Metal-Free Intermolecular Cyclopropanation Between Alkenes and Iodonium Ylides Mediated by PhI(OAc)₂•Bu₄NI

Jason Tao, Carl D. Estrada, Graham K. Murphy*

Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L3G1, Canada.

General Experimental Details	1
General Synthesis of &keto-esters (GP1)	2
General synthesis of phenyliodonium ylides of acyclic iodonium ylides (GP2-A)	2
General synthesis of phenyliodonium ylides of cyclic iodonium ylides (GP2-B)	2
General Procedure for the Cyclopropanation of Iodonium Ylides Using PhI(OAc) ₂ and	
Bu ₄ NI (GP3)	5
References	9
¹ H and ¹³ C NMR Spectra	20
1	

General Experimental Details. All reactions were performed using oven-dried or flame-dried glassware under a positive pressure of nitrogen unless otherwise stated. Reagents were obtained from commercial sources (e.g., Aldrich, Oakwood Chemicals) and were used without further purification. Anhydrous MeCN was obtained by allowing the solvent to sit over activated 3Å molecular sieves overnight and was used without further purification. Iodonium vlides $1e-k^1$ were synthesized through a method published by Schank and Lick¹ and their spectra matched those reported in the literature. Bu₄NI₃ was synthesized through the method published by Buckles and Yuk² and the melting point matched what had been reported. Thin layer chromatography was performed on glass plates pre-coated with 0.25 mm Kieselgel 60 F₂₅₄ (Merck). Unless otherwise stated, flash chromatography columns were packed with 230-400 mesh silica gel (Silicycle). Proton nuclear magnetic resonance spectra (¹H NMR) were recorded at 300 MHz or 500 MHz and coupling constants (J) are reported in Hertz (Hz). Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 125 MHz and are reported (ppm) relative to the center line of the triplet from chloroform-d (77.0 ppm). Positive ion electrospray ionization (ESI) was performed with a Thermo Scientific Q-Exactive hybrid mass spectrometer. Accurate mass determinations were performed at a mass resolution of 70,000. For ESI, samples were infused at 10 µL/min in either 1:1 CH₃OH/H₂O+0.1% formic acid or 1:1 CH₃OH/H₂O+0.2% NH₄OH.

Note: Ylides **1a-e** were prone to decomposition in solution. To minimize decomposition during NMR analysis, data was acquired as quickly as possible *immediately after* dissolving the ylides in CDCl₃.

Based on a modified transesterification procedure reported by Doyle:³ Methyl benzoylacetate (5.45 g, 30 mmol, 1.0 equiv) was dissolved in toluene (15 mL). To this solution was added DMAP (183 mg, 1.5 mmol, 5 mol%) and alcohol (36 mmol, 1.2 equiv). The resulting mixture was heated to refluxed and the condensate was allowed to pass through a column of activated 4Å molecular sieves. After 16 h, the reaction mixture was concentrated via rotary evaporation and purified via flash chromatography (mobile phase: either varying concentrations of EtOAc in hexanes or 1% EtOAc in 1:1 CH₂Cl₂:hexanes) on silica gel to isolate the product away from the unreacted starting material.

General synthesis of phenyliodonium ylides of acyclic iodonium ylides (GP2-A)

Following the procedure reported by Lick:¹ 30% (w/v) KOH/MeOH (3.5 mL) solution was added slowly to a solution of acyclic 1,3-dicarbonyl (5 mmol) in MeOH (3.5 mL) cooled in an ice-brine bath. To this mixture, iodobenzene diacetate (5 mmol) in MeOH (8 mL) was added slowly to ensure reaction temperature remained < 0 °C. Stirring continued between 30 – 60 min and the resulting solution was poured onto ice (~100 mL) and diluted with water (75 mL) and transferred to a separatory funnel and extracted with CH_2Cl_2 (30 mL x 3). The combined organic extracts were dried over MgSO₄ and filtered through a sintered glass funnel and concentrated to ~20% of its original volume using a rotary evaporator. The resulting solution was precipitated by adding solvent (e.g., Et₂O and/or hexanes) followed by cooling to 0 °C. The solid is collected via filtration and dried in vacuo to yield the phenyliodonium ylides as typically white amorphous solids and were either used immediately or stored in a -20 °C freezer.

Note: Iodonium Ylides of acyclic 1,3-dicarbonyl compounds are typically thermally unstable. Especially in the case of ylides **1b** and **1c**, it is recommended that during work-up/isolation be performed as quickly as possible, while keeping the organic extracts cooled in an ice-water bath whenever possible.

Iodonium ylides $1e-k^1$ were synthesized through a method published by Schank and Lick¹ and their spectra matched those reported in the literature.

General synthesis of phenyliodonium ylides of cyclic iodonium ylides (GP2-B)

Following the procedure reported by Lick:¹ Cyclic iodonium ylide (5 mmol) was dissolved in 10% aq. Na₂CO₃ (15 mL) at room temperature and was added to iodobenzene diacetate (5 mmol) in EtOH (15 mL). The resulting mixture was allowed to continue to stir for 30 min at room

temperature and was then poured onto ice (~100 mL) and diluted with water (50 mL) and transferred to a seperatory funnel and extracted with CH_2Cl_2 (30 mL x 3). The combined organic extracts were dried over MgSO₄ and filtered through a sintered glass funnel and concentrated to ~20% of its original volume using a rotary evaporator. The resulting solution was precipitated by adding solvent (e.g., Et₂O and/or hexanes) followed by cooling to 0 °C. The solid is collected via filtration and dried in vacuo to yield the phenyliodonium ylides as typically white amorphous solids and were either used immediately or stored in a -20 °C freezer.

Phenyliodonium ylide of methyl benzoylacetate (1a)

The iodonium ylide was formed via **GP2-A** using methyl benzoylacetate⁴ (1.78 g, 10 mmol). Following concentration of the organic extracts, the solution containing the crude iodonium ylide was diluted with CH₂Cl₂, Et₂O, then hexanes and concentrated in vacuo briefly to induce precipitation and the resulting suspension cooled to 0 °C. The solid was collected by vacuum filtration to yield the title compound as a white amorphous solid (2.07 g, 54% yield)

M.P. 80 − 82 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 7.7 Hz, 2H), 7.55-7.54 (m, 3H), 7.42-7.36 (m, 5H), 3.50 (s, 3H).

¹³C NMR (125, MHz, CDCl₃) δ 186.0, 165.0, 139.5, 133.1, 131.38, 131.21, 129.4, 128.1, 127.3, 112.9, 83.1, 51.6.

IR (ATR): 2953 (w), 1655 (s), 1429 (s), 1352 (s), 1126 (s) cm⁻¹.

HRMS calcd for $C1_6H_{14}O_3I(M+H)^+$ 380.9482, found 380.9481.

Phenyliodonium ylide of isopropyl benzoylacetate (1b)

Isopropyl benzoylacetate was synthesized via **GP1** using 30 mmol methyl benzoylacetate and 36 mmol of *i*-PrOH. Purification of the crude material via gradient flash chromatography (silica gel, eluting with 5% then 10% EtOAc in hexanes) to give isopropyl benzoylacetate as an orange liquid (3.11 g, 50% yield).

