Use of anion recognition to control the folding and unfolding of a single chain phosphorescent polymer

Xiaofan Ji, Chenxing Guo, Xian-Sheng Ke, Xiaodong Chi and Jonathan L. Sessler* Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States; Email: sessler@cm.utexas.edu

Electronic Supplementary Information

1. Materials and methods S2
2. Synthesis and characterization of $\mathbf{1}$ S3
3. Synthesis and characterization of methacrylate-derived Pt(II) porphyrin 4 S6
4. Concentration-dependent DOSY NMR spectra of a mixture of $\mathbf{1}$ and $\mathbf{2}$ S10
5. Concentration-dependent DLS studies of a mixture of 1 and 2 S17
6. DLS studies of the mixture of $\mathbf{1}$ and $\mathbf{2}$ as a function of increasing quantities of S20 TBAHSO_{4}
7. Viscosity studies of mixtures of $\mathbf{1}$ and $\mathbf{2}$ upon treatment with competitive anions S23
8. Phosphorescence features of SCPNs and constituent single chain polymer S24
9. Influence of monomer ratio on the folding/unfolding process S24
10. Viscosity studies of $\mathbf{1}$ with different organic anions S26

References S27

1. Materials and methods

Carboxylic acid derived- $\mathrm{Pt}(\mathrm{II})$ porphyrin $5^{\text {S1 }}$ and methacrylate-derived calix[4]pyrrole $\mathbf{3}^{\text {S2 }}$ were prepared according to literature procedures. Solvents were either employed as purchased or dried according to procedures described in the literature. ${ }^{1} \mathrm{H}$ NMR spectra were collected on a Bruker Advance DMX-400 or a Bruker DMX-500 spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE DMX-400 or a Bruker DMX-500 spectrometer. Molecular weight distributions were measured on a conventional gel permeation chromatography (GPC) system equipped with a Waters 1525 Isocratic HPLC pump, a Waters 2414 refractive index detector, and a set of Waters Styragel columns (HR1, HR2 and HR4, $7.8 \mathrm{~mm} \times 300 \mathrm{~mm}$). GPC measurements were carried out at $35^{\circ} \mathrm{C}$ using THF as the solvent with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. The system was calibrated with linear polystyrene standards. Dynamic light scattering (DLS) was carried out on a Malvern Nanosizer S instrument at room temperature. Transmission electron microscopy investigations were carried out on a HITACHI HT-7700 instrument. Fluorescence measurements were performed on a Perkin-Elmer Luminescence Spectrophotometer LS 50B or a Gilden Photonics Ltd. instrument.

2. Synthesis and characterization of $\mathbf{1}$

Scheme S1 Synthetic route to 1.

Polymer 1 was prepared from compounds 3, 4, and methyl methacrylate by free radical polymerization. A mixture of compound $4(50.0 \mathrm{mg}, 0.0519 \mathrm{mmol})$, methyl methacrylate (0.110 $\mathrm{mL}, 1.04 \mathrm{mmol}$), compound $3(54.6 \mathrm{mg}, 0.104 \mathrm{mmol})$, and $1.70 \mathrm{mg}(0.0104 \mathrm{mmol})$ of azobisisobutyronitrile (AIBN) in 2.5 mL of DMF was stirred at room temperature. The mixture was sealed with a rubber septum and subjected to three freeze/pump/thaw cycles. The reaction mixture was then heated to $70^{\circ} \mathrm{C}$ and stirred overnight. The associated polymerization reaction was quenched by rapid freezing in liquid nitrogen. The solution was dropped into 50 mL of methanol, and the precipitated solid was collected by vacuum filtration. This process was repeated three times. The resulting dark red product was dried in vacuum; yield 137 mg (65%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}):(8.76-7.03$, porphyrin pyrrole β-position CH and Phenyl CH), 8.76-8.68 (m, 8H), $8.46(\mathrm{~m}, 2 \mathrm{H}), 8.26(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~m}, 6 \mathrm{H}), 7.73(\mathrm{~m}, 9 \mathrm{H}), 7.03$ (3 H , calix[4]pyrrole NH), $5.89(12 \mathrm{H}$, calix[4]pyrrole $\beta-\mathrm{CH}), 4.70\left(2 \mathrm{H}\right.$, porphyrin $\left.-\mathrm{CH}_{2} \mathrm{O}-\right), 4.43$ $\left(2 \mathrm{H}\right.$, porphyrin $\left.-\mathrm{CH}_{2} \mathrm{O}-\right), 3.90-3.23\left(\mathrm{~m}, 63 \mathrm{H}\right.$, polymer backbone $\left.-\mathrm{OCH}_{3}\right), 2.26-0.55(\mathrm{~m}, 150 \mathrm{H}$, polymer backbone $-\mathrm{CH}_{2}-$, and $\left.-\mathrm{CH}_{3}\right) . M_{\mathrm{n}}=25.8 \mathrm{kDa}, \mathrm{PDI}=1.66$.

