, 23.77, 20.57, 11.66; HRMS (ESI) *m*/*z* calcd for C₆₈H₇₅N₆O₁₃ (M+H) + 1183.5387, found 1183.5393.

Preparation of (2*S*,5*S*)-2,5-Bis[(2*R*)-3-(naphthyl-2-yl)-1-octyloxy-1-oxopropan-2-ylaminocarbonyl]- 1-(4-nitrophenyl)pyrrolidine (28b)

To a solution of **26** (750 mg, 2.68 mmol), (*R*)-**27** (2 g, 5.36 mmol, 2 equiv), HOBt (905.4 mg, 6.7 mmol, 2.5 equiv), NMM (2.4 mL, 21.4 mmol, 8 equiv) in DMF (27 mL) was added WSCI HCl (1.3 g, 6.7 mmol, 2.5 equiv) at 0 °C. After being stirred for 5 h at rt, aq. citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **28b** (1.1 g, 46%) as a yellow solid.; $[\alpha]^{27}_{D} = -215.8$ (c 0.26, CHCl₃) ¹H-NMR (400 MHz, CDCl₃) δ 7.71-7.74 (m, 2H), 7.50-7.63 (m, 6H), 7.43 (dt, J = 9.5, 3.4 Hz, 4H), 7.25 (d, J = 8.7 Hz, 2H), 6.92 (dd, J = 8.3, 1.7 Hz, 2H), 6.07-6.11 (m, 2H), 5.95 (d, J = 8.0 Hz, 2H), 4.85 (td, J = 7.7, 5.5 Hz, 2H), 4.08-4.19 (m, 6H), 3.21 (dd, J = 14.2, 5.5 Hz, 2H), 3.06 (q, J = 7.2 Hz, 2H), 2.23-2.28 (m, 2H), 1.91-2.00 (m, 2H), 1.58-1.63 (q, J = 6.9 Hz, 4H), 1.25-1.29 (m, 20H), 0.88 (t, J = 6.9 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.35, 170.64, 148.81, 139.13, 133.04, 132.46, 132.30, 128.45, 127.58, 127.18, 126.45, 126.32, 126.14, 125.65, 111.92, 66.08, 63.14, 52.45, 37.55, 31.72, 29.31, 29.08, 28.46, 25.79, 22.58, 14.05; HRMS (ESI) *m/z* calcd for C₅₄H₆₆N₄O₈Na (M+Na) + 921.4773, found 921.4781.

Preparation of (2*S*,5*S*)-2,5-Bis[(2*R*)-3-(naphthyl-2-yl)-1-octyloxy-1-oxopropan-2-ylaminocarbonyl]- 1-(4-aminophenyl)pyrrolidine (29b)

To a solution of **28b** (449.6 mg, 0.5 mmol) in DCM (6 mL) was added Zn (163.5 mg, 2.5 mmol, 5 equiv) AcOH (286.0 μ L, 5 mmol, 10 equiv) at 0 °C. After being stirred for 0.5 h at 0 °C, the reaction mixture was filtered with celite, and washed with sat. NaHCO₃, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **29b** (294.1 mg, 68%) as a brown solid.; [α]²⁶_D = – 121.6 (c 0.29, CHCl₃) ¹H-NMR (400 MHz, CDCl₃) δ 7.75-7.78 (m, 2H), 7.57-7.63 (m, 4H), 7.44 (td, J = 6.5, 3.3 Hz,

4H), 7.22 (s, 2H), 6.82 (dd, J = 8.5, 1.6 Hz, 2H), 6.39 (d, J = 8.7 Hz, 2H), 6.21-6.25 (m, 4H), 4.90-4.95 (m, 2H), 4.14 (d, J = 7.8 Hz, 2H), 4.01-4.07 (m, 4H), 3.25 (br s, 1H), 3.15 (dd, J = 14.0, 6.2 Hz, 2H), 3.02 (dd, J = 14.0, 5.4 Hz, 2H), 2.17-2.25 (m, 2H), 1.97-2.02 (m, 2H), 1.54 (q, J = 6.6 Hz, 4H), 1.21-1.30 (m, 20H), 0.86-0.89 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.51, 171.21, 138.61, 136.34, 133.35, 132.88, 132.42, 128.31, 127.80, 127.65, 127.62, 126.92, 126.02, 125.71, 117.05, 113.99, 65.77, 62.89, 52.33, 37.87, 31.74, 31.58, 29.34, 29.11, 28.45, 25.80, 22.61, 14.08; HRMS (ESI) *m*/*z* calcd for C₅₄H₆₉N₄O₆ (M+H) + 869.5212, found 869.5212.

