Supporting information for

pH-sensitive Metal-free Carbon Monoxide Prodrugs with Tunable and Predictable Release Rates

Xingyue Ji, a Ladie Kimberly C. De La Cruz, a Zhixiang Pan, Vayou Chittavong, a and Binghe Wang **

Department of Chemistry and Center for Diagnostics and Ther-apeutics, Georgia State University Atlanta, GA 30303 (USA)

*E-mail:wang@gsu.edu

Table of contents

I. Chemistry	
1.1 Chemical synthesis	S2
1.2 Determination of the stereochemistry of DA reaction product	S9
1.3 Stability of BW-CO-201 in CDCl ₃	S10
1.4 CO-myoglobin assay	S11
1.5 CO release kinetics	S12
1.6 CO release kinetics of BW-CO-203 in different pH buffer solutions	S16
II Biology	
2.1 Cytotoxicity studies	S16
2.2 Anti-inflammatory effects	S18
2.3 Fluorescent cell imaging of CO release	S18
2.4 Fluorescence quantification in Raw 264.7 cells	S19
III. NMR spetra	S19
IV. References	S45

I. Chemistry

1.1 Chemical synthesis

General information: All reagents and solvents were of reagent grade. Column chromatography was carried out using flash silica gel (Sorbent 230–400 mesh) and P-2 Gel (Bio-Gel, particle size range 45- 90 μ m). TLC analyses were conducted on silica gel plates (Sorbent Silica G UV254). NMR spectra were recorded at 400 MHz for ¹H and 100 MHz for ¹³C on an Avance Bruker instrument. Chemical shifts (δ values) and coupling constants (J values) are given in ppm and hertz, respectively, using the respective solvent (¹H NMR, ¹³C NMR) or TMS as the internal reference.

Scheme 1. The synthesis of metal free CO prodrugs. Reagents and conditions: a) K_2CO_3 , H_2O , r.t., overnight, 40-92%; b) DIBAL, CH_2Cl_2 , -78 °C, 1-2 h, 75%-80%; c) DIPEA, MOMCl, CH_2Cl_2 , r.t., 3 h, 85-90%; d) xylene, 170 °C, 12 h; then HCl, MeOH, reflux, 1h, 50-60%; e) CH_2Cl_2 , PCC, reflux, 30 min-1h, 60-73%.

General procedure for the synthesis of compounds 1a-e

To a solution of substituted phenol (1 equiv.) and K_2CO_3 (1.1 equiv.) in water (30 mL), was added methyl propiolate (1 equiv.) dropwise at room temperature. The resulting mixture was stirred at room temperature overnight, and then extracted with ethyl acetate (3 × 40 mL). The combined organic layers were washed with 5% of NaOH and brine successively, and dried over anhydrous Na₂SO₄. After filtration and concentration, the obtained residue was purified on a silica gel column to afford the title compounds. **1a** ¹ (colorless oil, yield: 90%): ¹H NMR (CDCl₃): δ 7.31 (t, J = 8.0 Hz, 2H), 7.10 (t, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 6.9 Hz, 1H), 5.20 (d, J = 6.9 Hz, 1H), 3.80 (s, 3H).

1b (white solid, without purification, yield: 40%): ¹H NMR (CDCl₃) δ 8.31 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 6.9 Hz, 1H), 5.39 (d, J = 6.9 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (CDCl₃): δ 164.4, 160.9, 150.9, 144.3, 126.0, 117.5, 102.9, 51.5. HRMS (ESI)⁺ calculated for C₁₀H₉NO₅Na [M+Na]⁺: m/z 246.0378, found 246.0367.

1c (colorless oil, yield: 92%): ¹H NMR (CDCl₃): δ 7.12-7.00 (m, 4H), 6.82 (d, J = 6.9 Hz, 1H), 5.19 (d, J = 7.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (CDCl₃): δ 165.4, 154.6, 119.2, 119.1, 116.6, 116.3, 116.2, 116.2, 115.8, 115.6, 99.6, 51.3. HRMS (ESI)⁺ calculated for C₁₀H₉FO₃Na [M+Na]⁺: m/z 219.0433, found 219.0430.

1d (colorless oil, yield: 80%): ¹H NMR (CDCl₃): δ 7.33 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 6.8 Hz, 1H), 5.21 (d, J = 6.8 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃): δ 164.9, 155.6, 153.6, 130.0, 129.9, 119.0, 100.4, 51.3. HRMS (ESI)⁺ calculated for C₁₀H₉ClO₃Na [M+Na]⁺: m/z 235.0138, found 235.0128.