 $R_f = 0.34$ (10% EtOAc in hexanes)

¹H NMR (500 MHz, CDCl₃): δ 12.65 (s, 1H), 7.94 (d, *J* = 7.9 Hz, 7H), 7.77 (d, *J* = 7.4 Hz, 2H), 7.58 (s, 4H), 7.49-7.40 (m, 10H), 5.63 (s, 1H), 5.15 (s, 1H), 5.07 (dt, *J* = 12.5, 6.3 Hz, 3H), 3.95 (s, 7H), 1.31 (d, *J* = 6.3 Hz, 5H), 1.22 (d, *J* = 6.3 Hz, 21H).

¹³C NMR (125 MHz, CDCl₃): δ 192.8, 172.9, 171.4, 167.2, 136.2, 133.76, 133.66, 131.3, 128.9, 128.63, 128.58, 126.1, 88.0, 69.2, 67.9, 46.5, 22.1, 21.8

IR (ATR) 2981 (w), 1732 (s), 1686 (s), 1266 (s), 1200 (s), 1104 (s) cm⁻¹. HRMS calcd for $C_{12}H_{15}O_3$ (M+H)⁺ 207.1016, found 207.1016.

The iodonium ylide was formed via **GP2-A** using isopropyl benzoylacetate (2.06 g, 10 mmol). Following concentration of the organic extracts, the solution containing the crude iodonium ylide was diluted with CH_2Cl_2 , Et_2O , then hexanes and concentrated in vacuo briefly to induce precipitation and the resulting suspension cooled to 0 °C. The solid was collected by vacuum filtration to yield the title compound as a white amorphous solid (802 mg, 20% yield)

M.P. 59 – 61 °C. ¹H-NMR (500 MHz, CDCl₃): δ 7.89 (dd, J = 8.3, 1.0 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.51-7.49 (m, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.35-7.30 (m, 3H), 4.81 (sept, J = 6.3 Hz, 1H), 0.93 (d, J = 6.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 186.2, 164.3, 140.0, 133.5, 131.62, 131.48, 129.4, 128.3, 127.4, 112.9, 85.6, 68.1, 21.9 IR (ATR) 2977 (w), 1627 (m), 1469 (s), 1260 (s), 1105, (s), 1010 (s) cm⁻¹. HRMS calcd C₁₈H₁₈O₃I (M+H)⁺ 409.0295, found 409.0295.

Phenyliodonium ylide of benzyl benzoylacetate (1c)

Benzyl benzoylacetate was synthesized following **GP1** using 30 mmol methyl benzoylacetate and 36 mmol of BnOH. Purification of the crude material via silica gel flash chromatography (1% EtOAc in 99% 1:1 CH₂Cl₂:hexanes solution) afforded title compound as an orange oil (4.66 g, 61% yield) in a 1:4 enol:keto ratio.

¹H NMR (500 MHz, CDCl₃): δ 12.54 (s, 1H), 7.94 (d, J = 7.9 Hz, 8H), 7.79 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.4 Hz, 4H), 7.47-7.33 (m, 39H), 5.75 (s, 1H), 5.27 (s, 2H), 5.21 (s, 7H), 4.05 (s, 7H). ¹³C NMR (126 MHz, CDCl₃): δ 192.4, 173.0, 171.9, 167.4, 136.01, 135.88, 135.4, 133.4, 131.4, 129.8, 128.84, 128.69, 128.61, 128.55, 128.40, 128.30, 127.0, 126.2, 87.3, 77.36, 67.2, 66.1, 46.0 IR (ATR) 1738, 1684.9, 1264, 1209, 1183, 1141 cm⁻¹. HRMS calcd for C₁₆H₁₅O₃ (M+H)⁺ 255.1016, found 255.1015.

The iodonium ylide was formed via **GP2-A** using benzyl benzoylacetate (1.27 g, 5 mmol). Following concentration of the organic extracts, the solution containing the crude iodonium ylide was precipitated addition of Et_2O and hexanes. Vacuum filtration yielded the title compound as a white amorphous solid (724 mg, 32% yield).

M.P. 61 – 63 °C

¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, *J* = 7.5 Hz, 2H), 7.55-7.53 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 3H), 7.33-7.29 (m, 2H), 7.24-7.23 (m, 3H), 7.00-6.99 (m, 2H), 4.98 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 186.4, 164.5, 139.7, 136.6, 133.6, 131.58, 131.49, 129.6, 128.3, 127.88, 127.76, 127.60, 113.0, 84.0, 66.6.

IR (ATR) 3057 (w), 1677 (m), 1646 (m), 1469 (s), 1262 (s), 1040 (s) cm⁻¹.

HRMS calcd for $C_{22}H_{18}IO_3 [M+H]^+ 457.0295; 457.0294.$

Phenyliodonium ylide of Benzhydrol benzoylacetate (1d)

Benzhydrol benzoylacetate was synthesized following **GP1** using 30 mmol methyl benzoylacetate and 36 mmol of benzhydrol. Purification via silica gel flash chromatography (1% EtOAc in 99% 1:1 CH₂Cl₂:hexanes solution) afforded title compound as an pink liquid which solidified upon standing to yield a pink solid (6.63 g, 20.1 mmol, 67% yield) in a 5:1 enol:keto ratio.

¹H NMR (500 MHz, CDCl₃) δ 12.45 (enol, s, 1H), 7.94 (keto, d, J = 8.0 Hz, 0.4H), 7.81 (enol, d, J = 7.2 Hz, 2H), 7.77 (keto, d, J = 7.2 Hz, 0.2H), 7.60 (keto, t, J = 7.5 Hz, 0.3H), 7.50-7.28 (m, 16H), 7.04 (s, 1H), 6.96 (keto, s, 0.1H), 5.87 (enol, s, 1H), 4.10 (keto, s, 0.3H).

¹³C NMR (126 MHz, CDCl₃): δ 172.34, 172.23, 166.6, 140.2, 139.7, 136.1, 133.8, 133.4, 131.5, 128.9, 128.70, 128.68, 128.60, 128.13, 128.12, 128.05, 127.25, 127.23, 126.2, 87.5, 78.2, 77.0, 46.4

IR 3058 (w), 1747 (m), 1682 (m), 1636 (m), 1250 (s), 1194 (s) cm⁻¹. HRMS calcd for $C_{22}H_{18}O_3Na (M+Na)^+$ 353.1148, found 353.1129.

The iodonium ylide was formed via **GP2-A** using benhydrol benzoylacetate (1.27 g, 5 mmol). Following concentration of the organic extracts, the solution containing the crude iodonium ylide was precipitated addition of Et_2O and hexanes. Vacuum filtration yielded the title compound as a white amorphous solid (724 mg, 32% yield).

M.P. 120 – 122 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.80 (d, *J* = 7.8 Hz, 2H), 7.59 (d, *J* = 7.1 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.37-7.32 (m, 4H), 7.24-7.21 (m, 6H), 7.07-7.03 (m, 4H), 6.80 (s, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 186.4, 163.6, 140.8, 139.8, 133.2, 131.37, 131.20, 129.5, 128.30, 128.14, 127.6, 127.3, 126.9, 112.7, 77.6.

IR (ATR) 3053 (w), 1650 (s), 1529 (s), 1325 (m), 1252 (s), 1016 (s) cm⁻¹.

HRMS calcd for $C_{28}H_{22}O_{3}I(M+H)^{+}$ 533.0608, found 533.0608.