Preparation of catalyst 2c

To a solution of **29b** (521.5 mg, 0.6 mmol), (*R*)-6,6'-dinitrodiphenic acid (**30**) (398.7 mg, 1.2 mmol, 2 equiv), HOBt (24.3 mg, 0.18 mmol, 30 mol%) and DMAP (22.0 mg, 0.18 mmol, 30 mol%) in DCM (15 mL) was added WSCI HCl (126.5 mg, 0.66 mmol, 1.1 equiv) at rt. After being stirred for 15 h at rt, aq. citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃, 0.5 NHCl and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **2c** (330.7 mg, 47%) as a yellow solid.; $[\alpha]^{27}{}_{D}$ = +9.1 (c 0.38, MeOH); ¹H-NMR (400 MHz, acetone-d6) δ 10.00 (br s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.93-8.03 (m, 2H), 7.80-7.83 (m, 3H), 7.67 (d, J = 7.8 Hz, 4H), 7.42-7.50 (m, 7H), 7.28-7.35 (m, 3H), 7.21 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 6.32 (d, J = 8.7 Hz, 2H), 4.78 (q, J = 7.2 Hz, 2H), 4.25 (d, J = 7.5 Hz, 2H), 4.05 (ddd, J = 25.1, 10.9, 6.8 Hz, 4H), 3.13-3.18 (m, 4H), 2.10-2.21 (m, 2H), 1.69 (dd, J = 19.9, 14.4 Hz, 2H), 1.53-1.56 (m, 4H), 1.23-1.29 (m, 20H), 0.86 (t, J = 6.9 Hz, 6H); ¹³C-NMR (100 MHz, acetone-d6) δ 170.91, 170.83, 169.17, 164.11, 162.19, 147.58, 147.09, 140.40, 135.99, 132.64, 132.50, 131.58, 131.00, 130.58, 130.23, 130.07, 129.19, 127.36, 127.28, 127.21, 126.15, 125.80, 125.75, 125.68, 125.60, 125.31, 124.15, 123.66, 123.54, 119.80, 111.03, 63.15, 60.94, 51.31, 51.23, 35.42, 29.80, 27.17, 23.82, 20.56, 11.67; HRMS (ESI) *m/z* calcd for C_{68H75N6}O₁₃ (M+H) + 1183.5387, found 1183.5387.

Preparation of catalyst 2d

To a solution of **29b** (521.5 mg, 0.6 mmol), (*S*)-6,6'-dinitrodiphenic acid (**30**) (398.7 mg, 1.2 mmol, 2 equiv), HOBt (24.3 mg, 0.18 mmol, 30 mol%) and DMAP (22.0 mg, 0.18 mmol, 30 mol%) in DCM (15 mL) was added WSCI ·HCl (126.5 mg, 0.66 mmol, 1.1 equiv) at rt. After being stirred for 15 h at rt, aq. citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃, 0.5 NHCl and brine, dried over Na₂SO₄, and

concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **2d** (314.2 mg, 44%).; $[\alpha]^{27}{}_{D}$ = -93.6 (c 0.29, MeOH); ¹H-NMR (400 MHz, acetone-d6) δ 9.33 (br s, 1H), 8.34 (d, J = 8.2 Hz, 1H), 8.24 (t, J = 7.4 Hz, 2H), 8.00-8.05 (m, 1H), 7.75-7.84 (m, 3H), 7.60-7.70 (m, 5H), 7.42-7.49 (m, 6H), 7.35 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.9 Hz, 2H), 7.11 (dd, J = 8.3, 1.3 Hz, 2H), 6.28 (d, J = 8.9 Hz, 2H), 4.75 (dt, J = 8.2, 5.5 Hz, 2H), 4.19 (d, J = 7.5 Hz, 2H), 3.99-4.09 (m, 4H), 3.10-3.22 (m, 4H), 2.13-2.16 (m, 2H), 1.67 (d, J = 5.5 Hz, 2H), 1.54 (q, J = 6.5 Hz, 4H), 1.24-1.29 (m, 20H), 0.87 (t, J = 6.9 Hz, 6H); ¹³C-NMR (100 MHz, acetone-d6) δ 170.66, 169.24, 163.96, 162.35, 147.61, 147.08, 140.54, 136.12, 132.71, 132.56, 131.59, 130.96, 130.58, 130.17, 129.12, 127.28, 126.12, 125.81, 125.73, 125.68, 125.61, 125.40, 124.13, 123.64, 123.53, 119.72, 111.03, 63.09, 60.97, 51.26, 35.41, 29.80, 27.17, 26.57, 23.82, 20.56, 11.64; HRMS (ESI) *m/z* calcd for C₆₈H₇₅N₆O₁₃ (M+H) + 1183.5387, found 1183.5393.

