o-Phthalaldehyde Catalyzed Hydrolysis of Organophosphinic Amides

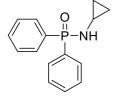
and Other P(=O)-NH Containing Compounds

Bin-Jie Li, Ryan D. Simard, and André M. Beauchemin

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada. E-mail: andre.beauchemin@uottawa.ca.

Supporting Information

Tal	ble of Contents	
1.	General information	2
2.	Synthesis and Spectral Data of Diphenylphosphinic Amides	and
	Diphenylphosphoramidates	2
3.	Spectral Data of Products	7
4.	Details for Optimization of the Reaction Conditions	9
5.	General Procedure for the Hydrolysis Reaction	13
	a) Isolation of diphenylphosphinic acid	13
	b) Isolation of amine component	13
6.	Comparison between phthalaldehyde and formaldehyde	15
7.	NMR spectra	19

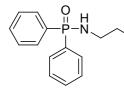

1. General Information

Unless otherwise mentioned, all commercially available materials were purchased from Alfa Aesar, Aldrich or Combi Blocks and used without further purification. Solvents were obtained from LC Technology solvent system or distilled before using. All reactions involving moisture sensitive reactants were executed under an argon atmosphere using oven dried and/or flame dried glassware. Flash column chromatography was performed using $40-63 \mu m$ Silicycle silica gel. Reactions were monitored by analytical thin layer chromatography (TLC), using glass or aluminium based plates, and cut to size. TLC visualization was achieved by UV, I2 stain and KMnO₄ stain. Bruker AVANCE 300 MHz and 400 MHz spectrometers were used to obtain ¹H NMR and ¹³C NMR spectra at ambient temperature. Spectral data is reported in ppm using solvents as the reference (CDCl₃ at 7.26 ppm, CD₃OD at 3.31 ppm and DMSO at 2.50 ppm for ¹H NMR/CDCl₃ at 77.16 ppm, CD₃OD at 49.00 ppm and DMSO at 39.52 ppm for ¹³C NMR). ¹H NMR data was reporting as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hz, and integration. Infrared (IR) spectra were obtained as neat solids on an Agilent Cary 630 Fourier transform infrared spectrometer. Electron impact and electrospray ionisation high-resolution mass spectroscopy (EI-HRMS/ESI-HRMS) were recorded on a Kratos Concept 11-A mass spectrometer at the Ottawa-Carleton Mass Spectrometry Centre.

2. Synthesis and Spectral Data of Diphenylphosphinic Amides and Diphenylphosphoramidats.

Diphenylphosphinic amides and O,O-diphenyl phosphoramidates were synthesized according to a reported general procedure.¹ To a stirred solution of amines (10 mmol) in THF (25 mL) was added trimethylamine (21 mmol) at room temperature. Diphenylphosphinic choride (12 mmol) or O,O-diphenyl chlorophosphate (12 mmol) in 25 mL of THF was added to the solution at 0 °C. After being stirred for 15 min at 0 °C, the reaction solution was allowed back to ambient temperature and stirred for overnight. The resulting mixture was cooled in ice bath, and diluted with CHCl₃ and water. The product was extracted with CHCl₃ and combined organic layer was washed by brine, 1 N HCl, saturated NaHCO₃ and brine. The combined organic phases were dried over Na₂SO₄ and filtered and concentrated *in vacuo*. The crude product was purified by column chromatography using CH₂Cl₂-MeOH (95:5) as eluent to give the corresponding phosphinic amides or phosphoramidates. **1a**², **1b**³, **1c**⁴, **1d**⁵, **1f**⁶, **1h**⁷, **1i**⁸, **1j**⁹, **1k**¹⁰, **1n**¹¹, **1s**¹², **1t**¹³, **1z**¹², **1aa**¹⁴, **1ab**¹⁵ were prepared according to the known procedures and spectral data was found to be in good agreement with literature.

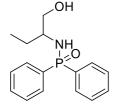
N-Cyclopropyl-*P*,*P*-diphenylphosphinic amide (1g)



Synthesized according to general procedure. The title compound was isolated as white solid (1.49 g, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.79 (m, 4H), 7.52 – 7.42 (m, 2H), 7.42 – 7.36 (m, 4H), 3.54 (s, 1H), 2.44 (tq, *J* = 7.1, 3.6 Hz, 1H), 0.53-0.57 (m, 2H), 0.40-0.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 132.7 (d, *J*_{*P*-*C*} = 128.2 Hz), 131.9 (d, *J*_{*P*-*C*} = 9.6

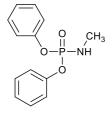
Hz), 131.6 (d, $J_{P-C} = 2.7$ Hz), 128.3 (d, $J_{P-C} = 12.6$ Hz), 23.0, 7.3 (d, $J_{P-C} = 5.1$ Hz). ³¹P NMR

(121 MHz, CDCl₃) δ 20.7. IR (ATR Diamond): 3173, 3053, 1438, 1421, 1405, 1356, 1190, 1157, 1113, 1070, 1039, 1019, 1007, 995, 878, 819, 749, 721, 693 cm⁻¹. HRMS (EI): Exact mass calculated for C₁₅H₁₆NOP [M]⁺: 257.09695, found 257.09772.


N-Propyl-P,P-diphenylphosphinic amide (1e)

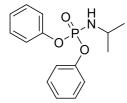
Synthesized according to general procedure. The title compound was isolated as white solid (1.40 g, 54% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.76 (m, 4H), 7.60 – 7.35 (m, 6H), 3.09 (s, 1H), 2.98 – 2.82 (m, 2H), 1.68 – 1.46 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.5 (d, *J*_{P-C} = 129.3 Hz), 132.1 (d, *J*_{P-C} = 9.3 Hz),

131.8 (d, $J_{P-C} = 2.8$ Hz), 128.5 (d, $J_{P-C} = 12.5$ Hz), 42.6 (d, $J_{P-C} = 2.0$ Hz), 25.3 (d, $J_{P-C} = 7.3$ Hz), 11.3. ³¹P NMR (121 MHz, CDCl₃) δ 20.6. IR (ATR Diamond): 3171, 2963, 2842, 1590, 1435, 1179, 1124, 1102, 1074, 1010, 995, 885, 842, 749, 773, 701, 692 cm⁻¹. HRMS (EI) for: Exact mass calculated for C₁₅H₁₈NOP [M]⁺: 259.11260, found 259.11133.