1e (colorless oil, yield: 85%): ¹H NMR (CDCl₃) δ 7.04-7.02 (m, 2H), 6.89-6.86 (m, 2H), 6.75 (d, J = 7.2 Hz, 1H), 5.03 (d, J = 6.8 Hz, 1H), 3.62 (s, 3H), 2.21 (s, 3H). ¹³C NMR (CDCl₃) δ 164.8, 154.9, 154.5, 134.0, 130.0, 117.1, 98.7, 50.7, 20.3. HRMS (ESI)⁺ calculated for C₁₁H₁₂O₃Na [M+Na]⁺: m/z 215.0684, found 215.0679.

General procedure for the synthesis of compounds 2a-e

To a solution of **1a-e** (1 equiv.) in dry CH_2Cl_2 (50 mL) was added DIBAL (2.8 equiv.) dropwise under N₂ at -78 °C. The resulting reaction mixture was stirred for another 1 h at -78 °C. before being was poured into saturated Rochelle salt solution (50 mL) carefully. The resulting mixture was stirred for another 30 min at room temperature. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 40 mL). The combined organic layer was washed with brine, and dried over anhydrous Na₂SO₄. After filtration and concentration, the obtained residue was purified on a silica gel column to afford the title compound. **2a** (colorless oil, yield: 75%). ¹H NMR (CDCl₃): δ 7.35 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.3 Hz, 1H), 7.03 (d, J = 8.0 Hz, 2H), 6.51 (d, J = 6.1 Hz, 1H), 5.11 (dd, J = 13.2, 6.6 Hz, 1H), 4.41 (dd, J = 6.8, 1.0 Hz, 2H). ¹³C NMR (CDCl₃): δ 157.1, 142.5, 129.7, 123.2, 116.5, 111.1, 56.3. HRMS (ESI)⁺ calculated for C₁₀H₉O₂Na [M+Na]⁺: m/z 173.0578, found 173.0571.

2b (colorless oil, yield: 78%): ¹H NMR (CDCl₃): δ 8.22 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.53 (d, *J* = 6.1 Hz, 1H), 5.29 (q, *J* = 8.0 Hz, 1H), 4.40 (t, *J* = 5.5 Hz, 2H), 1.94 (t, *J* = 5.4 Hz, 1H). ¹³C NMR (CDCl₃): δ 161.5, 143.04, 140.1, 126.0, 116.1, 114.5, 56.0. HRMS (ESI)⁺ calculated for C₉H₉NO₄Na [M+Na]⁺: m/z 218.0419, found 218.0429.

2c (colorless oil, yield: 80%): ¹H NMR (CDCl₃): δ 7.07-6.84 (m, 4H), 6.39 (d, J = 6.1 Hz, 1H), 5.07 (q, J = 6.8 Hz, 1H), 4.37 (t, J = 5.6 Hz, 2H), 2.31 (s, 1H). ¹³C NMR (CDCl₃) δ 159.9, 157.5, 153.2, 142.7, 117.9, 117.8, 116.3, 116.0, 111.1, 56.0. HRMS (ESI)⁺ calculated for C₉H₉FO₂Na [M+Na]⁺: m/z 191.0484, found 191.0491.

2d (colorless oil, yield: 76%): ¹H NMR (CDCl₃): δ 7.28 (t, J = 9.2 Hz, 2H), 6.95 (d, J = 9.2 Hz, 2H), 6.43 (d, J = 6.0 Hz, 1H), 5.12 (q, J = 6.8 Hz, 1H), 4.38 (t, J = 5.6 Hz, 2H), 1.81 (t, J = 5.6 Hz, 1H). ¹³C NMR (CDCl₃): δ 155.6, 142.1, 129.7, 128.2, 117.8, 111.7, 56.2. HRMS (ESI)⁺ calculated for C₉H₉ClO₂Na [M+Na]⁺: m/z 207.0189, found 207.0195.

2e (colorless oil, yield: 80%): ¹H NMR (CDCl₃) δ 7.12-7.10 (m, 2H), 6.91-6.89 (m, 2H), 6.42 (d, 1H), 5.09-5.04 (m, 1H), 4.42-4.40 (m, 2H), 3.33-3.00 (brs, 1H), 2.32 (s, 3H). ¹³C NMR (CDCl₃) δ 155.0, 142.4, 132.4, 130.0, 116.3, 110.6, 55.8, 20.5. HRMS (ESI)+ calculated for C₁₀H₁₂O₂Na [M+Na]⁺: m/z 187.0735, found 187.0733.

The general procedure for the synthesis of compounds 5a-e

To a solution of **2a-e** (1 equiv.) and DIPEA (1.6 equiv.) in dry CH_2Cl_2 (30 mL) was added MOMC1 (1.5 equiv.) dropwise at room temperature, and the resulting solution was stirred for another 3 h at

room temperature. Then the reaction mixture was washed with water and brine, and was dried over anhydrous Na₂SO₄. After filtration and concentration, the obtained residue was purified on a silica gel column to afford the title compound as colorless oil.