General Procedure for the Cyclopropanation of Iodonium Ylides Using PhI(OAc)₂ and Bu₄NI (GP3)

In a dry 10 mL round bottom flask, alkene (0.6 mmol, 2 equiv) was stirred in MeCN (3 mL) at room temperature. Bu₄NI (11 mg, 0.09 mmol, 30 mol%) was then added to the solution. In rapid succession, iodonium ylide (0.3 mmol, 1.0 equiv) and PhI(OAc)₂ (96 mg, 0.3 mmol, 1.0 equiv) were added, and stirred for 2 hours (1 hour for iodonium ylides of acyclic 1,3-dicarbonyls). The reaction mixture was then concentrated to dryness. If NMR yields were desired, HMDSO (1.5 μ L/mmol of ylide) was added during ¹H NMR analysis. The crude reaction mixture was loaded onto a column of silica gel using a minimal amount of CHCl₃. Elution using mixtures of EtOAc/hexanes afforded the cyclopropanation products.

Note: Characterization, diastereoselectivities and NMR yields of cyclopropanes 2b-d (where appropriate) were obtained in analogy to 2a for which the *cis*-2a and *trans*-2a have been previously reported in the literature.⁴⁻⁵

Cyclopropanes **2e**, **2f**, **2h** and **2k** are known in the literature.⁶ NMR yields were determined by adding HMDSO (1.5 μ L/mmol of ylide) during ¹H NMR analysis.

Benzhydryl 1-benzoyl-2-phenylcyclopropane-1-carboxylate (2d)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.6 mmol of 3-nitrostyrene (89.5 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (eluting with, sequentially, 5% then 10% EtOAc in hexanes), led to the title compound to be isolated as a yellow liquid (55 mg, 42% yield) with a 2:1.2 ratio of diastereomers.

 $R_f = 0.3$ (10% EtOAc in hexanes, UV active).

¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, J = 7.3 Hz, 1.8H), 7.70 (d, J = 7.3 Hz, 3.3H), 7.53-7.00 (m, 46H), 6.84 (d, J = 6.8 Hz, 3.3H), 6.77 (d, J = 7.6 Hz, 3.3H), 6.58 (d, J = 7.7 Hz, 1.8H), 6.51 (s, 0.6H), 3.69 (dd, J = 8.6 Hz, 1H), 3.58 (dd, J = 8.6 Hz, 1.9H), 2.55 – 2.51 (m, 2.6H), 1.84 (dd, J = 9.2 Hz, 5.1 Hz, 1H), 1.74 (dd, J = 9.0, 4.7 Hz, 0.6H).

¹³C NMR (125 MHz, CDCl₃): δ 194.6, 192.5, 170.2, 167.6, 139.7, 139.39, 139.32, 138.9, 137.44, 137.29, 134.5, 134.0, 133.0, 132.7, 129.2, 129.0, 128.79, 128.68, 128.60, 128.41, 128.35, 128.31, 128.28, 128.17, 128.03, 128.01, 127.80, 127.73, 127.52, 127.39, 127.33, 127.28, 127.18, 127.07, 126.97, 126.7, 78.5, 78.1, 42.7, 42.3, 34.3, 30.7, 20.3, 18.8

IR 3031 (w), 1725 (m), 1677 (m), 1258 (m), 1147 (m), 692 (s) cm⁻¹.

HRMS calcd for $C_{30}H_{24}O_3Li (M+Li)^+ 439.1880$, found 439.1864.

6,6-Dimethyl-1-phenylspiro[2.5]octane-4,8-dione (2i)⁷

Synthesized according to **GP3** using 0.3 mmol of ylide and styrene (104.2 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (eluting with 5% EtOAc in hexanes, then 10% EtOAc in hexanes), led to the title compound to be isolated as a white solid (40 mg, 55% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.49-7.23 (m, 5H), 3.30 (dd *J* = 10.2 Hz, 1H), 2.69-2.53 (m, 3H), 2.40-2.22 (m, 3H), 1.16 (s, 3H), 1.13 (s, 3H). This data matches what has been previously reported in the literature.

1-(3-nitrophenyl)-6,6-dimethylspiro[2.5]octane-4,8-dione (2m)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.6 mmol of 3-nitrostyrene (89.5 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (eluting with, sequentially, 5% 10%, 15%, 30% EtOAc in hexanes), led to the title compound to be isolated as a white solid (51 mg, 60% yield).

 $R_f = 0.43$ (20% EtOAc in hexanes, UV active).

M.P. 104 - 106 °C

¹H NMR (500 MHz, CDCl₃): δ 8.10-8.08 (m, 2H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.46 (dd, *J* = 7.8 Hz, 1H), 3.33 (dd, *J* = 8.9 Hz, 1H), 2.68 - 2.63 (m, 1H), 2.62-2.58 (m, 1H), 2.49 (dd, *J* = 8.8, 3.8 Hz, 1H), 2.39 (d, *J* = 16.5 Hz, 1H), 2.34 (dd, *J* = 9.1, 3.8 Hz, 1H), 2.26 (d, *J* = 16.5 Hz, 1H), 1.12 (d, *J* = 0.2 Hz, 3H), 1.03 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 205.4, 202.2, 148.1, 135.76, 135.64, 129.0, 124.7, 123.0, 54.2, 53.3, 47.6, 45.7, 30.6, 29.3, 28.0, 23.7

IR (ATR) 2961 (w), 1699 (w), 1673 (s), 1527 (s), 1347 (s) 1334 (s), 1217 (m) cm⁻¹.

HRMS calcd for $C_{16}H_{18}O_4N(M+H)^+$ 288.1230, found 288.1230.

1-(4-chlorophenyl)-6,6-dimethylspiro[2.5]octane-4,8-dione (2n)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.6 mmol of 4-chlorostyrene (2 equiv). Purification by gradient flash chromatography through a column of silica gel (eluting with 5% EtOAc in hexanes then 10% EtOAc in hexanes) led to the title compound to be isolated as a white solid (58 mg, 64% yield).

M.P. 106 – 108 °C.

 $R_f = 0.24$ (10% EtOAc in hexanes, UV active)

¹H NMR (500 MHz, CDCl₃): δ 7.27 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.3 Hz, 2H), 3.24 (dd, J = 9.0 Hz, 1H), 2.64 (d, J = 16.9 Hz, 1H), 2.60 (d, J = 16.9 Hz, 1H), 2.49 (dd, J = 8.9, 3.6 Hz, 1H), 2.39 (d, J = 16.6 Hz, 1H), 2.33 (dd, J = 9.1, 3.7 Hz, 1H), 2.25 (d, J = 16.7 Hz, 1H), 1.15 (s, 3H), 1.07 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 205.5, 201.7, 133.8, 131.7, 130.8, 128.2, 54.0, 53.2, 48.4, 47.3, 30.5, 29.2, 27.9, 22.5.

IR (ATR) 2958 (w), 1702 (w), 1675 (s), 1332 (m), 1015 (m) cm⁻¹.

HRMS calcd for $C_{16}H_{18}O_2Cl (M+H)^+ 277.0990$, found 277.0990.

1-(4-methylphenyl)-6,6-dimethylspiro[2.5]octane-4,8-dione (20)

Synthesized following **GP3** using 0.3 mmol of ylide (1.0 equiv) and 4-methylstyrene (71 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (eluting with 5% EtOAc in hexanes then 10% EtOAc in hexanes) led to the title compound to be isolated as thick yellow oil (34 mg, 44% yield).