N-(1-Hydroxybutan-2-yl)-P,P-diphenylphosphinic amide (11)

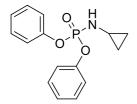
Synthesized according to general procedure. The title compound was isolated as white solid (1.62 g, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.80 (m, 4H), 7.55 – 7.35 (m, 6H), 4.85 (s, 1H), 3.62 (dd, J = 11.7, 2.6 Hz, 1H), 3.43 (dd, J = 11.6, 7.3 Hz, 1H), 3.13 (s, 1H), 2.99 – 2.80 (m, 1H), 1.65 – 1.35 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 132.6 (d, J_{P-C} = 9.5 Hz), 132.3 (d, J_{P-C} = 148.2 Hz), 132.0 (d, J_{P-C} = 2.5 Hz), 131.9 (d, J_{P-C} = 2.6 Hz), 131.7 (d, J_{P-C} = 9.4 Hz), 130.2, 128.6 (d, J_{P-C} = 1.5 Hz), 128.5 (d, J_{P-C} = 1.8 Hz), 67.0, 56.8 (d, J_{P-C} = 2.2 Hz), 26.5 (d, J_{P-C} = 9.6 Hz), 10.8. ³¹P NMR (121 MHz, CDCl₃) δ 23.7. IR (ATR Diamond): 3249, 3187, 1142, 1436, 1169, 1112, 1093, 1063, 1021, 995, 946, 873, 851, 754, 748, 724, 694 cm⁻¹. HRMS (ESI) for: Exact mass calculated for C₁₆H₂₁NO₂P [M+H]⁺ 290.1310, found 290.1300.


Diphenyl methylphosphoramidate (1u)

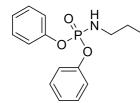
Synthesized according to general procedure. The title compound was isolated as yellow solid (1.58 g, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 4H), 7.26 (dq, *J* = 7.9, 1.2 Hz, 5H), 7.21 – 7.14 (m, 2H), 3.03 (s, 1H), 2.76 (d, *J* = 12.5 Hz, 3H). ¹³ C NMR (75 MHz, CDCl₃) δ 150.7 (d, *J*_{P-C} = 6.7 Hz), 129.7, 124.9, 120.2 (d, *J*_{P-C} = 4.7 Hz), 27.9. ³¹ P NMR (121 MHz, CDCl₃) δ

0.42. IR (ATR Diamond): 3244, 3069, 2928, 2824, 1587, 1488, 1456, 1424, 1256, 1227, 1104, 1163, 1110, 1081, 1024, 1008, 949, 926, 905, 857, 750, 687, 613, 591, 568 cm⁻¹ HRMS (EI) for: Exact mass calculated for $C_{13}H_{14}NO_{3}P$ [M]⁺: 263.07113, found 263.07396.


Diphenyl isopropylphosphoramidate (1w)

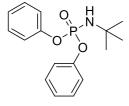
Synthesized according to general procedure. The title compound was isolated as white solid (2.03 g, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H), 7.24 – 7.26 (m, 4H), 7.16 – 7.10 (m, 2H), 3.65 – 3.51 (m, 1H), 2.99 (t, *J* = 11.0 Hz, 1H), 1.14 (d, *J* = 1.0 Hz, 3H), 1.13 (d, *J* = 1.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.9 (d, *J*_{*P*-C} = 6.9 Hz),

129.6, 124.7 (d, $J_{P-C} = 1.1$ Hz), 120.2 (d, $J_{P-C} = 5.1$ Hz), 44.5, 25.1 (d, $J_{P-C} = 5.8$ Hz). ³¹P NMR (121 MHz, CDCl₃) δ -4.6. IR (ATR Diamond): 3261, 2967, 1590, 1484, 1464, 1422, 1385, 1369, 1245, 1220, 1191, 1163, 1144, 1126, 1042, 1026, 924, 906, 767, 751, 691 cm⁻¹. HRMS (ESI) for: Exact mass calculated for C₁₅H₁₈NO₃PNa [M+Na]⁺ 314.0922, found 314.0933


Diphenyl cyclopropylphosphoramidate (1x)

Synthesized according to general procedure. The title compound was isolated as white solid (2.60 g, 90% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.31 (dd, *J* = 8.7, 6.9 Hz, 4H), 7.26 – 7.20 (m, 4H), 7.19 – 7.09 (m, 2H), 3.65 (d, *J* = 14.9 Hz, 1H), 2.43 – 2.51 (m, 1H), 0.74 – 0.41 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8 (d, *J*_{P-C} = 6.6 Hz), 129.6, 124.8 (d,

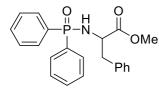
 J_{P-C} = 1.1 Hz), 120.1 (d, J_{P-C} = 5.1 Hz), 23.2, 7.1 (d, J_{P-C} = 5.3 Hz). ³¹P NMR (121 MHz, CDCl₃) δ -3.6. IR (ATR Diamond): 3218, 1591, 1483, 1453, 1433, 1417, 1249, 1209, 1190, 1176, 1162, 1101, 1025, 1005, 929, 903, 777, 766, 752, 691 cm⁻¹. HRMS (ESI) for: Exact mass calculated for C₁₅H₁₆NO₃PNa [M+Na]⁺ 312.0766, found 312.0774.


Diphenyl propylphosphoramidate (1v)

Synthesized according to general procedure. The title compound was isolated as white solid (2.47 g, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, *J* = 7.9 Hz, 4H), 7.25 (d, *J* = 3.5 Hz, 3H), 7.23 (s, 1H), 7.14 (t, *J* = 7.4 Hz, 2H), 3.12 – 3.00 (m, 2H), 2.98 (d, *J* = 14.0 Hz, 1H), 1.48 (h, *J* = 7.3 Hz, 2H), 0.86 (t, *J* = 7.4 Hz, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 150.9 (d, $J_{P-C} = 6.7$ Hz), 129.6, 124.9, 120.2 (d, $J_{P-C} = 5.0$ Hz), 43.6, 24.7 (d, $J_{P-C} = 6.3$ Hz), 11.0. ³¹P NMR (121 MHz, CDCl₃) δ -3.3. IR (ATR Diamond): 3174, 3055, 2963, 2932, 2875, 1589, 1486, 1456, 1250, 1233, 1213, 1187, 1167, 1104, 1069, 1036, 1021, 1006, 949, 927, 915, 773, 749, 688, 586, 545 cm⁻¹. HRMS (ESI): Exact mass calculated for C₁₅H₁₈NO₃PNa [M+Na]⁺ 314.0922, found 314.0920.