Fig. $\boldsymbol{S 1}{ }^{1} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1}$.

Fig. $\boldsymbol{S} \mathbf{2}$ GPC spectrum of $\mathbf{1}$.

The ratio of $a / b / c$ is $1 / 21 / 1.5$, as calculated from integrations of the proton signals corresponding to the porphyrin, calix[4]pyrrole β-position CH , and polymer backbone $-\mathrm{OCH}_{3}$, respectively, seen in the ${ }^{1} \mathrm{H}$-NMR spectrum. From the M_{n} value, this $a / b / c$ ratio, the values of a, b, and c were calculated to be $6.7,141$, and 10 , respectively.

Fig. S3 Absorption spectrum of $\mathbf{1}$.
3. Synthesis and characterization of methacrylate-derived Pt(II) porphyrin 4

Scheme $\boldsymbol{S} \mathbf{2}$ Synthetic routes to methacrylate-derived Pt(II) porphyrin 4.

To a solution of propionic acid (500 mL) containing methyl-4-formyl benzoate ($4.1 \mathrm{~g}, 0.25 \mathrm{~mol}$) was added benzaldehyde ($7.9 \mathrm{~g}, 0.75 \mathrm{~mol}$) and pyrrole ($6.7 \mathrm{~g}, 1.0 \mathrm{~mol}$). The mixture was then heated at reflux for 4 h . The solvent was distilled off and the product was first purified over basic alumina in a column using $\mathrm{CH}_{2} \mathrm{Cl}$ as the eluent. The resulting crude product was passed through a silica gel column using hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}(2: 1 \mathrm{v} / \mathrm{v})$ as the eluent to give the product 7: Yield 1.5 g (9\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform- d) $\delta 8.86(\mathrm{~m}, 6 \mathrm{H}), 8.79(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H})$, $8.31(\mathrm{~m}, 2 \mathrm{H}), 8.22(\mathrm{~m}, 6 \mathrm{H}), 7.83-7.70(\mathrm{~m}, 9 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}),-2.78(\mathrm{~s}, 2 \mathrm{H})$.

Intermediate $7(940 \mathrm{mg}, 1.40 \mathrm{mmol})$ and $\mathrm{PtCl}_{2}(924 \mathrm{mg}, 3.5 \mathrm{mmol})$ were suspended in anhydrous benzonitrile. The mixture was purged with N_{2} and slowly heated to $180^{\circ} \mathrm{C}$ under N_{2} for 30 h . The mixture was cooled to room temperature and the solvent was removed by vacuum distillation. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl} /$ hexanes, 2:1) to afford 6. ($1.0 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform- d) $\delta 8.79(\mathrm{~m}, 6 \mathrm{H}), 8.72(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 8.43(\mathrm{~m}, 2 \mathrm{H}), 8.26(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 9 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H})$.

Intermediate $6(1.0 \mathrm{~g}, 1.15 \mathrm{mmol})$ and $\mathrm{KOH}(1.0 \mathrm{~g}, 18.0 \mathrm{mmol})$ were dissolved in a mixed solution of THF-EtOH- $\mathrm{H}_{2} \mathrm{O}(1: 1: 0.1,100 \mathrm{~mL})$, and the solution was heated at reflux for 12 h . The mixture was cooled to room temperature and acidified with conc. HCl to $\mathrm{pH}=1$. The orange
solid obtained in this way was collected by filtration and then washed with water before being dried under vacuum. This gave 5 ($940 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.74(\mathrm{~s}, 8 \mathrm{H})$, $8.36(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~m}, 6 \mathrm{H}), 7.82(\mathrm{~m}, 9 \mathrm{H})$.