5a (colorless oil, yield: 90%): ¹H NMR (CDCl₃): δ 7.38 – 7.30 (m, 2H), 7.10 (t, *J* = 8.0 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.55 (dt, *J* = 6.1, 1.3 Hz, 1H), 5.05 (dd, *J* = 13.2, 6.9 Hz, 1H), 4.71 (s, 2H), 4.34 (dd, *J* = 7.0, 1.1 Hz, 2H), 3.42 (s, 3H). ¹³C NMR (CDCl₃): δ 157.2, 143.1, 129.7, 123.1, 116.6, 108.2, 95.9, 60.5, 55.3.

5b (colorless oil, yield: 85%):¹H NMR (CDCl₃): δ 8.24 (d, J = 8.0Hz, 2H), 7.10 (d, J = 8.0Hz, 2H), 6.58 (dd, J = 6.1, 0.9 Hz, 1H), 5.26 (q, J = 6.3 Hz, 1H), 4.67 (s, 2H), 4.32 (d, J = 6.8 Hz, 2H), 3.39 (d, J = 2.0 Hz, 3H). ¹³C NMR (CDCl₃): δ 161.5, 143.1, 140.7, 126.0, 116.2, 112.0, 96.0, 60.2, 55.3. HRMS (ESI)⁺ calculated for C₁₁H₁₃NO₅Na [M+Na]⁺: m/z 262.0691, found 262.0701.

5c (colorless oil, yield: 87%): ¹H NMR (CDCl₃): δ 7.08- 6.87 (m, 4H), 6.45 (dt, J = 6.4, 1.2 Hz, 1H), 5.08-4.97 (m, 1H), 4.69 (s, 2H), 4.31 (dd, J = 7.2, 1.2 Hz, 2H), 3.40 (s, 3H). ¹³C NMR (CDCl₃): δ 159.8, 157.5, 153.3, 143.4, 117.9, 117.8, 116.2, 116.0, 108.3, 95.9, 60.3, 55.2. HRMS (ESI)⁺ calculated for C₁₁H₁₃FO₃Na [M+Na]⁺: m/z 235.0746, found 235.0747.

5d (colorless oil, yield: 90%): ¹H NMR (CDCl₃): δ 7.28 (d, J = 6.8 Hz, 2H), 6.95 (d, J = 6.8 Hz, 2H), 6.47 (d, J = 6.4 Hz, 1H), 5.08 (q, J = 7.2 Hz, 1H), 4.69 (s, 2H), 4.31 (d, J = 6.8 Hz, 2H), 3.40 (s, 3H). ¹³C NMR (CDCl₃): δ 155.7, 142.7, 129.6, 128.1, 117.8, 109.0, 95.9, 60.3, 55.3. HRMS (ESI)⁺ calculated for C₁₁H₁₃ClO₃Na [M+Na]⁺: m/z 251.0451, found 251.0461.

5e (colorless oil, yield:88%): ¹H NMR (CDCl₃): δ 7.10 (d, J = 8.4 Hz, 2H), 6.92-6.89 (m, 2H), 6.49 (dt, J = 6.4, 1.2 Hz, 1H), 5.02-4.97 (m, 1H), 4.68 (s, 2H), 4.33(dd, J = 6.8, 1.2 Hz, 2H), 3.40 (s, 3H), 2.31 (s, 3H). ¹³C NMR (CDCl₃): δ 155.1, 143.5, 132.4, 130.0, 116.4, 107.5, 95.8, 60.4, 55.1, 20.5. HRMS (ESI)⁺ calculated for C₁₂H₁₆O₃Na [M+Na]⁺: m/z 231.0997, found 231.1001.

General procedure for the synthesis of compounds 6a-e

A solution of **5a-e** (6 equiv.) and dienone compound **3** (1 equiv.) in xylene (2 mL) was heated to 170-180 °C in a sealed tube for 12 h. Then the reaction mixture was concentrated under vacuum, and the obtained residue was purified on a silica gel column (hexane/ether = 10:1) to afford a yellowish oil, which was dissolved in MeOH (5 mL) containing 1 mL of HCl aqueous solution (37%). The resulting solution was heated under reflux for 1 h. Then the reaction mixture was concentrated, and the obtained residue was taken up with ethyl acetate (40 mL). The organic layer was then washed with brine, and was dried over anhydrous Na₂SO₄. After filtration and concentration, the obtained residue was purified on a silica gel column to afford the title compound.