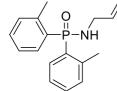
Diphenyl tert-butylphosphoramidate (1y)



Synthesized according to general procedure. The title compound was isolated as white solid (2.28g, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H), 7.24 (dq, *J* = 7.4, 1.2 Hz, 4H), 7.10 – 7.13 (m, 2H), 3.24 (s, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1 (d, *J*_{*P*-*C*} = 7.0 Hz), 129.5, 124.6 (d, *J*_{*P*-*C*} = 1.3 Hz), 120.1 (d, *J*_{*P*-*C*} = 5.2 Hz),

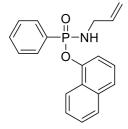
51.7 (d, J_{P-C} = 1.5 Hz), 31.2 (d, J_{P-C} = 4.9 Hz). ³¹P NMR (121 MHz, CDCl₃) δ -6.2. IR (ATR

Diamond): 3264, 2974, 1588, 1484, 1409, 1388, 1365, 1260, 1219, 1192, 1156, 1047, 1021, 923, 867, 784, 757, 721, 690 cm⁻¹. HRMS (ESI): Exact mass calculated for $C_{16}H_{21}NO_3P$ [M+H]⁺ 306.1255, found 306.1259


Methyl (diphenylphosphoryl)phenylalaninate (1p)

Synthesized according to general procedure. The title compound was isolated as white solid (2.27g, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.78 (m, 2H), 7.69-7.63 (m, 2H), 7.51 – 7.38 (m, 4H), 7.36-7.32 (m, 2H), 7.30 – 7.22 (m, 3H), 7.13 (dd, *J* = 7.7, 1.8 Hz, 2H), 4.09-4.01 (m, 1H), 3.64 (s, 3H), 3.49 (dd, *J* = 11.2, 6.9

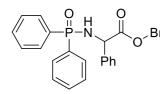
Hz, 1H), 3.08 (dd, J = 6.0, 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2 (d, $J_{P-C} = 5.6$ Hz), 135.9 , 132.6 (d, $J_{P-C} = 11.7$ Hz), 132.1 (d, $J_{P-C} = 9.7$ Hz), 132.0 (d, $J_{P-C} = 2.8$ Hz), 131.9 (d, $J_{P-C} = 9.8$ Hz), 131.9 (d, $J_{P-C} = 2.8$ Hz), 131.3 (d, $J_{P-C} = 10.1$ Hz), 129.7, 128.5 (d, $J_{P-C} = 2.7$ Hz), 128.5 (d, $J_{P-C} = 22.8$ Hz), 128.5, 127.0, 54.7, 52.2, 41.2 (d, $J_{P-C} = 5.0$ Hz). ³¹P NMR (121 MHz, CDCl₃) δ 20.3 IR (ATR Diamond): 3145, 1732, 1659, 1591, 1433, 1282, 1243, 1182, 1125, 1108, 1096, 1043, 1016, 940, 918, 748, 726, 691 cm⁻¹. HRMS (ESI) for: Exact mass calculated for C₂₂H₂₂NO₃PNa [M+Na]⁺ 402.1235, found 402.1241.


N-Allyl-P,P-di-o-tolylphosphinic amide (1m)

Synthesized according to general procedure. The title compound was isolated as white solid (1.99 g, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.40-7.35 (m, 2H), 7.24 – 7.16 (m, 4H), 6.03-5.93 (m, 1H), 5.33 – 5.04 (m, 2H), 3.70-3.64 (m, 2H), 2.73 (d, *J* = 7.4 Hz, 1H), 2.46 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3 (d, *J*_{P-C} = 9.9 Hz),

136.5 (d, $J_{P-C} = 7.3$ Hz), 132.9 (d, $J_{P-C} = 10.7$ Hz), 131.8, 131.7 (d, $J_{P-C} = 15.2$ Hz), 131.0 (d, $J_{P-C} = 123.5$ Hz), 125.4 (d, $J_{P-C} = 12.6$ Hz), 115.8, 43.5, 21.5 (d, $J_{P-C} = 4.0$ Hz). ³¹P NMR (121 MHz, CDCl₃) δ 25.5. IR (ATR Diamond): 3117, 3062, 1645, 1591, 1452, 1433, 1275, 1201, 1166, 1136, 1076, 1030, 998, 910, 866, 806, 762, 716, 691, 671 cm⁻¹. HRMS (ESI): Exact mass calculated for C₁₇H₂₀NOPNa [M+Na]⁺ 308.1180 , found 308.1181.

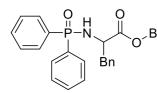
Naphthalen-1-yl-N-allyl-P-phenylphosphonamidate (1r)



Synthesized according to general procedure. The title compound was isolated as white solid (2.58 g, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.10 (m, 1H), 8.03 – 7.92 (m, 2H), 7.87 – 7.78 (m, 1H), 7.61 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.59 – 7.52 (m, 1H), 7.48 (ddt, *J* = 8.3, 6.9, 2.8 Hz, 4H), 7.35 (t, *J* = 8.0 Hz, 1H), 5.67 (ddt, *J* = 17.2, 10.6, 5.5 Hz, 1H), 5.23 – 4.78 (m, 2H), 3.57 (ddt, *J* = 9.2, 5.5, 1.6 Hz, 2H), 3.03 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7 (d, *J*_{P-C} = 8.4 Hz), 135.5 (d, *J*_{P-C} = 6.3

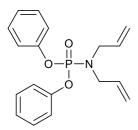
Hz), 134.8, 132.3 (d, $J_{P-C} = 3.2$ Hz), 131.4 (d, $J_{P-C} = 10.0$ Hz), 131.2 , 129.4 , 128.6 (d, $J_{P-C} = 14.7$ Hz), 127.9 , 126.6 (d, $J_{P-C} = 5.9$ Hz), 126.3 (d, $J_{P-C} = 28.5$ Hz), 125.7 (d, $J_{P-C} = 0.9$ Hz), 124.3 , 121.5 , 115.9 , 115.3 (d, $J_{P-C} = 4.0$ Hz), 43.6 31 P NMR (121 MHz, CDCl₃) δ 17.8. IR

(ATR Diamond): 3207, 1574, 1462, 1437, 1392, 1262, 1214, 1125, 1077, 1046, 913, 853, 795, 771, 750, 718, 694 cm⁻¹. HRMS (ESI): Exact mass calculated for $C_{19}H_{18}NO_2PNa$ [M+Na]⁺ 346.0973, found 346.0971.