Fig. $\boldsymbol{S} 4{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (400 MHz, DMSO- $_{6}, 298 \mathrm{~K}$) of $\mathbf{5}$.

Porphyrin $5(150 \mathrm{mg}, 0.176 \mathrm{mmol})$, DMAP $(65 \mathrm{mg}, 0.528 \mathrm{mmol})$, and EDCI $\cdot \mathrm{HCl}(68 \mathrm{mg}, 0.352$ mmol) were dissolved in 50 mL dry THF. 2-Hydroxyethyl methacrylate ($344 \mathrm{mg}, 2.64 \mathrm{mmol}$) was added under N_{2}, after which the mixture was stirred for 2 d at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture was washed with water and brine. The organic layer was separated off and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed by evaporation. The resulting residue was purified by column chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give compound $\mathbf{3}$ as a red solid (70 $\mathrm{mg}, 41 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, chloroform- d) $\delta 8.76-8.68(\mathrm{~m}, 8 \mathrm{H}), 8.44(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, $8.27(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~m}, 6 \mathrm{H}), 7.75(\mathrm{~m}, 9 \mathrm{H}), 6.26(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~m}, 2 \mathrm{H})$, $2.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, chloroform-d) $\delta 167.41,166.64,146.63,141.38,141.37$, $141.18,141.12,141.01,140.29,136.13,134.54,134.11,134.00,132.30,131.23,131.06,130.99$, $130.35,129.52,129.25,128.30,128.05,126.99,126.42,122.82,122.68,120.93,63.16,62.71$, 18.54. HRMS (ESI) Calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 986.2280$. Found: 986.2265.

Fig. $\boldsymbol{S 5}{ }^{1} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{3}$.

Fig. S6 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{3}$.
MS Zoomed Spectrum

Obs. m/z	Calc. m/z	Charge	Abund	Formula	Ion/Isotope	Tgt Mass Error (ppm)
466.25660			43458.38			
981.24930	981.22280	1	955.23	C51H36N4O4Pt	(M+Na) +	-26.99
983.22630	983.22390	1	799.67	C51H36N4O4Pt	(M+Na)+	-2.38
985.22460	985.22560	1	20479.37	C51H36N4O4Pt	(M+Na) +	1.01
986.22650	986.22800	1	33367.33	C51H36N4O4Pt	(M+Na) +	1.61
987.22900	987.22940	1	31946.84	C51H36N4O4Pt	(M+Na) +	0.49
988.23040	988.23200	1	13467.14	C51H36N4O4Pt	(M+Na) +	1.66
989.23010	989.23250	1	8010.75	C51H36N4O4Pt	(M+Na)+	2.5
990.23290	990.23470	1	3834.51	C51H36N4O4Pt	(M+Na)+	1.83
991.23600	991.23750	1	1224.46	C51H36N4O4Pt	(M+Na)+	1.48

Fig. $\boldsymbol{S} \mathbf{7}$ High-resolution mass spectrum of $\mathbf{3}$.

4. Concentration-dependent DOSY NMR spectra of a mixture of $\mathbf{1}$ and $\mathbf{2}$

Fig. $\boldsymbol{S 8}$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectral study of a mixture consisting of $\mathbf{1}$ (10 $\mathrm{mg} / \mathrm{mL}, 0.387 \mathrm{mM})$ and $2(1.94 \mathrm{mM})$.

Fig. $\boldsymbol{S} 9$ DOSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectral study of a mixture of $\mathbf{1}(8 \mathrm{mg} / \mathrm{mL}, 0.310$ $\mathrm{mM})$ and $2(1.55 \mathrm{mM})$.

Fig. S10 DOSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectral study of a mixture of $\mathbf{1}(5 \mathrm{mg} / \mathrm{mL}$, $0.194 \mathrm{mM})$ and $2(0.968 \mathrm{mM})$.