 $R_f = 0.17 (10\% \text{ EtOAc in hexanes, UV active)} {}^{1}\text{H NMR} (500 \text{ MHz, CDCl}_3): \delta 7.11 (d, J = 8.2 \text{ Hz}, 2\text{H}), 7.08 (d, J = 8.2 \text{ Hz}, 2\text{H}), 3.23 (t, J = 9.0 \text{ Hz}, 1\text{H}), 2.62 (d, J = 16.8 \text{ Hz}, 1\text{H}), 2.56 (d, J = 16.7 \text{ Hz}, 1\text{H}), 2.51 (dd, J = 9.0, 3.7 \text{ Hz}, 1\text{H}), 2.36-2.30 (m, 5\text{H}), 2.21 (d, J = 16.3 \text{ Hz}, 1\text{H}), 1.12 (s, 3\text{H}), 1.04 (s, 3\text{H}).$

¹³C NMR (125 MHz, CDCl₃): δ 205.7, 201.7, 137.7, 130.1, 129.4, 128.7, 54.0, 53.2, 48.93, 48.82, 30.5, 29.3, 27.9, 22.1, 21.2

IR 2954 (w), 1702 (m), 1674 (s), 1333 (m), 1273 (m) cm⁻¹.

HRMS calcd for $C_{17}H_{21}O_2 (M+H)^+ 257.1542$, found 257.1536.

2-(4-(tert-butyl)phenyl)-6,6-dimethyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3p)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.6 mmol of 4-*tert*-butylstyrene (96.3 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 5%, 10%, 20%, 40% EtOAc in hexanes) led to the title compound being isolated as a white solid (51 mg, 57% yield) which decomposed to a yellow liquid at room temperature. ¹H NMR analysis of this material showed a 2:1 mixture of the dihydrofuran and cyclopropane. Allowing this mixture to stand overnight at room temperature furnished quantitative conversion of cyclopropane to the title compound.

 $R_f = 0.23$ (10% EtOAc in hexanes, UV active).

¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 5.75 (dd, J = 10.5, 7.9 Hz, 1H), 3.26 (dddd, J = 14.5, 10.6, 1.8, 1.8 Hz, 1H), 2.91 (dddd, J = 14.6, 7.9, 1.9, 1.9 Hz, 1H), 2.36 (dd , J = 1.6, 1.6 Hz, 2H), 2.27 (d, J = 4.3 Hz, 2H), 1.32 (s, 9H), 1.14 (s, 3H), 1.13 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 194.7, 176.0, 151.7, 137.5, 125.7, 111.5, 100.0, 86.6, 51.0, 37.8, 34.6, 34.1, 33.5, 31.3, 28.9, 28.5. IR (ATR) 2957 (m), 1739 (m), 1632 (s), 1399 (s), 1217 (s) cm⁻¹. HRMS calcd for $C_{20}H_{27}O_2$ (M+H)⁺ 299.2006, found 299.2006.

1-(3,4-dimethoxyphenyl)-6,6-dimethylspiro[2.5]octane-4,8-dione (3q)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.6 mmol of 3,4-(dimethoxy)styrene (99.7 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 5%, 10%, 20%, 40% EtOAc in hexanes) led to the title compound to be isolated as a yellow liquid (74 mg, 82% yield).

 $R_f = 0.23$ (10% EtOAc in hexanes, UV active).

¹H NMR (500 MHz, CDCl₃) δ 6.89-6.82 (m, 3H), 5.71 (dd, J = 10.4, 8.0 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.25 (dd, J = 14.5, 10.5 Hz, 1H), 2.91 (dd, J = 14.6, 8.0 Hz, 1H), 2.36 (s, 2H), 2.29 (d, J = 16.2 Hz, 1H), 2.26 (d, J = 16.2 Hz, 1H), 1.14 (s, 3H), 1.13 (s, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 194.7, 175.9, 149.32, 149.27, 132.9, 118.7, 111.5, 111.1, 109.1, 86.8, 55.95, 55.89, 51.0, 37.9, 34.2, 33.4. IR (ATR): 2955 (w), 1628 (s), 1516 (s), 1217 (s), 1137 (s) cm⁻¹. HRMS calcd for C₁₈H₂₃O₄ (M+H)⁺ 303.1591, found 303.1590.

2-(4-methoxyphenyl)-6,6-dimethyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3r)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.6 mmol of 4-methoxystyrene (89.5 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 5%, 10%, 20%, 40% EtOAc in hexanes), led to the title compound to be isolated as a thick orange liquid (76 mg, 93% yield). An analytic sample was obtained by taking the above material and passing through another column of silica gel (5%, 10%, 20% EtOAc in benzene) to afford the title compound as a thick yellow liquid. $R_f = 0.13$ (20% EtOAc in hexanes)

¹H NMR (500 MHz, CDCl₃): δ 7.27 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 5.74 (dd, J = 10.4, 7.9 Hz, 1H), 3.83 (s, 3H), 3.26 (dddd, J = 14.5, 10.6, 1.8, 1.8 Hz, 1H), 2.91 (dddd, J = 14.5, 7.9, 1.8, 1.8 Hz, 1H), 2.36 (dd, J = 1.8, 1.8 Hz, 2H), 2.29 (d, J = 3.5 Hz, 2H), 1.16 (s, 3H), 1.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 194.6, 175.9, 159.8, 132.6, 127.5, 114.1, 111.5, 86.6, 55.3, 50.9, 37.8, 34.1, 33.5, 28.8, 28.5 IR (ATR) 2957 (w), 1626 (s), 1514 (m), 1400 (m), 1217 (s), 1003 (m) cm⁻¹.

HRMS calcd for $C_{17}H_{21}O_3 (M+H)^+ 273.1485$, found 273.1485.

The substituted methylene compounds 4a-h,l,m were prepared by Wittig olefinations of the isatins according to literature precedent.⁸ Substrate 4j was prepared via Peterson olefination of the *N*-Me isatin.⁹ Substrate 4k was prepared via malononitrile condensation on *N*-acetyl isatin.

1'-(tert-butyl) 3-ethyl 2,2-dimethyl 2'-oxospiro[cyclopropane-1,3'-indoline]-1',2,2,3-tetracarboxylate (5a)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (95 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 10%, 20% EtOAc in hexanes) led to the title compound to be isolated as thick orange oil which slightly foamed when placed under high vacuum (96 mg, 71% yield).

¹H NMR (500 MHz; CDCl₃): δ 7.90 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.35 (ddd, J = 7.9, 7.9, 0.8 Hz, 1H), 7.12 (dd, J = 7.7 Hz, 1H), 4.25-4.13 (m, 2H), 3.80 (s, 6H), 3.42 (s, 1H), 1.62 (s, 9H), 1.23 (t, J = 7.1 Hz, 3H).

The data matches those previously reported in the literature.¹⁰

1'-benzyl 3-ethyl 2,2-dimethyl 2'-oxospiro[cyclopropane-1,3'-indoline]-1',2,2,3-tetracarboxylate (5b)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (105 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 10%, 20%, 30%, 40% EtOAc in hexanes) led to the title compound to be isolated as thick orange oil (117 mg, 81% yield as a 7.1:1 mixture of the diastereomers.