Benzyl 2-((diphenylphosphoryl)amino)-2-phenylacetate (10)

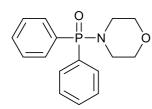
Synthesized according to general procedure. The title compound Bn was isolated as white solid (2.96 g, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.78 – 7.70 (m, 2H), 7.54 – 7.48 (m, 1H), 7.47 – 7.40 (m, 3H), 7.34 – 7.26 (m, 10H), 7.17 – 7.11 (m, 2H), 5.16 – 5.09 (m, 2H), 4.99 (dd, *J* = 10.7, 9.7 Hz,

1H), 4.30 (dd, J = 9.7, 6.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0 (d, $J_{P-C} = 5.7$ Hz), 138.1 (d, $J_{P-C} = 4.4$ Hz), 135.1, 132.5 (d, $J_{P-C} = 48.5$ Hz), 132.3 (d, $J_{P-C} = 9.8$ Hz), 132.1 (d, $J_{P-C} = 2.8$ Hz), 131.9, 131.9 (d, $J_{P-C} = 9.6$ Hz), 131.2 (d, $J_{P-C} = 51.7$ Hz), 129.2 , 128.6 (d, $J_{P-C} = 12.7$ Hz), 128.6 (d, $J_{P-C} = 23.9$ Hz), 128.3 (d, $J_{P-C} = 24.4$ Hz), 128.3, 128.1, 127.9, 127.0, 67.5, 57.0. IR (ATR Diamond): 3059, 1743, 1591, 1538, 1436, 1248, 1222, 1160, 1065, 1040, 1019, 955, 741, 754, 717, 692 cm⁻¹. HRMS (ESI): Exact mass calculated for C₂₇H₂₅NO₃P [M+H]⁺ 442.1572 , found 442.1594.


Benzyl (diphenylphosphoryl)phenylalaninate (1q)

Synthesized according to general procedure. The title compound was isolated as white solid (3.19 g, 70% yield). ¹H NMR (300 MHz, CD₃OD) δ 7.82 – 7.66 (m, 2H), 7.61 – 7.40 (m, 6H), 7.40 – 7.23 (m, 10H), 7.21 – 7.11 (m, 2H), 5.17 – 4.98 (m, 2H), 3.85 (td, *J* = 8.4, 6.5 Hz, 1H), 3.17 – 2.94 (m, 2H). ¹³C NMR (75 MHz,

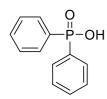
CD₃OD) δ 172.8 (d, J_{P-C} = 3.2 Hz), 136.9, 135.7, 132.5, 132.0 (d, J_{P-C} = 2.7 Hz), 131.9, 131.8, 131.7 (d, J_{P-C} = 1.4 Hz), 131.6, 130.7, 130.1, 129.4, 128.3, 128.1, 128.1 (d, J_{P-C} = 1.8 Hz), 127.9, 126.6, 66.5, 55.7, 40.1 (d, J_{P-C} = 7.2 Hz). ³¹P NMR (121 MHz, CDCl₃) δ 22.93. IR (ATR Diamond): 3172, 3059, 1738, 1434, 1383, 1159, 1177, 1125, 1106, 1091, 919, 902, 742, 727, 693 cm⁻¹. HRMS (ESI): Exact mass calculated for C₂₈H₂₆NO₃PNa [M+Na]⁺ 478.1548 , found 478.1541.


Diphenyl diallylphosphoramidate

Synthesized according to general procedure. The title compound was isolated as white solid (2.87 g, 87% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.09 (m, 10H), 5.56 (ddt, J = 17.5, 9.7, 6.3 Hz, 2H), 5.19 – 5.07 (m, 4H), 3.75 (ddt, J = 11.3, 6.3, 1.3 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 151.19 (d, $J_{P-C} = 6.7$ Hz), 133.94 (d, $J_{P-C} = 2.6$ Hz), 129.92, 125.12 (d, $J_{P-C} = 1.1$ Hz), 120.52 (d, $J_{P-C} = 5.0$ Hz), 118.78, 48.12 (d, $J_{P-C} = 4.4$ Hz). ³¹P NMR (121 MHz, CDCl₃) δ -2.77. IR (ATR

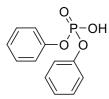
Diamond): 3452, 1588, 1485, 1254, 1227, 1186, 1162, 1111, 1085, 1023, 993, 923, 910, 775, 762, 613 cm⁻¹. HRMS (EI): Exact mass calculated for $C_{18}H_{20}NO_3P$ [M]⁺: 329.11808, found 329.11611

Morpholinodiphenylphosphine oxide

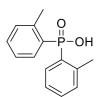


Synthesized according to general procedure. The title compound was isolated as colorless solid (1.60 g, 56 % yield). ¹H NMR (300 MHz, CD₃OD) δ 8.02 – 7.73 (m, 1H), 7.69 – 7.24 (m, 1H), 3.77 – 3.58 (m, 1H), 3.09 – 2.94 (m, 1H). ¹³C NMR (75MHz, CD₃OD): δ 133.72 (d, *J*_{P-C} = 2.8 Hz), 133.45 (d, *J*_{P-C} = 9.4 Hz), 131.20 (d, *J*_{P-C} = 131.4 Hz), 130.14 (d, *J*_{P-C} = 12.7 Hz), 68.05 (d, *J*_{P-C} = 6.6 Hz),

46.19. ³¹ P NMR (121 MHz, CDCl₃) δ 28.6. IR (ATR Diamond): 3053, 2961, 2848, 1723, 1440, 1367, 1294, 1255, 1196, 1111, 1082, 1067, 1019, 957, 914, 846, 764, 702, 694, 669, 611, 598, 552 cm⁻¹. HRMS (ESI): Exact mass calculated for C₁₆H₁₈NO₂PNa [M+Na]⁺ 310.0973, found 310.0983.