Preparation of catalyst 6

To a solution of aniline (**31**) (69.5 µL, 0.76 mmol), (*R*)-6,6'-dinitrodiphenic acid (**30**) (252.5 mg, 0.76 mmol, 1 equiv), HOBt (51.3 mg, 0.38 mmol, 50 mol%), DMAP (46.4 mg, 0.38 mmol, 50 mol%) and NMM (839.2 µL, 7.6 mmol, 10 equiv) in DMF (5 mL) was added WSCI HCl (145.7 mg, 0.76 mmol, 1 equiv) at rt. After being stirred for 3 h at rt, aq. citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃, 0.5 NHCl and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **6** (32.2 mg, 10%) as a white solid.; $[\alpha]^{26}_{D}$ = +261.4 (c 0.11, MeOH); ¹H-NMR (400 MHz, acetone-d6) δ 11.18 (br s, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.69 (d, J = 7.3 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.01 (t, J = 7.9 Hz, 2H), 6.83 (t, J = 7.4 Hz, 1H); ¹³C-NMR (100 MHz, acetone-d6) δ 170.63, 164.56, 147.90, 147.59, 139.21, 138.56, 132.66, 131.49, 130.02, 128.55, 128.38, 128.28, 127.85, 124.59, 124.24, 122.87, 119.05, 118.96; HRMS (ESI) *m/z* calcd for C₂₀H₁₂N₃O₇ (M–H)⁻ 406.0681, found 406.0683.

Preparation of catalyst 7

32 (192.7 mg, 0.6 mmol), methyl *o*-iodobenzoate (**33**) (352.9 μ L, 2.4 mmol, 4 equiv) and Cu powder (300 mg) were stirred for 1.5 h at 150 °C. After cooling to rt, EtOAc was added and filtered with celite. Purification of the crude product by flash chromatography on silica gel provided **34** (101.9 mg, 45%). To a solution of **34** (101.9 mg, 0.27 mmol) in EtOH (4 mL) and THF (2 mL) was added 1M aq. NaOH (3 mL) at rt. After being stirred for 13 h at

rt, 2NHCl was added and extracted with EtOAc. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **7** (79.3 mg, 81%) as a yellow solid.; ¹H-NMR (400 MHz, acetone-d6) δ 9.27 (br s, 1H), 8.10 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.94 (d, J = 7.5 Hz, 1H), 7.72 (t, J = 7.9 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.3 Hz, 1H), 7.21 (t, J = 7.9 Hz, 2H), 7.02 (t, J = 7.3 Hz, 1H); ¹³C-NMR (100 MHz, acetone-d6) δ 169.42, 166.24, 150.06, 140.49, 139.54, 137.10, 134.99, 132.88, 132.55, 131.86, 131.40, 130.95, 129.82, 129.73, 129.63, 125.85, 125.06, 120.53; HRMS (ESI) *m*/*z* calcd for C₂₀H₁₃N₂O₅ (M–H)⁻ 361.0830, found 361.0834.

Preparation of catalyst 8

To a solution of diphenic anhydride (**35**) (134.5 mg, 0.6 mmol), aniline 65.8 µL, 0.72 mmol, 1.2 equiv), and Et₃N (251.6 µL, 1.8 mmol, 3 equiv) in DCM (6 mL) was added DMAP (14.7 mg, 0.12 mmol, 20 mol%) at rt.. After being stirred for 13 h at rt, 2NHCl was added and extracted with DCM. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **7** (126.0 mg, 66%) as a white solid.; ¹H-NMR (400 MHz, acetone-d6) δ 9.41 (br s, 1H), 7.85-7.88 (m, 1H), 7.71-7.73 (m, 1H), 7.42-7.51 (m, 6H), 7.17-7.23 (m, 4H), 7.01 (t, J = 7.4 Hz, 1H); ¹³C-NMR (100 MHz, acetone-d6) δ 169.81, 167.72, 140.66, 139.50, 138.63, 136.25, 131.82, 131.14, 130.33, 129.86, 129.69, 128.98, 128.70, 127.88, 127.75, 127.68, 123.90, 119.30; HRMS (ESI) *m*/*z* calcd for C₂₀H₁₄NO₃ (M–H)⁻ 316.0979, found 316.0982.