6a (white solid, yield: 50%): ¹H NMR (CDCl₃): δ 7.38-7.31 (m, 2H), 7.25-7.21 (m, 8H), 7.15-7.12 (m, 2H), 7.04-7.01 (m, 3H), 5.08 (d, *J* = 8.5 Hz, 1H), 4.01-3.96 (m, 1H), 3.88-3.82 (m, 1H), 2.78-2.66 (m, 1H), 1.47 (s, 3H), 1.32 (s, 3H). ¹³C NMR (CDCl₃): δ 203.5, 159.1, 141.4, 134.8, 130.0, 129.9, 129.7, 128.2, 127.9, 127.2, 127.2, 121.9, 115.6, 81.9, 60.0, 57.1, 52.7, 12.1, 11.0. HRMS (ESI)⁺ calculated for C₂₈H₂₆O₃Na [M+Na]⁺: m/z 433.1780, found 433.1767.

6b (yellowish solid, yield: 51%): ¹H NMR (CDCl₃): δ 8.23 (d, *J* = 8.0 Hz, 2H), 7.28-7.22 (m, 6H), 7.19-7.05 (m, 6H), 5.17 (d, *J* = 8.0 Hz, 1H), 3.95-3.82 (m, 2H), 2.80 (q, *J* = 8.0 Hz, 1H), 1.48 (s, 3H), 1.34 (s, 3H). ¹³C NMR (CDCl₃): δ 202.5, 164.1, 142.1, 141.8, 141.0, 134.6, 134.5, 129.9, 129.6, 128.3, 128.0, 127.5, 127.4, 126.1, 115.5, 82.7, 59.9, 59.6, 57.2, 52.3, 12.1, 11.0. HRMS (ESI)⁺ calculated for C₂₈H₂₅NO₅Na [M+Na]⁺: m/z 478.1630, found 478.1630.

6c (white solid, yield: 60%): ¹H NMR (CDCl₃): δ 7.27-7.16 (m, 8H), 7.16-7.09 (m, 2H), 7.02-6.91 (m, 4H), 4.98 (d, *J* = 8.4 Hz, 1H), 4.02-3.97 (m, 1H), 3.92-3.79 (m, 1H), 2.77-2.71 (m, 1H), 1.45 (s, 3H), 1.31 (s, 3H). ¹³C NMR (CDCl₃): δ 203.3, 159.0, 156.6, 155.3, 155.3, 141.5, 141.1, 134.9, 134.7, 130.0, 129.7, 128.2, 127.9, 127.3, 127.2, 117.0, 116.9, 116.4, 116.1, 83.2, 60.0, 60.0, 57.0, 52.6, 12.0, 11.1. HRMS (ESI)⁺ calculated for C₂₈H₂₅FO₃Na [M+Na]⁺: m/z 451.1685, found 451.1695.

6d (white solid, yield: 55%): ¹H NMR (CDCl₃): δ 7.28-7.20 (m, 8H), 7.20- 7.15 (m, 2H), 7.15-7.10 (m, 2H), 6.98- 6.87 (m, 2H), 5.01 (d, *J* = 8.4 Hz, 1H), 3.99-3.93 (m, 1H), 3.89-3.83 (m, 1H), 2.77-2.71 (m, 1H), 1.46 (s, 3H), 1.31 (s, 3H). ¹³C NMR (CDCl₃): δ 203.2, 157.7, 141.5, 141.2, 134.8, 134.7, 130.8, 130.0, 129.7, 129.7, 128.2, 127.9, 127.3, 127.3, 126.8, 119.4, 117.0, 82.6, 60.0, 59.9, 57.1, 52.5, 12.1, 11.0. HRMS (ESI)⁺ calculated for $C_{28}H_{25}ClO_3Na$ [M+Na]⁺: m/z 467.1390, found 467.1374.

6e (white solid, yield: 54%): ¹H NMR (CDCl₃) δ 7.26-7.19 (m, 8H), 7.13-7.09 (m, 4H), 6.91 (m, 2H), 5.02 (d, *J* = 8.0 Hz, 1H), 4.01-3.79 (m, 2H), 2.73-2.71 (m, 1H), 2.30 (s, 3H), 2.28 (s, 1H), 1.44 (s, 3H), 1.30 (s, 3H). ¹³C NMR (CDCl₃) δ 203.8, 157.1, 141.5, 141.4, 135.0, 131.4, 130.4, 130.1, 129.8, 128.2, 128.0, 127.3, 127.2, 115.5, 82.2, 60.1, 57.1, 52.8, 20.6, 12.2, 11.1.

General procedure for the synthesis of BW-CO-201-205

A mixture of **6a-f** (1 equiv.) and PCC (4 equiv.) in CH_2Cl_2 (20 mL) was heated under reflux for 30 min. Then the reaction mixture was filtered through a short ($\emptyset = 2 \text{ cm}$, L = 2 cm) silica gel column under reduced pressure, and the obtained filtrate was dried directly to afford the title compound as white solid.