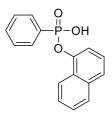

3. Spectral Data of Products.

Diphenylphosphinic acid


White solid, ¹H NMR (400 MHz, CD₃OD) δ 7.85 – 7.71 (m, 4H), 7.59 – 7.50 (m, 2H), 7.50 – 7.41 (m, 4H). ¹³C NMR (101 MHz, CD₃OD) δ 133.1 (d, J_{P-C} = 138.4 Hz), 131.8 (d, J_{P-C} = 2.9 Hz), 130.9 (d, J_{P-C} = 10.3 Hz), 128.2 (d, J_{P-C} = 13.2 Hz). Spectral data is in good agreement with literature data.¹⁶

Diphenyl hydrogen phosphate

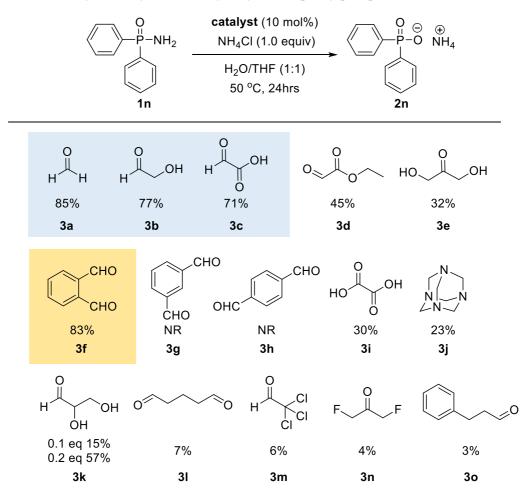
White solid, ¹H NMR (300 MHz, CD₃OD) δ 7.34 (dddd, *J* = 9.0, 6.5, 1.2, 0.6 Hz, 4H), 7.23 – 7.13 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3 (d, *J*_{*P*-*C*} = 7.1 Hz), 129.7, 125.4, 120.2 (d, *J*_{*P*-*C*} = 4.9 Hz). Spectral data is in good agreement with literature data.¹⁷


Di-o-tolylphosphinic acid

colorless oil. ¹H NMR (400 MHz, CD₃OD) δ 7.94-7.88 (m, 2H), 7.44 (tt, *J* = 7.6, 1.5 Hz, 2H), 7.33-7.28 (m, 2H), 7.26 – 7.18 (m, 2H), 2.27 (s, 6H). ¹³C NMR (101 MHz, CD₃OD) δ 141.1 (d, *J*_{*P*-*C*} = 11.4 Hz), 132.5 (d, *J*_{*P*-*C*} = 9.8 Hz), 132.1, 132.0, 131.1 (d, *J*_{*P*-*C*} = 12.5 Hz), 125.2 (d, *J*_{*P*-*C*} = 12.6 Hz), 20.0 (d, *J*_{*P*-*C*} = 4.6 Hz). ³¹P NMR (121 MHz, CD₃OD) δ 25.56. IR (ATR Diamond):

3183, 2919, 2848, 1645, 1594, 1276, 939, 715, 699 cm⁻¹. HRMS (ESI): Exact mass calculated for $C_{14}H_{15}O_2PNa$ [M+Na]⁺ 269.0707, found 269.0726.

Naphthalen-1-yl hydrogen phenyl phosphonate

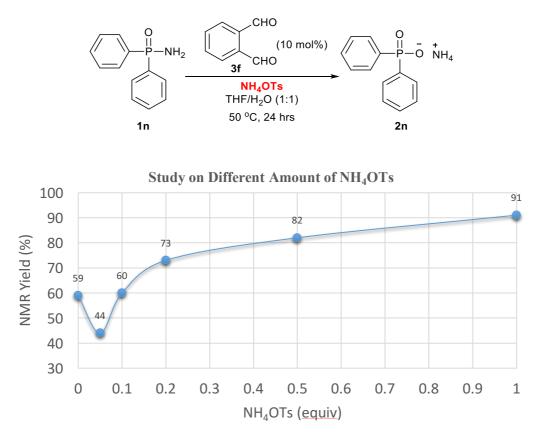


colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 11.50 (s, 1H), 8.06 (dd, J = 8.3, 1.2 Hz, 1H), 7.89-7.83 (m, 2H), 7.78 – 7.71 (m, 1H), 7.56 – 7.46 (m, 2H), 7.45 – 7.28 (m, 5H), 7.16 (t, J = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4 (d, J_{P-C} = 8.4 Hz), 134.7, 132.7 (d, J_{P-C} = 3.1 Hz), 131.5 (d, J_{P-C} = 10.4 Hz), 129.0, 128.4 (d, J_{P-C} = 15.8 Hz), 127.5, 127.0, 126.8 (d, J_{P-C} = 5.4 Hz), 126.3 (d, J_{P-C} = 32.6 Hz), 125.4 (d, J_{P-C} = 1.6 Hz), 124.7 (d, J_{P-C} =

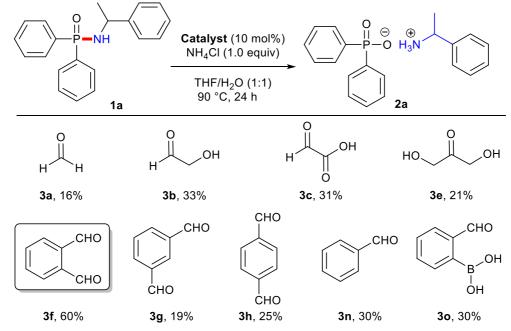
1.5 Hz), 122.1, 115.6 (d, J_{P-C} = 3.6 Hz). ³¹P NMR (121 MHz, CDCl₃) δ 17.3. IR (ATR Diamond): 3056, 1595, 1574, 1507, 1462, 1439, 1390, 1258, 1226, 1154, 1132, 1082, 1043, 977, 914, 815, 795, 769, 749, 719, 691, 638, 596, 565, 544 cm⁻¹. HRMS (ESI): Exact mass calculated for C₁₆H₁₃O₃PNa [M+Na]⁺ 307.0500 , found 307.0506.

4. Details for Optimization of the Reaction Conditions.

Table S1. Survey of catalysts for the hydrolysis of diphenylphosphinic amide $1n^{a}$


^{*a*} Reaction conditions: **1n** (0.2 mmol), NH₄Cl (0.2 mmol) and **catalyst** (0.02 mmol) in 0.2 mL of THF and 0.2 mL of H₂O at 50 °C for 24 h in a sealed tube. The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

	O P-NH ₂ am	CHO 3f (10 mol%) CHO momium salt (1.0 eq) H ₂ O/THF (1:1) 50 °C, 24 hrs	$\qquad \qquad $	
Entry ^a		Ammonium salt		Yield $(\%)^b$
1		NH ₄ OTs		91
2		NH ₄ Cl		83
3		NH ₄ I		74
4		NH ₄ OMs		70
5		NH ₄ O ₂ CH		23
6		NH ₄ OAc		N.R.
7		NH ₄ OH		N.R.