Preparation of catalyst 9

To a solution of pyrolidine (**36**) (21.0 µL, 0.252 mmol, 2 equiv), (*R*)-6,6'-dinitrodiphenic acid mono *tert*-butyl ester (**37**) (48.9 mg, 0.126 mmol), DMAP (4.6 mg, 0.038 mmol, 30 mol%) and NMM (41.7 µL, 0.378 mmol, 3 equiv) in DMF (5 mL) was added WSCI HCl (36.4 mg,0.19 mmol, 1.5 equiv) at rt. After being stirred for 3 h at rt, HBTU (72.1 mg, 0.19 mmol, 1.5 equiv) was added and stirred additional 2.5 h. aq. Citric acid was added and extracted with EtOAc. The organic later was washed with sat. NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **38** (39.1 mg, 70%). To **38** (39.1 mg, 0.09 mmol) was added TFA (2 mL) at 0 °C. After being stirred for 2 h at rt, the reaction mixture was quenched by addition of sat. NaHCO₃, and extracted with EtOAc. The organic later was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the concentrated *in vacuo*. Purification of sat. NaHCO₃, and extracted with EtOAc. The organic later was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **38** (39.1 mg, 70%). To **38** (39.1 mg, 0.09 mmol) was added TFA (2 mL) at 0 °C. After being stirred for 2 h at rt, the reaction mixture was quenched by addition of sat. NaHCO₃, and extracted with EtOAc. The organic later was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **9** (29.9 mg, 88%) as a white solid.; [α]²⁶_D = +111.3 (c 0.17, MeOH) ¹H-NMR

(400 MHz, acetone-d6) δ 8.22 (ddd, J = 8.2, 5.3, 1.1 Hz, 2H), 8.12 (dd, J = 7.8, 1.1 Hz, 1H), 7.64-7.76 (m, 3H), 3.18-3.23 (m, 1H), 3.02-3.12 (m, 3H), 1.64-1.70 (m, 4H); ¹³C-NMR (100 MHz, acetone-d6) δ 166.66, 166.29, 149.87, 138.26, 135.10, 134.35, 132.37, 131.85, 131.04, 130.36, 130.16, 128.11, 125.81, 49.36, 46.23, 26.55, 24.67; HRMS (ESI) *m*/*z* calcd for C₁₈H₁₄N₃O₇ (M–H)⁻ 384.0837, found 384.0843.

2. 3. General procedure for site- and enantioselective epoxidation

To a solution of **3a** (32.3 mg, 0.1 mmol), **2a** (11.8 mg, 0.01 mmol, 10 mol%), DMAP (0.6 mg, 0.005 mmol, 5 mol%) and MgSO₄ (30.1 mg, 0.25 mmol, 2.5 equiv) in CHCl₃ (0.5 mL) was added 30% aq. H₂O₂ (25.6 μ L,0.25 mmol, 2.5 equiv) at 0 °C. After cooling to -60 °C, DIC (15.4 μ L, 0.1 mmol, 1 equiv) was added. After being stirred for 72 h at -60 °C, the reaction mixture was quenched by addition of aq. Na₂S₂O₃. The mixture was diluted with sat. NaHCO₃, and extracted with EtOAc. The organic later was dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel provided **4a** (25.1 mg, 74%). Regioselectivity was determined by the integration of ¹H NMR.

4a; Colorless oil; 89% ee; $[\alpha]^{27}_{D}$ = +41.8 (c 0.21, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 7.79-7.83 (m, 2H), 6.96-7.00 (m, 2H), 5.00-5.04 (m, 1H), 4.91 (dd, J = 7.7, 4.9 Hz, 1H), 3.87 (s, 3H), 3.25 (ddd, J = 13.5, 7.7, 4.6 Hz, 1H), 2.93 (ddd, J = 13.5, 7.2, 4.9 Hz, 1H), 2.84 (dd, J = 7.2, 4.6 Hz, 1H), 1.99-2.09 (m, 2H), 1.69 (s, 3H), 1.58

(s, 3H), 1.50-1.55 (m, 1H), 1.31-1.39 (m, 1H), 1.27 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 163.02, 132.74, 131.34, 129.25, 123.05, 114.32, 62.03, 61.51, 55.63, 42.54, 32.81, 25.67, 23.98, 21.88, 17.63; Chiral HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 90/10, column oven: 35 °C, retention time: 25.0 (major), 28.4 (minor); HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₄SNa (M+Na) + 362.1397, found 362.1396.