 $R_f = 0.50$ (40% EtOAc in hexanes, UV active)

¹H NMR (500 MHz; CDCl₃): δ 7.99 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 7.0 Hz, 2H), 7.43 (d, J = 7.9 Hz, 1H), 7.36 (dd, J = 12.8, 8.5 Hz, 4H), 7.15 (dd, J = 7.7 Hz, 1H), 5.44 (s, 2H), 4.29-4.13 (m, 2H), 3.80 (s, 3H), 3.78 (s, 3H), 3.44 (s, 1H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 170.1, 164.8, 164.4, 162.8, 150.2, 140.5, 134.8, 129.3, 128.69, 128.61, 128.2, 126.6, 124.2, 119.7, 114.9, 68.9, 62.1, 53.7, 53.4, 47.8, 40.5, 38.4, 14.1 IR (ATR) 2955 (w), 1796 (s), 1733 (s), 1251 (s), 1187 (s) cm⁻¹ HRMS calcd for C₂₅H₂₄O₉N [M+H]⁺ 482.1446; found 482.1445.

3-ethyl 2,2-dimethyl 1'-acetyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2,3-tricarboxylate (5c)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.6 mmol of alkene (155 mg, 0.6 mmol, 2 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 5%, 10%, 20%, 30% EtOAc in hexanes) led to the title compound to be isolated as an orange liquid containing a mixture of diastereomers (107 mg, 92% yield). An analytic sample of the major diastereomer was obtained by dissolving the above material in minimal CHCl₃ and passing through another column of silica gel (hexane followed by 10% EtOAc in hexanes 20% EtOAc in hexanes) to yield the major diastereomer as a yellow solid.

M.P. 84 – 86 °C. $R_f = 0.22 (20\% \text{ EtOAc in hexanes, UV active})$ ¹H NMR (500 MHz; CDCl₃): δ 8.34 (d, *J* = 8.3 Hz, 1H), 7.46 (d, *J* = 7.4 Hz, 1H), 7.40 (ddd, *J* = 7.9, 7.9, 0.9 Hz, 1H), 7.21-7.18 (m, 1H), 4.28-4.18 (m, 2H), 2.66 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 172.8, 170.2, 164.62, 164.42, 162.6, 141.2, 129.3, 126.3, 124.5, 119.7, 116.1, 62.1, 53.6, 53.4, 47.8, 40.6, 38.2, 26.8, 14.0 IR (ATR) 2956 (w), 1751 (s), 1737 (s), 1721 (s), 1317 (m), 1188 (s), 1165 (s) cm⁻¹ HRMS calcd for C₁₉H₂₀O₈N [M+H]⁺ 390.1183; found 390.1182.

3-ethyl 2,2-dimethyl 2'-oxo-1'-tosylspiro[cyclopropane-1,3'-indoline]-2,2,3-tricarboxylate (5d)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (111 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel

(sequentially eluting with pure hexanes followed by 10%, 20%, 30%, 40% EtOAc in hexanes) led to the major isomer of the title compound to be isolated as a yellow oil (102 mg, 68% yield) and the minor isomer of the title compound to be isolated as a yellow-brown solid (44 mg, 29% yield).

Major diastereomer $R_f = 0.39$ (40% EtOAc in Hexanes) ¹H NMR (500 MHz; CDCl₃): δ 8.03 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.44 (dd, J = 7.9, 0.8 Hz, 1H), 7.41 (ddd, J = 8.0, 8.0, 1.3 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.16 (ddd, J = 7.8, 1.0 Hz, 1H), 4.25-4.16 (m, 2H), 3.78 (s, 3H), 3.67 (s, 3H), 3.38 (s, 1H), 2.45 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (125MHz; CDCl₃): δ 170.1, 164.5, 163.9, 162.7, 145.9, 140.3, 134.8, 129.7, 129.4, 128.1, 127.1, 124.1, 119.6, 113.2, 62.1, 53.46, 53.35, 47.7, 40.1, 37.7, 21.7, 13.9 IR (ATR) 2956 (w), 1736 (s), 1235 (s), 1169 (s), 1088 (m) cm⁻¹. HRMS calcd for C₂₄H₂₄O₉SN [M+H]⁺ 502.1166; found 502.1166.

3-ethyl 2,2-dimethyl 1'-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2,3-tricarboxylate (5e)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (69 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 10%, 20%, 30%, 40% EtOAc in hexanes) furnished a yellow oil (68 mg, 62% yield) containing an inseparable mixture of the title compound and tetramethyl ethene-1,1,2,2-tetracarboxylate in a 70:30 mol ratio (corrected yield of cyclopropane: 52 mg, 48% yield).

 $R_f = 0.32$ (40% EtOAc in hexanes, UV active)

¹H NMR (500 MHz; CDCl₃): δ 7.41 (d, J = 7.8 Hz, 1H), 7.33 (dd, J = 7.8 Hz, 1H), 7.04 (dd, J = 7.6 Hz, 1H), 6.89 (d, J = 7.7 Hz, 1H), 4.19-4.13 (m, 2H), 3.85 (s, 2H), 3.80 (s, 6H), 3.39 (s, 1H), 3.24 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃): δ 171.3, 165.4, 164.8, 163.3, 144.7, 128.8, 126.9, 122.1, 120.6, 108.3, 61.8, 53.5, 53.2, 46.8, 40.1, 37.3, 26.8, 14.0

IR (ATR) 2982 (w), 1766 (m), 1746 (s), 1734 (s), 1712 (s), 1612 (m), 1328 (m), 1229 (s), 1028 (m) cm⁻¹.

HRMS calcd for $C_{18}H_{20}O_7N [M+H]^+$ 362.1234; found 362.1233.

3-ethyl 2,2-dimethyl 1'-benzyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2,3-tricarboxylate (5f)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (92.2 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 5%, 10%, 15%, 20% EtOAc in hexanes) led to the title compound to be isolated as an orange foam (99 mg, 75% yield). An analytic sample was obtained by recrystallizing this material in using chloroform/hexanes, resulting in an off-white solid.

M.P. 164 – 166 °C

 $R_f = 0.50$ (50% EtOAc in hexanes, UV hexanes)

¹H NMR (500 MHz; CDCl₃): δ 7.35 (d, J = 7.8 Hz, 1H), 7.24-7.17 (m, 5H), 7.14-7.10 (m, 1H), 6.91 (dd, J = 7.7 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 4.95 (d, J = 15.6 Hz, 1H), 4.72 (d, J = 15.9 Hz, 1H), 4.16-4.06 (m, 2H), 3.71 (s, 3H), 3.70 (s, 2H), 3.38 (s, 1H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 165.3, 164.8, 163.3, 143.9, 135.3, 128.75, 128.72, 127.7, 127.24, 127.08, 122.1, 120.6, 109.1, 61.8, 53.41, 53.23, 47.1, 44.3, 40.2, 37.3, 14.0 IR (ATR) 2994 (w), 1760 (m), 1744 (s), 1733 (s), 1714 (s), 1610 (m), 1356 (m), 1258 (s), 1157 (s).

HRMS calcd for $C_{24}H_{24}O_7N(M+H)^+$ 438.1547; found 438.1548.

3-ethyl 2,2-dimethyl 1'-allyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2,3-tricarboxylate (5g)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (77.8 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 10%, 20%,40% EtOAc in hexanes) to recover the title compound as a thick orange oil (69 mg, 59% yield). An analytical sample was obtained by repeating chromatography stated above to yield an off-white solid.