BW-CO-201 (white solid, yield: 60%): ¹H NMR (CDCl₃): δ 9.63 (d, J = 4.8 Hz, 1H), 7.34-7.27 (m, 5H), 7.24-7.21 (m, 5H), 7.08-6.99 (m, 3H), 6.98-6.89 (m, 2H), 5.13 (d, J = 8.1 Hz, 1H), 3.14 (dd, J = 8.1, 4.8 Hz, 1H), 1.43 (s, 3H), 1.41 (s, 3H). ¹³C NMR (CDCl₃): δ 200.3, 200.1, 157.2, 142.4, 140.1, 134.4, 134.1, 130.0, 129.7, 128.3, 128.0, 127.6, 127.6, 122.4, 115.4, 82.1, 60.9, 59.8, 58.1, 11.5, 10.5. HRMS (ESI)⁺ calculated for C₂₈H₂₄O₃Na [M+Na]⁺: m/z 431.1623, found 431.1620.

BW-CO-202 (white solid, yield: 65%): ¹H NMR (CDCl₃): δ 9.62 (d, J = 4.8 Hz, 1H), 8.24 (d, J = 8.0 Hz, 2H), 7.32-7.28 (m, 4H), 7.27-7.18 (m, 4H), 7.10-6.89 (m, 4H), 5.23 (d, J = 8.0 Hz, 1H), 3.23 (dd, J = 8.0, 4.8 Hz, 1H), 1.45 (s, 3H), 1.44 (s, 3H). ¹³C NMR (CDCl₃): δ 199.1, 199.1, 162.0, 142.7, 141.8, 140.7, 136.1, 134.0, 133.7, 131.3, 129.8, 129.7, 128.5, 128.2, 127.9, 126.2, 115.4, 83.1, 60.8, 59.8, 58.0, 11.5, 10.6. HRMS (ESI)⁺ calculated for C₂₈H₂₃NO₅Na [M+Na]⁺: m/z 476.1474, found 476.1479.

BW-CO-203 (white solid, yield: 73%): ¹H NMR (CDCl₃): δ 9.66 (d, J = 5.2 Hz, 1H), 7.28-7.19 (m, 7H), 7.04-6.98 (m, 5H), 6.88 (dd, J = 9.2, 4.2 Hz, 2H), 5.06 (d, J = 8.0 Hz, 1H), 3.14 (dd, J =

8.0, 4.8 Hz, 1H), 1.43 (s, 3H), 1.42 (s, 3H). ¹³C NMR (CDCl₃): δ 200.1, 200.0, 159.3, 156.9, 153.5, 142.2, 140.3, 134.3, 134.0, 129.9, 129.7, 128.4, 128.1, 127.7, 127.6, 116.7, 116.7, 116.6, 116.3, 83.3, 61.0, 59.9, 58.0, 11.5, 10.6. HRMS (ESI)⁺ calculated for C₂₈H₂₃FO₃Na [M+Na]⁺: m/z 449.1529, found 449.1529.

BW-CO-204 (white solid, yield: 70%): ¹H NMR (CDCl₃): δ 9.64 (d, J = 4.8 Hz, 1H), 7.30-7.20 (m, 10H), 7.04-7.02 (m, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.09 (d, J = 8.0 Hz, 1H), 3.15 (dd, J = 8.4, 4.8 Hz, 1H), 1.43 (s, 3H), 1.42 (s, 3H). ¹³C NMR (CDCl₃): δ 199.9, 199.9, 155.9, 142.2, 140.3, 134.3, 134.0, 129.9, 129.9, 129.7, 128.4, 128.1, 127.69, 127.7, 127.5, 116.7, 82.8, 60.9, 59.8, 58.0, 11.5, 10.6. HRMS (ESI)⁺ calculated for C₂₈H₂₃ClO₃Na [M+Na]⁺: m/z 465.1233, found 465.1248.

BW-CO-205 (white solid, yield: 63%): ¹H NMR (CDCl₃): δ 9.63 (d, J = 4.9 Hz, 1H), 7.28-7.21 (m, 8H), 7.11 (d, J = 8.2 Hz, 2H), 7.04-7.01 (m, 2H), 6.84 (d, J = 8.2 Hz, 2H), 5.09 (d, J = 8.4 Hz, 1H), 3.13 (dd, J = 8.1, 4.9 Hz, 1H), 2.31 (s, 3H), 1.43 (s, 3H), 1.41 (s, 3H). ¹³C NMR (CDCl₃): δ 200.4, 200.2, 155.1, 142.4, 140.0, 134.4, 134.1, 131.8, 130.4, 130.0, 129.7, 128.3, 128.0, 127.6, 127.5, 115.2, 82.3, 60.9, 59.8, 58.1, 20.5, 11.5, 10.5. HRMS (ESI)⁺ calculated for C₂₉H₂₆O₃Na [M+Na]⁺: m/z 445.1780, found 445.1788.