5a; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.79-7.83 (m, 2H), 6.96-6.99 (m, 2H), 5.21 (t, J = 7.4 Hz, 1H), 4.68 (t, J = 5.8 Hz, 1H), 3.87 (s, 3H), 3.53 (t, J = 6.6 Hz, 2H), 2.63 (dd, J = 8.1, 4.7 Hz, 1H), 2.06-2.16 (m, 2H), 1.62-

1.71 (m, 4H), 1.44-1.53 (m, 1H), 1.31 (s, 3H), 1.24 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 162.78, 140.10, 131.79, 129.28, 120.66, 114.14, 63.57, 58.97, 55.59, 40.52, 28.30, 26.46, 24.83, 23.11, 18.79; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₄SNa (M+Na) + 362.1397, found 362.1400.

4b ¹; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.80-7.84 (m, 2H), 6.97-7.00 (m, 2H), 5.09 (dd, J = 7.2, 5.1 Hz, 1H), 3.87 (s, 3H), 3.23 (ddd, J = 13.7, 7.6, 5.1 Hz, 1H), 2.98 (qd, J = 6.9, 5.0 Hz, 1H), 2.85 (dd, J = 6.6, 5.0 Hz, 1H), 1.26 (s, 3H),

1.21 (s, 3H); Chiral HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 90/10, column oven: 35 °C, retention time: 51.0 (minor), 56.3 (major).

4c; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.79-7.83 (m, 2H), 6.96-7.00 (m, 2H), 4.74-4.77 (m, 1H), 3.87 (s, 3H), 3.06-3.23 (m, 2H), 2.71 (q, J = 4.2 Hz, 1H), 1.82-1.90 (m, 1H), 1.51-1.56 m, 1H), 1.28 (s, 3H), 1.23 (s, 3H); ¹³C-NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 162.88, 131.43, 129.24, 114.25, 62.15, 58.23, 55.60, 41.25, 28.44, 24.59, 18.81;$ Chiral HPLC (Chiralcel OD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 95/5, column oven: 30 °C, retention time: 62.8 (major), 66.3 (minor); HRMS (ESI) *m*/*z* calcd for C₁₃H₂₀NO₄SNa (M+H) + 286.1108, found 286.1110.

4d; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.75-7.79 (m, 2H), 6.93-6.96 (m, 2H), 5.03 (t, J = 7.2 Hz, 1H), 4.56-4.66 (m, 2H), 3.23-3.29 (m, 1H), 2.91-2.97 (m, 1H), 2.84 (dd, J = 7.1, 4.6 Hz, 1H), 1.99-2.10 (m, 2H), 1.69 (s, 3H), 1.58 (s, 3H), 1.51-1.53 (m, 1H), 1.31-1.39 (m, 7H), 1.27 (s, 3H); ¹³C-NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 161.53, 132.75, 130.71, 129.25, 123.05, 115.66, 70.43, 62.05, 61.50, 42.54, 32.81, 25.67, 23.99, 21.88, 21.81, 17.62; ; Chiral HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 93/7, column oven: 35 °C, retention time: 24.8 (major), 28.4 (minor); HRMS (ESI)$ *m/z*calcd for C₁₉H₂₉NO₄SNa (M+Na) + 390.1710, found 390.1706.

5d; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) & 7.76-7.79 (m, 2H), 6.94 (d, J = 8.9 Hz, 2H), 5.21 (t, J = 7.4 Hz, 1H), 4.60-4.67 (m, 2H), 3.53 (t, J = 6.6 Hz, 2H), 2.64 (dd, J = 8.0, 4.8 Hz, 1H), 2.05-2.18 (m, 2H), 1.61-1.70 (m, 4H), 1.45-1.54 (m, 1H), 1.37 (s, 3H), 1.36 (s, 3H), 1.30 (s, 3H), 1.24 (s, 3H); ¹³C-

NMR (100 MHz, CDCl₃) δ 161.27, 140.03, 131.20, 129.28, 120.71, 115.50, 70.35, 63.57, 58.92, 40.53, 28.32, 26.50, 24.83, 23.11, 21.84, 18.78; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₉NO₄SNa (M+Na) + 390.1710, found 390.1709.