Table S2. Screening of additives of the hydrolysis of diphenylphosphinic amide $1n^a$

^{*a*} Reaction conditions: **1n** (0.2 mmol), ammonia salt (0.2 mmol) and **3f** (0.02 mmol) in 0.2 mL of solvent and 0.2 mL of H₂O at 50 °C for 24 h in a sealed tube. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Table S3. Study on the amount of NH_4OTs^a

^{*a*} Reaction conditions: **1n** (0.2 mmol), NH₄OTs and **3f** (0.02 mmol) in 0.2 mL of THF and 0.2 mL of H₂O at 50 °C for 24 h in a sealed tube. The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Table S4. Survey of catalysts for the hydrolysis of diphenylphosphinic amide $1a^{a}$

^{*a*} Reaction conditions: **1a** (0.2 mmol), NH₄Cl (0.2 mmol) and **3** (0.02 mmol) in 0.2 mL of THF and 0.2 mL of H₂O at 90 °C for 24 h in a sealed tube. The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

	$\begin{array}{c} O \\ P-NH \\ \end{array}$ $\begin{array}{c} O \\ H \\ \end{array}$ $\begin{array}{c} O \\ \end{array}$ $\begin{array}{c} O \\ H \\ \end{array}$ $\begin{array}{c} O \\ \end{array}$ $\begin{array}{c} O \\ H \\ \end{array}$ $\begin{array}{c} O \\ \end{array}$ \end{array} $\begin{array}{c} O \\ \end{array}$ $\begin{array}{c} O \\ \end{array}$ \end{array} \end{array} $\begin{array}{c} O \\ \end{array}$ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}				
Entry ^a	Ammonium salt	2a Solvent	Yield $(\%)^b$		
1	NH ₄ Cl	THF	60		
2	MeNH ₂ •HCl	THF	40		
3	Pyrrolidine•HCl	THF	42		
2	(<i>n</i> -Bu) ₃ N•HCl	THF	52		
3	NH4OTs	THF	75		
4	NH ₄ OAc	THF	10		
5	NH ₄ COOH	THF	N.R.		
6	-	THF	36		

Table S5 Screen of additives for the hydrolysis of diphenylphosphinic amide $1a^{a}$

^{*a*}Reaction conditions: **1a** (0.2 mmol), ammonia salt (0.2 mmol) and **3f** (0.02 mmol) in 0.2 mL of solvent and 0.2 mL of H₂O at 90 °C for 24 h in a sealed tube. ^{*b*}Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

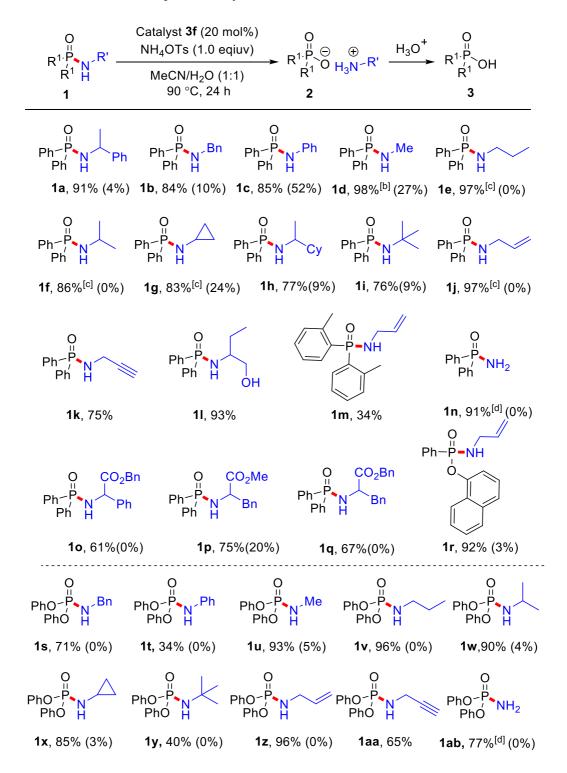
$\begin{array}{c c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ &$					
Entry ^a	1a 90 °C Ammonium salt	, 24 hrs 2a Solvent	Yield $(\%)^b$		
1	NH ₄ OTs	THF	75		
2	NH ₄ OTs	DMF	38		
3	NH ₄ OTs	DMSO	59		
4	NH ₄ OTs	1,4-Dioxane	69		
5	NH ₄ OTs	MeCN	82		
6 ^c	NH ₄ OTs	MeCN	99 (91) ^d		
7^e	NH ₄ OTs	MeCN	4		

Table S6. Solvent screen for the hydrolysis of diphenylphosphinic amide $1a^{a}$

CHO

^{*a*} Reaction conditions: **1a** (0.2 mmol), ammonia salt (0.2 mmol) and **3f** (0.02 mmol) in 0.2 mL of solvent and 0.2 mL of H₂O at 90 °C for 24 h in a sealed tube. ^{*b*} Determined by ¹H NMR analysis using 1,3,5trimethoxybenzene as an internal standard. ^{*c*} **3f** (0.04 mmol) was used. ^{*d*} Isolated yield based on diphenylphosphinic acid. ^{*e*} Without *o*-phthalaldehyde.