 $R_f = 0.125$ (20% EtOAc in hexanes, UV active)

M.P. = $103 - 105 \,^{\circ}\text{C}$ IP (ATP) 2050 0 (w) 1747 4 (

IR (ATR) 2950.0 (w), 1747.4 (s), 1737.3 (s), 1706.5 (s), 1613.2 (w), 1365.8 (m), 1192.3 (s) 1 H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.9 Hz, 1H), 7.30 (ddd, *J* = 7.8, 7.8, 1.0 Hz, 1H), 7.03 (ddd, *J* = 7.7, 7.7, 0.8 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 5.84 (ddt, *J* = 16.8, 10.8, 5.6 Hz, 1H), 5.30 – 5.22 (m, 2H), 4.40 (ddt, 16.3, 5.0, 1.9, Hz, 1H), 4.32 (ddt, 16.3, 5.5, 1.3 Hz, 1H) 4.26-4.14 (m, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.43-3.41 (m, 1H), 125 (t, *J* = 7.1 Hz, m 3H).

¹³C NMR (125 MHz, CDCl₃): δ 171.2, 165.4, 164.8, 163.4, 144.0, 131.0, 128.8, 127.1, 122.1, 120.7, 117.9, 109.0, 61.9, 53.47, 53.28, 47.0, 43.0, 40.1, 37.4, 14.1 HRMS calcd for $C_{20}H_{22}O_7N$ [M+H]⁺ 388.1391, found 388.1389.

dimethyl 1'-acetyl-3-benzoyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2-dicarboxylate (5h)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (87 mg, 0.1 mmol, 1 equiv). Purification by flash chromatography through a column of silica gel (isocratic: 0.5% MeOH/CH₂Cl₂). Fractions containing the product were collected and concentrated by rotary evaporation and the resulting material dissolved in minimal CHCl₃ and passed through another column of silica (eluting sequentially with hexanes, followed by 10% EtOAc in hexanes, then 20% EtOAc in hexanes) led to the title compound to be isolated as a pale orange liquid which became of light yellow foam (106 mg, 83% yield) when placed under high vacuum. ¹H NMR analysis of this material showed 88:12 ratio between major and minor diastereomers.

 $R_f = 0.50$ (40% EtOAc in hexanes, UV active)

IR (ATR) 2945, 1742 (s), 1720 (s), 1689 (m), 1252 (s), 1164 (s) cm⁻¹. ¹H NMR (500 MHz; CDCl₃): δ 8.33-8.31 (m, 1H), 8.15 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.60 (dddd, *J* = 7.4, 1.2 Hz, 1H), 7.50 (dd, *J* = 7.8 Hz, 2H), 7.36 (ddd, *J* = 7.9, 1.3 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.15 (dd, *J* = 7.8 Hz, 1H), 4.08 (s, 1H), 3.87 (s, 3H), 3.68 (s, 3H), 2.68 (s, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 173.2, 170.2, 165.2, 163.2, 141.2, 136.4, 133.9, 129.2, 128.9, 128.4, 126.2, 124.6, 119.9, 116.1, 53.6, 53.4, 49.9, 41.6, 40.9, 26.8. HRMS calcd for C₂₃H₂₀O₇N [M+H]⁺ 422.1234; found 422.1233.

Dimethyl 1'-acetyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2,2-dicarboxylate (5i)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (79.0 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 10% then 20% EtOAc in hexanes) to recover a thick yellow oil (34mg) which partially foamed when placed under hi-vacuum. This material was a 94:6 mol ratio between the title compound (corrected yield 28%, 2:1 ratio of diastereomers) and tetraethyl ethene-1,1,2,2-tetracarboxylate.

R_f= 0.13 (20% EtOAc in hexanes, UV active) IR (ATR) 2954.2 (w), 1738.3 (s), 1715.6 (s), 1499.6 (w), 1463.2 (m), 1245.2 (s), 1523.0 (s), 1175.6 (s). Major diastereomer: ¹H (500 Hz, CDCl₃) δ 8.36 (d, J = 8.0 Hz, 1H), 7.42 – 7.25 (m, 6H), 7.21 (dd, J = 7.8, 7.8 Hz, 1H), 7.10 (d, J = 7.0 Hz, 1H), 4.28 (s, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 2.57 (s, 3H).

Minor diastereomer: ¹H (500 Hz, CDCl₃) δ 8.36 (d, J = 8.0 Hz, 1H), 7.42 – 7.25 (m, 6H), 6.99 (dd, J = 7.7 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 4.08 (s, 1H), 3.85 (s, 3H), 3.70 (s, 3H), 2.69 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 174.1, 171.1, 170.67, 170.49, 166.3, 165.5, 164.1, 163.9, 141.2, 140.8, 130.2, 130.0, 129.7, 129.5, 129.0, 128.7, 128.3, 128.04, 127.93, 127.77, 127.72, 125.0, 124.1, 123.8, 122.0, 120.7, 116.5, 116.0, 54.6, 53.9, 53.00, 52.88, 51.9, 50.3, 42.2, 41.8, 40.6, 40.1, 26.87, 26.72

HRMS calcd for $C_{22}H_{20}O_6N [M+H]^+$ 394.1285, found 394.1285.

dimethyl 1'-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2-dicarboxylate (5j)

Step 1: In a flame-dried round bottom flask equipped with a magnetic stir bar, 3-hydroxy-1methyl-3-((trimethylsilyl)methyl)indolin-2-one (235.4 mg, 1.0 mmol) was dissolved in CH₂Cl₂ (30 mL) and cooled to -78 °C, and BF₃•OEt₂ (1.5 mL, 1.725 g, 12.2 mmol) was added dropwise to the resulting solution. The reaction mixture was allowed to stir for 2 h at -78° C and then for 1 h at 0 °C and then quenched using a saturated solution of NaHCO₃ (20 mL) and diluted with dichloromethane (80 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (40 mL x 2) and the combined organic layers were dried over MgSO₄, filtered and concentrated to *near* dryness using a rotary evaporator.

Step 2: The resulting orange liquid was *immediately* transferred to a flame-dried 50 mL round bottom flask using anhydrous MeCN (10 mL) to assist in the transfer. To this flask, Bu₄NI (110 mg, 0.3 mmol, 30 mol%), ylide **1f** (334 mg, 10 mmol, 1.0 equiv), and PhI(OAc)₂ (322 mg, 10 mmol, 1.0 equiv) were sequentially added, and the resulting mixture was allowed to stir for 1 hour at ambient temperature. The reaction with quenched with a saturated solution of Na₂S₂O₃ (5 mL) and diluted with H₂O (10 mL). The organic layer was concentrated to approximately half its original volume and the biphasic mixture was extracted with CH₂Cl₂ (25 mL x 3). The combined organic layers were washed with brine, dried using MgSO₄, filtered and concentrated using rotary evaporation. The crude material was loaded onto a column of silica gel using a minimal amount of CHCl₃ and eluted by sequentially adding hexanes followed by 10%, 20%, 25% EtOAc in hexanes. Fractions containing the title compound were collected and concentrated to yield an orange solid (155 mg) containing a mixture of the title compound and tetramethyl ethene-1,1,2,2-tetracarboxylate in a 96:4 mol ratio. The corrected yield of the cyclopropane over the two steps is 145 mg (50% yield).