4e; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.00-5.04 (m, 1H), 4.89 (dd, J = 7.4, 4.8 Hz, 1H), 3.23-3.30 (m, 1H), 2.94 (ddd, J = 13.5, 7.2, 4.8 Hz, 1H), 2.84 (dd, J = 7.2, 4.6 Hz, 1H), 2.43 (s, 3H), 1.99-2.11 (m, 2H), 1.69 (s, 4H), 1.57 (s, 3H), 1.49-1.55 (m, 1H),

1.31-1.42 (m, 1H), 1.26 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.58, 136.81, 132.65, 129.74, 127.06, 123.04, 62.10, 61.51, 42.54, 32.77, 25.64, 23.93, 21.82, 21.49, 17.58; HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 95/5, column oven: 35 °C, retention time: 38.2 (major), 42.5 (minor); HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₃SNa (M+Na) + 346.1447, found 346.1448.

1.61-1.70 (m, 4H), 1.46-1.53 (m, 1H), 1.30 (s, 3H), 1.24 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.20, 140.02, 137.17, 129.58, 127.15, 120.62, 63.57, 58.94, 40.52, 28.27, 26.44, 24.80, 23.06, 21.48, 18.75; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₃SNa (M+Na) + 346.1447, found 346.1448.

4f; White solid; ¹H-NMR (400 MHz, CDCl₃) δ 8.37 (dt, J = 9.1, 2.1 Hz, 2H), 8.07 (dt, J = 9.1, 2.1 Hz, 2H), 5.27-5.30 (m, 1H), 5.00-5.04 (m, 1H), 3.41 (dq, J = 13.8, 3.9 Hz, 1H), 2.95-3.01 (m, 1H), 2.86 (q, J = 3.9 Hz, 1H), 1.98-2.13 (m, 2H), 1.69 (s, 3H), 1.53-1.60 (m, 4H), 1.33-1.40 (m, 1H), 1.29 (s,

3H); ¹³C-NMR (100 MHz, CDCl₃) δ 150.10, 145.92, 132.87, 128.27, 124.42, 122.83, 62.09, 61.96, 42.83, 32.88, 25.64, 23.94, 21.84, 17.62; HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 90/10, column oven: 35 °C, retention time: 29.9 (major), 40.3 (minor); HRMS (ESI) *m/z* calcd for C₁₆H₂₂N₂O₅SNa (M+Na) + 377.1142, found 377.1147.

5f; White solid; ¹H-NMR (400 MHz, CDCl₃) δ 8.34-8.37 (m, 2H), 8.05-8.09 (m, 2H), 5.47 (t, J = 5.7 Hz, 1H), 5.26 (t, J = 7.7 Hz, 1H), 3.56-3.65 (m, 2H), 2.67 (dd, J = 9.1, 3.9 Hz, 1H), 2.17-2.25 (m, 1H), 2.06-2.12 (m, 1H), 1.76-

1.84 (m, 1H), 1.70 (s, 3H), 1.38-1.47 (m, 1H), 1.33 (s, 3H), 1.27 (s, 3H); 13 C-NMR (100 MHz, CDCl₃) δ 149.91, 146.44, 140.71, 128.31, 124.22, 120.40, 63.54, 59.78, 40.51, 28.08, 25.74, 24.83, 22.93, 18.87; HRMS (ESI) *m*/*z* calcd for C₁₆H₂₂N₂O₅SNa (M+Na) + 377.1142, found 377.1145.

4g; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 8.5, 2.3 Hz, 1H), 7.35 (d, J = 2.3 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 5.00-5.04 (m, 1H), 4.90 (dd, J = 7.8, 4.7 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.27 (ddd, J = 13.4, 7.8, 4.4 Hz, 1H), 2.91-2.97 (m, 1H), 2.85 (dd, J = 7.3, 4.4 Hz, 1H), 1.99-2.12 (m,

2H), 1.68 (s, 3H), 1.50-1.58 (m, 4H), 1.32-1.40 (m, 1H), 1.27 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.71, 149.24, 132.76, 131.38, 123.03, 121.05, 110.57, 109.56, 61.99, 61.56, 56.23, 56.20, 42.59, 32.85, 25.67, 24.00, 21.89, 17.63; HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 90/10, column oven: 35 °C, retention time: 27.5 (major), 29.6 (minor); HRMS (ESI) *m*/*z* calcd for C₁₈H₂₇NO₅SNa (M+Na) + 392.1502, found 392.1503.