Fig. S11 DOSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectral study of a mixture of $\mathbf{1}(2 \mathrm{mg} / \mathrm{mL}$, $0.0774 \mathrm{mM})$ and $2(0.387 \mathrm{mM})$.

Fig. S12 DOSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectral study of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}$, $0.0387 \mathrm{mM})$ and $2(0.194 \mathrm{mM})$.

Fig. S13 DOSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectral study of a mixture of $\mathbf{1}(0.5 \mathrm{mg} / \mathrm{mL}$, $0.0194 \mathrm{mM})$ and $2(0.0968 \mathrm{mM})$.

Fig. S14 DOSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectral study of a mixture of $\mathbf{1}(0.2 \mathrm{mg} / \mathrm{mL}$, $0.00774 \mathrm{mM})$ and $2(0.0387 \mathrm{mM})$.

5. Concentration-dependent DLS studies of a mixture of $\mathbf{1}$ and $\mathbf{2}$

Fig. S15 DLS study of a mixture of $\mathbf{1}(10 \mathrm{mg} / \mathrm{mL}, 0.387 \mathrm{mM})$ and $\mathbf{2}(1.94 \mathrm{mM})$.

Fig. S16 DLS study of a mixture of $\mathbf{1}(8 \mathrm{mg} / \mathrm{mL}, 0.310 \mathrm{mM})$ and $\mathbf{2}(1.55 \mathrm{mM})$.

Fig. S17 DLS study of a mixture of $\mathbf{1}(5 \mathrm{mg} / \mathrm{mL}, 0.194 \mathrm{mM})$ and $\mathbf{2}(0.968 \mathrm{mM})$.

Fig. $\boldsymbol{S 1 8}$ DLS study of a mixture of $\mathbf{1}(2 \mathrm{mg} / \mathrm{mL}, 0.0774 \mathrm{mM})$ and $\mathbf{2}(0.387 \mathrm{mM})$.

Fig. S19 DLS study of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ and $\mathbf{2}(0.194 \mathrm{mM})$.

Fig. $\mathbf{S} 20$ DLS study of a mixture of $\mathbf{1}(0.5 \mathrm{mg} / \mathrm{mL}, 0.0194 \mathrm{mM})$ and $\mathbf{2}(0.0968 \mathrm{mM})$.

Fig. S21 DLS study of a mixture of $\mathbf{1}(0.2 \mathrm{mg} / \mathrm{mL}, 0.00774 \mathrm{mM})$ and $\mathbf{2}(0.0387 \mathrm{mM})$.
6. DLS studies of a mixture of $\mathbf{1}$ and $\mathbf{2}$ as a function of increasing quantities of TBAHSO_{4}

Fig. S22 DLS study of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ and $\mathbf{2}(0.194 \mathrm{mM})$ in the presence of 0.2 molar equivalents of $\mathrm{TBAHSO}_{4}(0.0774 \mathrm{mM})$.

Fig. S23 DLS study of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ and $\mathbf{2}(0.194 \mathrm{mM})$ in the presence of 0.5 molar equivalents of $\mathrm{TBAHSO}_{4}(0.194 \mathrm{mM})$.

Fig. S24 DLS study of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ and $\mathbf{2}(0.194 \mathrm{mM})$ in the presence of 1.0 molar equivalents of TBAHSO $_{4}(0.387 \mathrm{mM})$.

Fig. $\boldsymbol{S} 25$ DLS study of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ and $\mathbf{2}(0.194 \mathrm{mM})$ in the presence of 2.0 molar equivalents of $\mathrm{TBAHSO}_{4}(0.774 \mathrm{mM})$.

Fig. S26 DLS study of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ and $\mathbf{2}(0.194 \mathrm{mM})$ in the presence of 3.0 molar equivalents of TBAHSO $_{4}(1.16 \mathrm{mM})$.
7. Viscosity studies of mixtures of $\mathbf{1}$ and $\mathbf{2}$ upon treatment with competitive anions

Fig. $\boldsymbol{S} 27$ Viscosity studies of a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ and $\mathbf{2}(0.194 \mathrm{mM})$ alone and in the presence of 1.0 molar equivalent $(0.387 \mathrm{mM})$ of other anion salts (TBAF, TBACl, TBABr, $\mathrm{TBANO}_{3}, \mathrm{TBAH}_{2} \mathrm{PO}_{4}$, respectively).