¹H NMR (500 MHz, CDCl₃) 7.36 – 7.30 (m, 2H), 7.02 (dd, J = 7.6 Hz, 1H), 6.89 (d, 7.8 Hz), 3.78 (s, 3H), 3.74 (s, 3H), 3.26 (s, 3H) 2.49 (d, J = 5.2 Hz), 2.45 (d, J = 5.2 Hz).

These data match those that have been reported previously in the literature.⁹

dimethyl 1'-acetyl-3,3-dicyano-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2-dicarboxylate (5k)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (71 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 10%, 20%, 30%, EtOAc in hexanes) led to the title compound to be isolated as slightly pink solid (56 mg, 51% yield)

M.P. 188 – 191 °C $R_f = 0.32$ (20% EtOAc in hexanes, UV active) ¹H NMR (500 MHz; CDCl₃): δ 8.40 (d, J = 7.8 Hz, 1H), 7.56 (dd J = 7.6 Hz, 1H), 7.40 (d, J = 7.0 Hz, 1H), 7.32 (dd, J = 7.6 Hz, 1H), 3.95 (s, 3H), 3.91 (s, 3H), 2.69 (s, 3H). ¹³C NMR (125MHz; CDCl₃): δ 169.7, 167.1, 159.4, 141.8, 132.0, 125.8, 124.3, 117.3, 116.2, 108.5, 108.0, 55.1, 54.8, 50.2, 44.3, 26.8, 22.9 IR (ATR) 2958 (w), 2259 (w), 1753 (s), 1739 (s), 1718 (s), 1465 (m), 1267 (s), 1174 (m) cm⁻¹. HRMS calcd for C₁₈H₁₄O₆N₃ [M+H]⁺ 368.0877; found 368.0879.

3-ethyl 2,2-dimethyl 1'-acetyl-5'-fluoro-2'-oxospiro[cyclopropane-1,3'-indoline]-2,2,3tricarboxylate (5l)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (83.2 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 5%, 10%, 15%, 20% EtOAc in hexanes) led to the title compound to be isolated as an orange liquid (117 mg, 96% yield) as a 3:1 mixture of diastereomers.

IR 2988 (w), 1733 (s), 1603 (w), 1476 (m), 1371 (m), 1254 (s), 1017 (m) cm⁻¹. ¹H NMR (500 MHz; CDCl₃): δ 8.31-8.28 (m, 1.4H), 7.21 (dd, J = 9.4, 2.6 Hz, 1H), 7.12 – 7.03 (m, 1.5H), 6.89 (dd, J = 8.4, 2.4 Hz, 0.4H), 4.25-4.19 (m, 3H), 3.83 (s, 1H), 3.81 (s, 6H), 3.73 (s, 1H), 3.64 (s, 0.3), 3.43 (s, 1H), 2.65 (s, 1H), 2.61 (s, 3H), 1.31-1.22 (m, 4H). ¹³C NMP (125 MHz, CDCh) δ 172 5, 170 2, 169 97, 169 95, 164 4, 164 1, 164 0, 163 4, 162 50

¹³C NMR (125 MHz, CDCl₃) δ 172.5, 170.2, 169.97, 169.95, 164.4, 164.1, 164.0, 163.4, 162.50, 162.47, 159.8 (d, ¹*J* = 244.6 Hz), 159.4 (d, ¹*J* = 242.9), 137.3 (d, ⁴*J* = 2.4 Hz), 137.0 (d, ⁴*J* = 2.7 Hz), 124.3 (d, ³*J* = 10.0 Hz), 121.8 (d, ³*J* = 10.0 Hz), 117.9 (d, ³*J* = 8.2 Hz), 117.2 (d, ³*J* = 8.2 Hz), 116.0 (d, ²*J* = 22.7 Hz), 115.8 (d, ²*J* = 23.0 Hz), 114.2 (d, ²*J* = 27.5 Hz), 109.3 (d, ³*J* = 26.7 Hz), 62.3, 62.1, 54.1, 53.7, 53.6, 53.3, 49.9, 48.0, 40.4, 39.2, 38.4, 37.4, 26.7, 26.4, 14.0.

¹⁹F (470 MHz, CDCl₃) -115.89 (minor), -116.45 (major). HRMS calcd for $C_{19}H_{19}O_8NF [M+H]^+$ 408.1089; found 408.1089.

3'-ethyl 2',2'-dimethyl 2-oxo-2H-spiro[benzofuran-3,1'-cyclopropane]-2',2',3'-tricarboxylate (5m)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (65.5 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with pure hexanes followed by 10%, 20%, 30%, 40% EtOAc in hexanes) led to the major isomer of the title compound to be isolated as a yellow oil (65 mg, 62% yield) and the minor isomer of the title compound in 21% yield.

 $R_f = 0.25$ (20% EtOAc in Hexanes, UV active)

IR (ATR) 2956 (w), 1802.9 (m), 1757 (s), 1728 (s), 1431 (m), 1256 (s), 159 (s), 1071 (s) cm⁻¹. ¹H NMR (500 MHz; CDCl₃): δ 7.43 (d, *J* = 7.8 Hz, 1H), 7.37 (dd, *J* = 7.8 Hz, 1H), 7.17-7.12 (m, 2H), 4.22-4.17 (m, 2H), 3.81 (d, *J* = 1.4 Hz, 6H), 3.45 (s, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 171.9, 164.5, 163.7, 162.5, 154.5, 129.8, 127.3, 123.9, 119.5, 110.7, 62.2, 53.8, 53.4, 47.2, 38.18, 38.12, 14.0. HRMS calcd for C₁₇H₁₇O₈ [M+H]⁺ 349.0918; found 349.0918.

Dimethyl 3,3-dicyano-1',3'-dioxo-1',3'-dihydrospiro[cyclopropane-1,2'-indene]-2,2-dicarboxylate (5n)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (62.4 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 10%, 20%, 40%, EtOAc in hexanes) led to the title compound to be isolated a thick orange liquid (36 mg, 35% yield)

 $\begin{array}{l} R_{\rm f} = 0.22 \; (40\% \; EtOAc \; in \; heaxnes, UV \; active) \\ IR \; (ATR) \; 2195.2 \; (w), \; 2252.6 \; (w), \; 1741.4 \; (s), \; 1715.8 \; (s), \; 1591.6 \; (w), \; 1436.0 \; (m), \; 1239.7 \; (s). \\ {}^{1}{\rm H} \; (500 \; MHz, \; CDCl_3) \; 8.13 - 8.00 \; (m, \; 4H), \; 3.93 \; (s, \; 6H). \\ {}^{13}{\rm C} \; {\rm NMR} \; (125 \; {\rm MHz}, \; CDCl_3) \; \delta \; 185.9, \; 158.5, \; 141.6, \; 137.3, \; 124.5, \; 107.7, \; 55.0, \; 49.8, \; 444, \; 20.4 \\ {\rm HRMS} \; (ESI) \; calcd \; for \; C_{17}{\rm H}_{11}{\rm O_6N_2} \; [{\rm M} {\rm +H]}^+ \; 339.06226, \; found \; 339.06119 \\ \end{array}$

Dimethyl 6,6-dimethyl-4,8-dioxo-2-phenyl-5,7-dioxaspiro[2.5]octane-1,1-dicarboxylate (50)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (70 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 10%, 20%,40%, EtOAc in hexanes) led to the title compound to be isolated a white solid (80 mg, 74% yield).