5g; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) & 7.49 (dd, J = 8.6, 2.2 Hz, 1H), 7.36 (d, J = 2.2 Hz, 1H), 6.94 (d, J = 8.6 Hz, 1H), 5.24 (t, J = 7.4 Hz, 1H), 4.78 (t, J = 5.9 Hz, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.53 (t, J = 6.7 Hz, 2H), 2.65 (q, J = 4.3 Hz, 1H), 2.06-2.21 (m, 2H), 1.65-1.74 (m, 4H), 1.43-1.52

(m, 1H), 1.31 (s, 3H), 1.24 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.43, 149.11, 140.10, 131.82, 121.07, 120.70, 110.46, 109.71, 63.54, 59.10, 56.22, 56.16, 40.56, 28.27, 26.36, 24.86, 23.08, 18.80; HRMS (ESI) *m*/*z* calcd for C₁₈H₂₇NO₅SNa (M+Na) + 392.1502, found 392.1502.

4h; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) & 7.79-7.83 (m, 2H), 6.97-7.00 (m, 2H), 5.03 (tt, J = 7.1, 1.3 Hz, 1H), 4.78 (dd, J = 7.5, 5.0 Hz, 1H), 3.87 (s, 3H), 3.22 (ddd, J = 13.8, 7.6, 5.0 Hz, 1H), 2.99 (ddd, J = 13.8, 6.7, 5.0

Hz, 1H), 2.83 (dd, J = 6.7, 5.0 Hz, 1H), 2.01 (q, J = 7.6 Hz, 2H), 1.68 (s, 3H), 1.57-1.64 (m, 4H), 1.35-1.43 (m, 1H), 1.20 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 163.00, 132.27, 131.30, 129.23, 123.15, 114.31, 61.26, 60.66, 55.59, 42.62, 38.08, 25.63, 23.54, 17.63, 16.59; HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 90/10, column oven: 35 °C, retention time: 25.1 (minor), 29.0 (major); HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₄SNa (M+Na) + 362.1397, found 362.1396.

5h; Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.79-7.82 (m, 2H), 6.96-7.00 (m, 2H), 5.11 (dt, J = 7.0, 1.0 Hz, 1H), 4.45 (t, J = 5.7 Hz, 1H), 3.87 (s, 3H), 3.56 (t, J = 6.4 Hz, 2H), 2.64 (dd, J = 6.7, 5.6 Hz, 1H), 2.00-2.15 (t,

2H), 1.47-1.62 (m, 5H), 1.29 (s, 3H), 1.23 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 162.81, 140.01, 131.59, 129.25, 119.28, 114.14, 63.80, 58.27, 55.57, 40.84, 36.06, 27.00, 24.78, 18.67, 16.19; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₅NO₄SNa (M+Na) + 362.1397, found 362.1402.

4i; White solid; ¹H-NMR (400 MHz, CDCl₃) δ 8.38 (dt, J = 9.1, 2.1 Hz, 2H), 8.08 (dt, J = 9.1, 2.1 Hz, 2H), 5.12 (br s, 1H), 5.03 (tt, J = 7.1, 1.3 Hz, 1H), 3.40 (d, J = 13.6 Hz, 1H), 3.02 (dd, J = 13.6, 7.4 Hz, 1H), 2.86 (dd, J = 13.6, 7.4 Hz, 1H), 3.86 (dd, J = 13.6 Hz,

 $J = 7.4, 4.3 \text{ Hz}, 1\text{H}, 2.00-2.05 \text{ (m, 2H)}, 1.59-1.68 \text{ (m, 7H)}, 1.37-1.47 \text{ (m, 1H)}, 1.23 \text{ (s, 3H)}; {}^{13}\text{C-NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 150.14, 145.87, 132.47, 128.30, 124.45, 122.96, 61.63, 60.66, 42.93, 38.06, 25.64, 23.53, 17.63, 16.70; HPLC (Chiralcel AD-H): flow rate: 1.0 mL/min, eluent: hexane/2-propanol = 90/10, column oven: 35 °C, retention time: 32.3 (minor), 58.4 (major); HRMS (ESI)$ *m*/*z*calcd for C₁₆H₂₂N₂O₅SNa (M+Na) + 377.1142, found 377.1144.