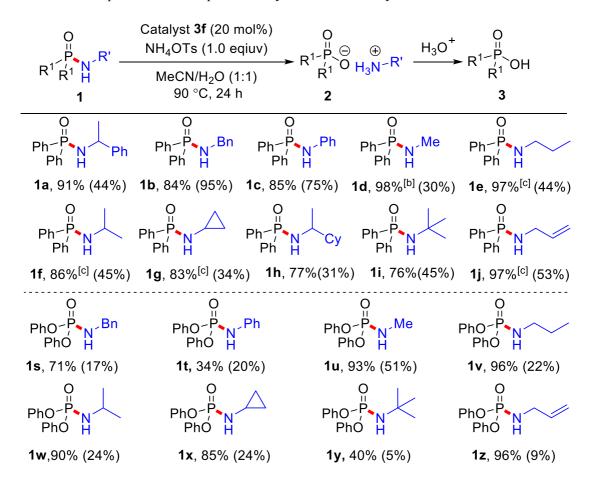
5. General Procedure for the Hydrolysis Reaction


5.1 Isolation of diphenylphosphinic acid.

Diphenylphosphinic amide 1 (0.2 mmol), phthalaldehyde **3f** (0.04mmol) and NH₄OTs (0.2 mmol) were added into a sealed tube. 0.2 mL MeCN and 0.2 mL H₂O were followed. Then the reaction mixture was stirred under 90 °C for 24 hours. Then the solvent was removed by high vacuum and following adding H₂O (10 mL) and toluene (10 mL). The mixture was stirred for 10 minutes and the aqueous layer was collected. After acidification of the aqueous layer by 1 M HCl to pH = $1\sim2$, then the aqueous layer was combined, dried over Na₂SO₄ and filtered and concentrated *in vacuo*.

5.2 Isolation of amine component.

Diphenylphosphinic amide 1 (0.2 mmol), phthalaldehyde **3f** (0.04mmol) and NH₄OTs (0.2 mmol) were added into a sealed tube. 0.2 mL MeCN and 0.2 mL H₂O were followed. Then the reaction mixture was stirred under 90 °C for 24 hours. Then the solvent was removed by high vacuum and following adding H₂O (10 mL) and toluene (10 mL). The mixture was stirred for 10 minutes and the aqueous layer was collected. After basification of the aqueous layer by 1 M NaOH to pH = $8 \sim 9$, then the aqueous layer was extracted using ethyl acetate (20 mL x 3). The organic layers was combined, dried over Na₂SO₄ and filtered and concentrated *in vacuo*.


Table S7. Substrate scope for the catalytic hydrolysis of P(=O)-NHR reagents showing the results in the absence of *o*-phthalaldehyde^{*a*}

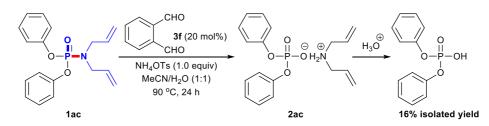
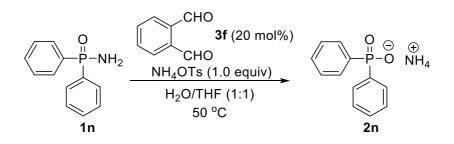
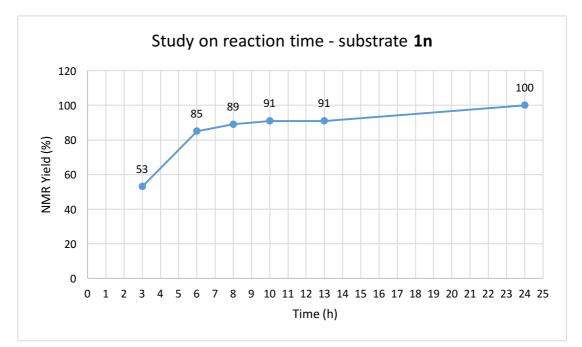
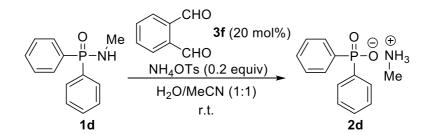
^{*a*} Reaction conditions: **1** (0.2 mmol), NH₄OTs (0.2 mmol) and **3f** (0.04 mmol) in 0.2 mL of solvent and 0.2 mL of H₂O at 90 °C for 24 h in a sealed tube. Results between parentheses related to similar reactions performed without adding **3f**. Amine component of hydrolysis reaction of **1a** was isolated in 87% yield. ^{*b*} NH₄OTs (0.04 mmol) was used at r.t. ^{*c*} NH₄OTs (0.04 mmol) and **3f** (0.04 mmol) were used at 50 °C. ^{*d*} Performed in THF (0.2 mL) and H₂O (0.2 mL) at 50 °C.

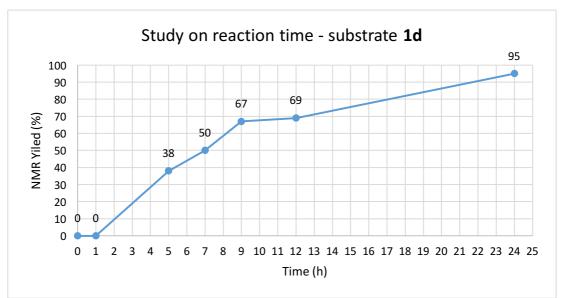
6. Comparison between phthalaldehyde and formaldehyde^a.

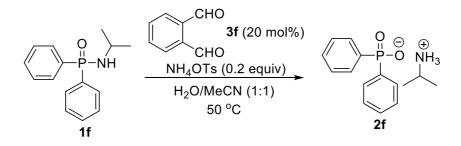
Table S8. Comparison between phthalaldehyde and formaldehyde^a

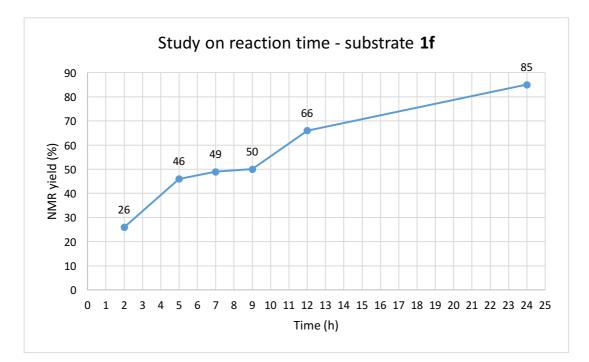
^{*a*} Reaction conditions: **1a** (0.2 mmol), NH₄OTs (0.2 mmol) and **3f** (0.04 mmol) in 0.2 mL of solvent and 0.2 mL of H₂O at 90 °C for 24 h in a sealed tube. Results between parentheses related to similar reactions performed using 20 mol% of formaldehyde. ^{*b*} NH₄OTs (0.04 mmol) was used at r.t. ^{*c*} NH₄OTs (0.04 mmol) and **3f** (0.04 mmol) were used at 50 °C.