8. Phosphorescence features of SCPNs and constituent single chain polymer

Fig. S28 Phosphorescence decays of a) $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$; b) a mixture of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}$, $0.0387 \mathrm{mM})$ and $2(0.194 \mathrm{mM})$.

The phosphorescence lifetimes of the single chain polymer and resulting SCPNs were calculated from the phosphorescence decay curves and found to be 370 ns and 1090 ns , respectively.

9. Influence of monomer ratio on the folding/unfolding process

For polymer 1, the feed ratio of all monomers were: Pt(II) porphyrin ($50.0 \mathrm{mg}, 0.0519 \mathrm{mmol}$), unsubstituted methyl methacrylate ($0.110 \mathrm{~mL}, 1.04 \mathrm{mmol}$), and calix[4]pyrrole repeat unit (54.6 $\mathrm{mg}, 0.104 \mathrm{mmol})$. We increased the relative percentage of the calix[4]pyrrole repeat unit by increasing the amount of this starting material to a) $65.6 \mathrm{mg}(0.125 \mathrm{mmol})$, b) $86.6 \mathrm{mg}(0.165$ $\mathrm{mmol})$, and c) $105 \mathrm{mg}(0.200 \mathrm{mmol})$, respectively, while keeping the concentrations of the other constituents the same. This produced polymers 1-1, 1-2, and 1-3

	Feed amount of C4P monomer	$M_{\mathrm{n}}(\mathrm{KDa})$	C 4 P amount on polymer chain
polymer 1	$54.6 \mathrm{mg}, 0.104 \mathrm{mmol}$	25.8	10
polymer 1-1	$65.6 \mathrm{mg}, 0.125 \mathrm{mmol}$	26.9	12
polymer 1-2	$86.6 \mathrm{mg}, 0.165 \mathrm{mmol}$	28.4	15
polymer 1-3	$105 \mathrm{mg}, 0.200 \mathrm{mmol}$	29.8	18

Table. $\boldsymbol{S 1}$ Key data for polymers 1, 1-1, 1-2, and 1-3.

Fig. S29 Viscosity studies of mixtures of $\mathbf{2}$ with: a) polymer 1; b) polymer 1-1; c) polymer 1-2; d) polymer 1-3 (1:1 molar ratio of recognition groups) versus polymer concentration.

From the above figure, it can be seen that the SCPNs were transformed into a more network-like structure at ca. $2.0,1.8,1.5$, and $1.2 \mathrm{mg} / \mathrm{mL}$ for polymers $\mathbf{1}, \mathbf{1 - 1}, \mathbf{1 - 2}$, and $\mathbf{1 - 3}$, respectively. The results are taken as an indication that the SCPNs underwent conversion at lower concentrations when the amount of calix[4]pyrrole repeat unit was increased.

10. Viscosity studies of $\mathbf{1}$ with different organic anions

Fig. $\boldsymbol{S 3 0}$ Viscosity studies of $\mathbf{1}(1.0 \mathrm{mg} / \mathrm{mL}, 0.0387 \mathrm{mM})$ alone and in the presence of various organic anions ${ }^{\text {S3 }}$ (each at 0.194 mM).

As shown in the above figure (Fig. S30), the specific viscosity of $\mathbf{1}$ decreased upon the addition of various test organic anions. On this basis, we infer that these organic anions can replace $\mathbf{2}$ and be used to induce SCPN production.

References:

S1. K. K. Wang, K. H. Choi, H. W. Shin, B. J. Kim, J. E. Im, S. L. Oh, N. S. Park, M. Jung, J. B. Oh, M. J. Lee, H. K. Kim and Y. R. Kim, Chem. Phys. Lett., 2009, 482, 81.

S2. E. S. Silver, B. M. Rambo, C. W. Bielawski and J. L. Sessler, J. Am. Chem. Soc., 2014, 136, 2252.

S3. G. Cafeo, F. H. Kohnke, G. Mezzatesta, A. Profumo, C. Rosano, A. Villari and A. J. P. White, Chem. Eur. J., 2015, 21, 5323.