5i; White solid; ¹H-NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.1, 1.8 Hz, 2H), 8.06 (dd, J = 7.1, 1.8 Hz, 2H), 5.13 (dt, J = 7.1, 1.0 Hz, 1H), 4.59 (t, J = 5.3 Hz, 1H), 3.66 (t, J = 6.2 Hz, 2H), 2.63 (dd, J = 7.3, 4.8 Hz, 1H), 2.03-

2.17 (m, 2H), 1.59-1.67 (m, 4H), 1.44-1.53 (m, 1H), 1.29 (s, 3H), 1.24 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 150.04, 146.23, 141.18, 128.34, 124.32, 118.64, 63.79, 58.27, 41.02, 36.25, 26.97, 24.79, 18.73, 16.26; HRMS (ESI) *m*/*z* calcd for C₁₆H₂₂N₂O₅SNa (M+Na) + 377.1142, found 377.1145.

4j; Colorless oil; ¹H-NMR (400 MHz, methanol-d4) δ 7.72-7.75 (m, 2H), 7.09-7.13 (m, 2H), 5.10-5.13 (m, 1H), 3.88 (s, 3H), 3.60 (dd, J = 14.2, 3.4 Hz, 1H), 2.88 (dd, J = 7.3, 3.4 Hz, 1H), 2.78 (s, 3H), 2.73 (dd, J = 14.2, 7.3 Hz, 1H), 2.12 (q, J = 7.7 Hz, 2H), 1.69 (s, 3H), 1.61 (s, 3H), 1.40-1.58 (m, 2H),

1.28 (s, 3H); ¹³C-NMR (100 MHz, methanol-d4) δ 164.82, 133.17, 130.75, 129.92, 124.60, 115.52, 63.63, 61.49, 56.24, 50.85, 36.13, 33.96, 25.89, 24.98, 22.15, 17.71; HPLC (Chiralcel AD-H): flow rate: 1.0

mL/min, eluent: hexane/2-propanol = 92/8, column oven: 35 °C, retention time: 12.0 (major), 13.8 (minor); HRMS (ESI) m/z calcd for C₁₈H₂₇NO₄SNa (M+Na) + 376.1553, found 376.1553.

5j; Colorless oil; ¹H-NMR (400 MHz, methanol-d4) δ 7.71-7.74 (m, 2H), 7.09-7.12 (m, 2H), 5.16 (t, J = 7.0 Hz, 1H), 3.88 (s, 3H), 3.61 (d, J = 7.0 Hz, 2H), 2.73 (t, J = 6.3 Hz, 1H), 2.62 (s, 3H), 2.19 (t, J = 7.8 Hz, 2H), 1.74 (s, 3H), 1.55-1.65 (m, 2H), 1.27 (s, 3H), 1.23 (s, 3H); ¹³C-NMR (100 MHz, methanol-

d4) δ 164.04, 141.26, 130.18, 129.33, 120.18, 114.77, 64.73, 59.60, 55.58, 47.89, 34.07, 28.68, 27.53, 24.39, 22.88, 18.21; HRMS (ESI) *m*/*z* calcd for C₁₈H₂₇NO₄SNa (M+Na) + 376.1553, found 376.1558.

2. 4. Determination of absolute configuration of 4a

Nerol (10) was oxidize to 2,3-epoxynerol (39) by catalytic epoxidation with 2a. Absolute configuration of 39 was determined to (R, S) by comparison of optical rotation between synthetic and literature data.² 39 was converted into sulfonamide by nosylation of hydroxy group, S_N2 reaction with protected sulfonamide, and deprotection of Alloc group.³ Optical rotation of this compound, which has (R, S) configuration, was +33.5 (c 0.04, CHCl₃). By comparison of optical rotation, absolute configuration of 4a, which was obtained from catalytic epoxidation of 3a, was determined to (R, S).

Enantio excess was determined by derivatization to sulfonamide **4a**; 57% ee; $[\alpha]^{26}_{D} = +33.5$ (c 0.04, CHCl₃).

3. References

- 1. N. Ji, J. Yuan, M. Liu, T. Lan and W. He, Chem. Commun., 2016, 52, 7731-7734.
- 2. S. Yamada, T. Mashiko and S. Terashima, J. Am. Chem. Soc., 1977, 99, 1988-1990.
- 3. Y. Kitabayashi, S. Yokoshima and T. Fukuyama, Org. Lett., 2014, 16, 2862-2864.
- 4. H. Egami, T. Oguma and T. Katsuki, J. Am. Chem. Soc., 2010, 132, 5886-5895.

4. ¹H-NMR and ¹³C-NMR spectra

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon13

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 X : parts per Million : Carbon 13

5. HPLC data