Preparation of the inactive control product

A solution of **BW-CO-201-205** (10 mg) in CH₃CN/PBS (10 mL, 2:1) was incubated at 37 °C overnight. Then the reaction mixture was extracted with ethyl acetate (3×30 mL). The combine organic layer was washed with 5% NaOH and brine, and was dried over anhydrous Na₂SO₄. After filtration and concentration, the obtained residue was purified on a silica gel column to afford

compound 7 as a white solid (yield: 90%). ¹H NMR (CDCl₃): δ 10.42 (s, 1H), 7.79 (s, 1H), 7.19-7.11 (m, 6H), 6.95-6.92 (m, 4H), 2.40 (s, 3H), 2.16 (s, 3H). ¹³C NMR (CDCl₃): δ 192.9, 147.3, 143.5, 139.9, 139.6, 136.3, 134.3, 133.3, 131.8, 130.1, 129.2, 127.7, 127.6, 126.4, 126.3, 20.7, 16.3. HRMS (ESI)⁺ calculated for C₂₁H₁₈ONa [M+Na]⁺: m/z 309.1255, found 309.1243.

A solution of **3** and **1a** in toluene was heated under reflux for 2 h. Then the reaction mixture was dried directly under vacuum, and the obtained residue was purified on a silica gel column to afford compound **4** as a white solid. ¹H NMR (CDCl₃) δ 9.78 (d, *J* = 1.7 Hz, 1H), 7.27-7.14 (m, 6H), 7.11-6.97 (m, 2H), 6.94-6.79 (m, 2H), 3.05-3.01 (m, 1H), 2.47 (dd, *J* = 12.5, 5.1 Hz, 1H), 1.99 (dd, *J* = 12.5, 9.3 Hz, 1H), 1.57 (s, 3H), 1.33 (s, 3H). ¹³C NMR (CDCl₃) δ 204.0, 200.8, 144.7, 139.2, 133.9, 133.8, 129.8, 129.0, 128.2, 128.1, 127.5, 127.4, 100.0, 55.8, 54.8, 52.8, 31.7, 12.1, 11.8. HRMS (ESI)⁺ calculated for C₂₂H₂₀O₂Na [M+Na]⁺: m/z 339.1361, found 339.1375.

1.2 The determination of the stereochemistry of the DA reaction product

Figure S1. The HMBC spectrum of 6a in CDCl₃

The DA reaction between **5a-e** and **3** yielded product **6a-e** predominantly as *endo* form, which was confirmed by HMBC experiment (O=C-C-C-Ha).² The specific example used for illustration is **6a.** No correlation between the carbonyl carbon and proton Ha or Hb was observed, indicating that compound **6a** existed in *endo*-form (Figure S1). In addition, the *endo* form can be further confirmed by comparing the chemical shift of proton H_c in **BW-CO-201-205** with the ones (H_d and H_e) in a reported compound with similar structure (Figure S2).³

Figure S2. The comparison of the chemical shift among protons Hc, Hd and He.

1.3 Stability of BW-CO-203 in CDCl₃

Compound **BW-CO-203** was dissolved in CDCl₃, and was incubated at 37 °C. The ¹H NMR of the solution was taken at intervals. As shown in Figure S3, no elimination product was observed even after one week of incubation.

Figure S3. The ¹H NMR spectra of BW-CO-201 at different incubation time point

1.4 CO-Myoglobin assay

In order to confirm CO release, **BW-CO-203** was chosen for CO-myoglobin assay. For such a purpose, a solution of myoglobin (0.5 mg/ml) in PBS (10 mL, pH = 7.4) was degassed by bubbling with nitrogen for at least 20 min. To this degassed solution was added a solution of **BW-CO-203** (0.45 mg) in DMSO (1 mL), and the resulting solution was incubated at 37 °C for 2 h. Then a solution of sodium dithionite (1 mL, 22 mg/mL) was added to yield a reddish solution, which was cooled down to 0 °C with an ice bath, and was stirred for another 1 h. Afterwards, the

UV-vis spectra of the resulting pinkish red solution were taken to confirm CO release. The results are shown in Figure S4.

Figure S4. The CO-myoglobin assay.