$$\begin{split} \text{M.P.} &= 135 - 137 \ ^{\circ}\text{C} \\ \text{R}_{f} &= 0.48(40\% \ \text{EtOAc in hexanes, UV active}) \\ \text{IR (ATR) 2970.2 (w), 1735 (s), 1434 (w), 1332.9 (m) 1230.2 (m), 1081.2 (m) \ \text{cm}^{-1}. \\ ^{1}\text{H NMR (500 \ MHz, CDCl_{3})} \ \delta \ 7.40 - 7.34 (m, 5\text{H}), 4.41 (s, 1\text{H}), 3.88 (s, 3\text{H}), 3.80 (s, 3), 2.07 (s, 3\text{H}), 1.86 (s, 3\text{H}). \\ ^{13}\text{C NMR (125 \ MHz, CDCl_{3})} \ \delta \ 165.1, 164.1, 162.1, 161.4, 129.5, 129.3, 128.0 (2C), 105.9, 54.2, \\ 53.7, 53.6, 43.9, 36.5 2, 27.63, 27.57. \\ \text{HRMS calcd for $C_{18}\text{H}_{19}\text{O}_8 \ \text{[M+H]}^{+} 363.1074, \text{ found } 363.1075. \end{split}$$

Dimethyl 2,7-dioxo-1a-(tosyloxy)-1a,2,7,7a-tetrahydro-1H-cyclopropa[b]naphthalene-1,1-dicarboxylate (5p)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (98.5 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 10%, 20%,40%, EtOAc in hexanes) led to the title compound to be isolated a yellow-orange foam (109 mg, 79% yield).

 $R_f = 0.30$ (40% EtOAc in Hexanes, UV active)

IR (ATR)2958.0 (w), 1753.5 (s), 1740.5 (m), 1693.0 (s), 1594.7 (m), 1246.0 (s), 1180.1 (s), 1077.3 (s)

¹H NMR (500 MHz, CDCl₃): δ 8.13 (d, J = 8.9 Hz, 1H), 8.03 (d, J = 6.6 Hz, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.78-7.76 (m, 2H), 7.38 (d, J = 8.1 Hz, 2H), 4.03 (s, 1H), 3.75 (s, 3H), 3.20 (s, 3H), 2.47 (s, 3H).

¹³C (125 MHz, CDCl₃) δ 185.7, 183.9, 162.1, 161.5, 146.0, 134.83, 134.78, 133.0, 132.2, 131.5, 129.8, 128.5, 127.3, 126.9, 68.3, 54.2, 53.4, 47.9, 40.9, 21.8.

HRMS (ESI) calcd for $C_{22}H_{19}O_9S$ [M+H]⁺ 459.0744, found 459.0743.

Dimethyl 2,4-dioxo-3-phenyl-3-azabicyclo[3.1.0]hexane-6,6-dicarboxylate (5q)

Synthesized according to **GP3** using 0.3 mmol of ylide and 0.3 mmol of alkene (52.0 mg, 0.3 mmol, 1 equiv). Purification by gradient flash chromatography through a column of silica gel (sequentially eluting with 10%, 20%,40%, EtOAc in hexanes) led to the title compound to be isolated a white solid (25 mg, 27% yield). An analytical sample of this material was obtained by triturating this material using Et_2O .

 $R_f = 0.49$ (40% EtOAc in hexanes, UV active)

 $M.P. = 176 - 178 \ ^{\circ}C$

IR (ATR) 3078.5 (w), 1724.2 (s), 1256.1 (s), 1160.5 (m).

¹H NMR (500 MHz; CDCl₃) δ 7.44 (t, *J* = 7.5 Hz, 2H), 7.42 (s, 2H), 7.39-7.36 (m, 1H), 7.39-7.36 (m, 1H), 7.17 (d, *J* = 7.2 Hz, 2H), 7.17 (d, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 3.78 (s, 3H), 3.26 (s, 2H), 3.26 (s, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 168.7, 165.5, 164.0, 130.9, 129.2, 128.8, 126.0, 54.09, 53.99, 44.3, 31.2.

HRMS (ESI) calcd for $C_{15}H_{14}NO_6 [M+H]^+$ 304.08156, found 304.08151.

- 1. Schank, K.; Lick, C. Synthesis 1983, 1983, 392-395.
- 2. Buckles, R. E.; Yuk, J. P. J. Am. Chem. Soc. 1953, 75, 5048-5052.
- 3. Xu, X.; Wang, X.; Zavalij, P. Y.; Doyle, M. P. Org. Lett. 2015, 17, 790-793.
- 4. Tao, J.; Tuck, T. N.; Murphy, G. K. Synthesis 2016, 48, 772-782.
- 5. Marcoux, D.; Charette, A. B. Angew. Chem. Int. Ed. Engl. 2008, 47, 10155-10158.
- For 2e see Müller, P.; Bernardinelli, G.; Allenbach, Y. F.; Ferri, M.; Flack, H. D. Org. Lett. 2004, 6, 1725–1728. For 2f see Nishimura, T.; Maeda, Y.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49, 7324. For 2h see Bosnidou, A.-E.; Kalpogiannaki, D.; Karanestora, S.; Nixas, J. A.; Hadjiarapoglou, L. P. J. Org. Chem. 2015, 80, 1279. For 2k see Qian, P.; Du, B.; Song, R.; Wu, X.; Mei, H.; Han, J.; Pan, Y. J. Org. Chem. 2016, 81, 6546.
- 7. Xia, L.; Lee, Y. R. Adv. Synth. Catal. 2013, 355, 2361-2374.
- Liu, Y.-Y.; Duan, S.-W.; Zhang, R.; Liu, Y.-H.; Chen, J.-R.; Xiao, W.-J. Org. Biomol. Chem. 2016, 14, 5224-5228.
- 9. Wilson, E. E.; Rodriguez, K. X.; Ashfeld, B. L. Tetrahedron 2015, 71, 5765-5775.
- 10. Guo, J.; Liu, Y.; Li, X.; Liu, X.; Lin, L.; Feng, X., Chem. Sci. 2016, 7, 2717.

¹H and ¹³C NMR Spectra

proton 16 scans

Precursor to 1b

C-13 proton Decoupled

OH O |、 ∥ 0 0 II Ph Ph O

Precursor to 1b

4.81

proton 16 scans

Ph IPh IPh IPh

proton 16 scans

-12.56

O Ph 0 он о Ph⁻ `OBn `OBn

Precursor to 1c

C-13 proton Decoupled

Precursor to 1c

proton 16 scans

4.97

C-13 proton Decoupled

66.39

4.10

proton 16 scans

Precursor to 1d

C-13 proton Decoupled

Precursor to 1d

proton 16 scans

C-13 proton Decoupled

-77.63

proton 16 scans

12 16 16 12	20 10 10 10 10 10 10 10 10 10 10 10 10 10
54 47 45	23 23 23 23 23

,Cl 0 0 **2n** 64% yield Alapar Argentines. a de ser a la característica de la característica de la característica de la característica de la característic SI-40

200

Ó

61.85

53.41 53.23 47.08 44.30 44.30 37.30 14.00

2.68

F19 Decoupled

8.12

proton 16 scans

3.93

proton 16 scans

54.27 53.74 53.62 43.96 36.59 27.70

C-13 proton Decoupled

proton 16 scans

proton 16 scans