1.5 CO release kinetics

The CO release kinetics of **BW-CO-201-205** was determined in 30% of DMSO in PBS (pH = 7.4) at 37 °C by monitoring the consumption of CO prodrugs and the formation of compound 7 using HPLC. For prodrug **BW-CO-202**, the kinetics was determined by monitoring the formation of 4-nitrophenol using UV spectrum, which has a specific absorbance at 400 nm. The HPLC eluent used is acetonitrile/H₂O containing 0.05% trifluoroacetic acid (v/v). Two columns were used: Column 1: Waters C18, 3.5 μ m, 4.6 × 100 mm (for **BW-CO-201**, **203** and **205**); Column 2: Shimadzu C18, 3 μ m, 4.6 × 50 mm (for **BW-CO-204**). Each experiment was triplicated.

i) The retention time (t_R) of product 7 under different eluent conditions

Figure S5. The t_R of compound 7 under different conditions

During the kinetics study, two HPLC with different columns (1 and 2) were used. The much shorter retention time of 7 (~3.5 min vs 6 min) with a lower ratio of CH₃CN (55% vs 75%) is attributed to the length and particle size differences between column 1 (particle size: $3.5 \mu m$, column length: 100 mm) and 2 (particle size: $3 \mu m$; column length: 50 mm).

i) The CO release kinetics of BW-CO-201

Figure S6. The HPLC spectra of BW-CO-201 at different incubation time point (Eluent condition: 70% of acetonitrile; column 1)

Figure S7. CO release kinetics of BW-CO-201

ii) The CO release kinetic of BW-CO-202

Figure S8. CO release kinetics of BW-CO-202

iii) The CO release kinetic of BW-CO-203

Figure S9. The HPLC spectra of **BW-CO-203** at different incubation time point (Eluent condition: 70% of acetonitrile; column 1)

Figure S10. CO release kinetics of BW-CO-203

iv) The CO release kinetic of BW-CO-204

Figure S11. The HPLC spectra of BW-CO-204 at different incubation time point (Eluent condition: 55% of acetonitrile, column 2)

v) The CO release kinetic of BW-CO-205

Figure S13. The HPLC spectra of BW-CO-205 at different incubation time point (Eluent condition: 75% of acetonitrile; column 1)

Figure S14. CO release kinetics of BW-CO-205

1.6 CO release kinetics of BW-CO-203 in different pH buffer solutions

BW-CO-203 was chosen to study the pH effects on CO release kinetics by analyzing the disappearance of the CO prodrugs using HPLC (The same HPLC conditions aforementioned were used). Specifically, a solution of **BW-CO-203** in 30% of DMSO in different pH buffer was incubated at 37 °C, and the solution was taken for HPLC analysis at intervals. The buffer with different pH values (traceable to SRM of NIST and PTB) were purchase form Aldrich. The simulated gastric fluid without Pepsin was prepared in house. Specifically, 200 mg of NaCl and 0.7 mL of HCl (37%, aq.) was dissolved in 80 ml of DI water, and was transferred into a 100 mL of volumetric flask. Additional DI water was added to make a final volume of 100 mL.

II. Biology

A mouse macrophage cell line, RAW 264.7 (ATCC® TIB-71TM), was used for the in vitro studies. RAW 264.7 cells were maintained in DMEM (Dulbecco's Modified Eagle's Medium) supplemented with 10% fetal bovine serum (MidSci; S01520HI) and 1% penicillin-streptomycin (Sigma-Aldrich; P4333) at 37 °C with 5% CO₂. The media was changed every other day. All the experiments were done within 10 passages of RAW 264.7 cells. All the tested compounds were dissolved in 100% DMSO to yield the respective stock solution.

2.1 Cytotoxicity studies

Raw 264.7 cells were seeded in 96-well plates at an initial density of 10,000/well and cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37 °C under 5% CO₂ for 24 h. Then RAW 264.7 cells were incubated in DMEM containing 1% DMSO and compounds (0 – 50 μ M) for 24 hours. Then 10 μ L of Cell Counting Kit-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt, WST-8, purchased from Sigma Aldrich)⁴ solution was added to each well and incubated for another three hours at 37 °C. The absorbance at 570 nm was measured by using Perkin Elmer 1420 Victor 3 multilabel counter. The cell viability was measured and the results were shown in Figure S14-15.

Figure S15. The cytotoxicity of BW-CO-201-205 and 7 to Raw 264.7 cells

Figure S16. The cytotoxicity of various substituted phenol to Raw 264.7 cells

2.2 Anti-inflammatory effects

RAW 264.7 cells were seeded in 96-well plates at an initial density of 10,000/well one day before the experiment. LPS was used to initiate the inflammatory response in RAW 264.7 cells. RAW 264.7 cells were pre-treated with different concentrations of **BW-CO-203/205** or their respective inactive control compounds for 4 hours. All the final samples contained 1% DMSO. Thereafter, LPS was added into the cell culture media to make a final concentration of 1 μ g/mL. The cells were then incubated at 37 °C for another 1 h, and the cell culture supernatant was collected afterwards. Cell culture without LPS treatment was used as the control. The concentrations of TNF- α in the cell culture supernatant were determined by a commercial ELISA kit (ELISA Ready-SET-Go!®-eBioscience).

2.3. Fluorescent cell imaging of CO release

RAW 264.7 cells were seeded on coverslips in 6-well plate at an initial density of 10,000/well one day before the imaging experiment. Compounds were dissolved in DMSO as stock solution. Final concentration of 1 μ M of **COP-1** (Stock solution in DMSO: 200 μ M) and 50 μ M of **BW-CO-203/205** (Stock solution in DMSO: 10 mM) were added into the cell culture. All the final samples contained 1% DMSO. After adding the compounds, the cells were incubated under 37 °C for 5 h. The cell samples were then fixed with 4% paraformaldehyde. The cells were then washed with PBS again twice and the coverslips with cells were immersed in DI water. The coverslips

were mounted onto glass slides using the mounting media without DAPI (ProLong® Live Antifade Reagent; P36974). The fluorescent imaging was performed under FITC channel (excitation: 490 nm, emission: 525 nm) using a Zeiss fluorescent microscope (Axio Vert. A1).

2.4. Fluorescence quantification in Raw 264.7 cells

Raw 264.7 cells were seeded in 96-well plates at an initial density of 10,000/well one day before the experiment. CO prodrugs and COP-1 were dissolved in DMSO. Final concentration of 1 μ M of **COP-1** (Stock solution in DMSO: 200 μ M) and 50 μ M of **BW-CO-203/205** (Stock solution in DMSO: 10 mM) were added into the cell culture. All the final samples contained 1% DMSO. The cells were then incubated for 5 h at 37 °C. Then, the fluorescence intensity ($\lambda_{ex} = 485$ nm, $\lambda_{em} = 525$ nm) of each well was measured by using a Perkin Elmer 1420 Victor 3 multilabel counter. The results were normalized to the control group (COP-1 only). Each experiment was repeated six times and the results are expressed as mean ± SEM (n=6).

III. NMR spectra

Figure S18. The ¹³C NMR spectrum of 1b in CDCl₃

Figure S20. The ¹³C NMR spectrum of 1c in CDCl₃

Figure S22. The ¹³C NMR spectrum of 1d in CDCl₃

Figure S23. The ¹H NMR spectrum of 1e in CDCl₃

Figure S24. The ¹³C NMR spectrum of 1e in CDCl₃

Figure S26. The ¹³C NMR spectrum of 2a in CDCl₃

Figure S28. The ¹³C NMR spectrum of 2b in CDCl₃

Figure S30. The ¹³C NMR spectrum of 2c in CDCl₃

90 80 f1 (ppm)

Figure S32. The ¹³C NMR spectrum of 2d in CDCl₃

Figure S33. The ¹H NMR spectrum of 2e in CDCl₃

Figure S34. The ¹³C NMR spectrum of 2e in CDCl₃

Figure S36. The ¹³C NMR spectrum of 5a in CDCl₃

Figure S38. The ¹³C NMR spectrum of 5b in CDCl₃

Figure S40. The ¹³C NMR spectrum of 5c in CDCl₃

Figure S43. The ¹H NMR spectrum of 5e in CDCl₃

Figure S44. The ¹³C NMR spectrum of 5e in CDCl₃

Figure S46. The 13 C NMR spectrum of 6a in CDCl₃

90 80 70 60

50 40 30 20 10

Ó

160 150 140 130 120 110 100 f1 (ppm)

210

200 190

180 170

Figure S50. The ¹³C NMR spectrum of 6c in CDCl₃

Figure S52. The ¹³C NMR spectrum of 6d in CDCl₃

Figure S54. The ¹H NMR spectrum of BW-CO-201 in CDCl₃

Figure S58. The ¹H NMR spectrum of BW-CO-203 in CDCl₃

Figure S60. The ¹H NMR spectrum of BW-CO-204 in CDCl₃

Figure S62. The ¹H NMR spectrum of BW-CO-205 in CDCl₃

Figure S64. The ¹H NMR spectrum of 4 in CDCl₃

Figure S67. The ¹³C NMR spectrum of 7 in CDCl₃

IV. References

- 1. Y. Sarrafi, M. Sadatshahabi, K. Alimohammadi and M. Tajbakhsh, *Green Chem.*, 2011, **13**, 2851-2858.
- 2. R. Y. S. Tan, R. A. Russell and R. N. Warrener, *Tetrahedron Lett.*, 1979, **20**, 5031-5034.
- 3. N. Almirante, M. L. Gelmi, P. Marelli, D. Pocar, E. Arlandini and M. Ballabio, *Tetrahedron*, 1986, **42**, 57-62.
- 4. T. Lindl, B. Lewandowski, S. Schreyogg and A. Staudte, *Altern Lab Anim*, 2005, **33**, 591-601.