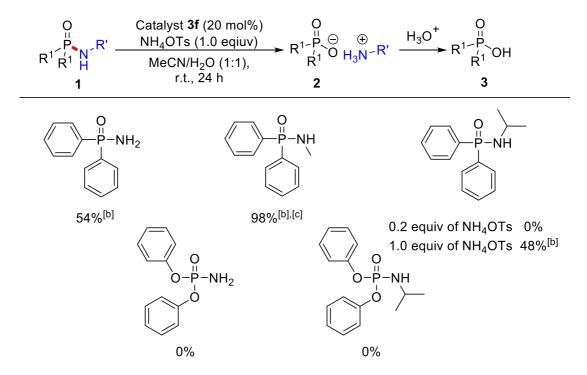
Table S9. Control experiments

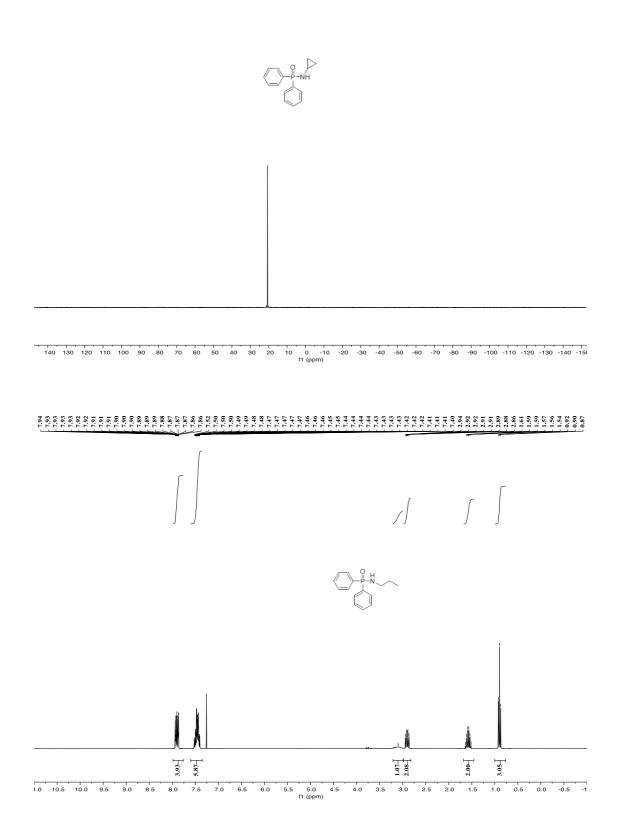

Table S10. Monitor the reaction time.

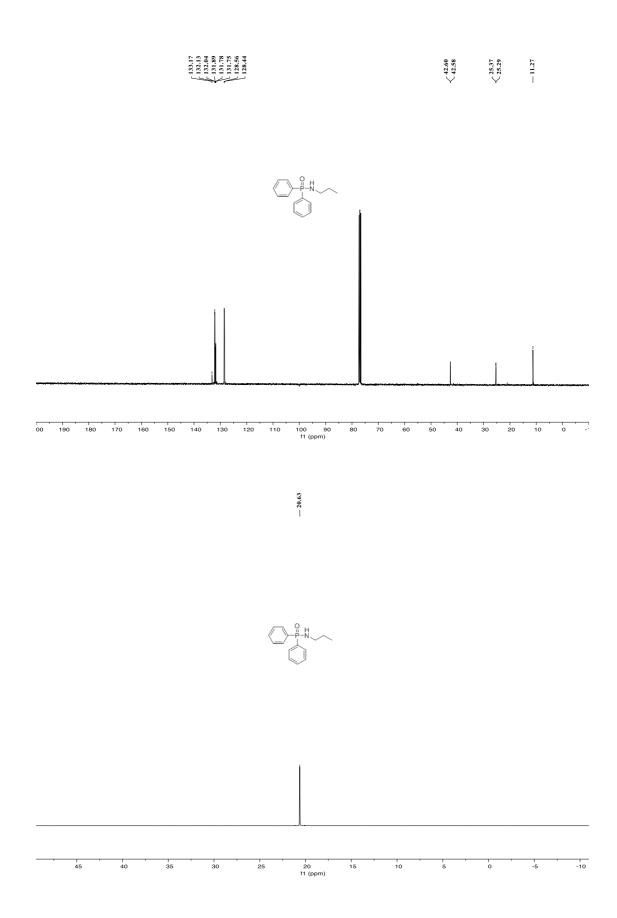


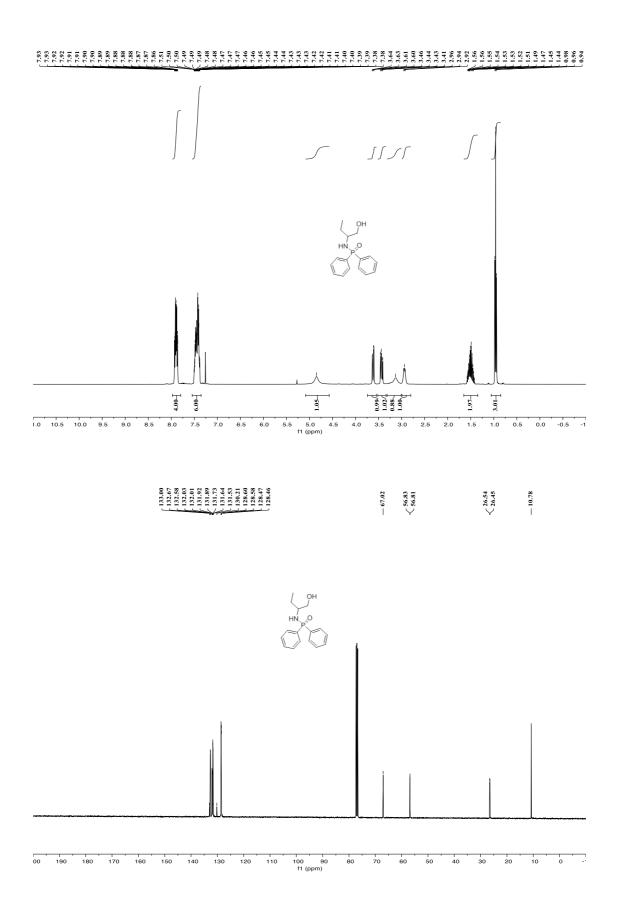

Reaction conditions: **1n** (0.2 mmol), NH₄OTs (0.2 mmol) and **3f** (0.04 mmol) in 0.2 mL of THF and 0.2 mL of H₂O at 50 °C for 24 h in a sealed tube. The reaction was monitored by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

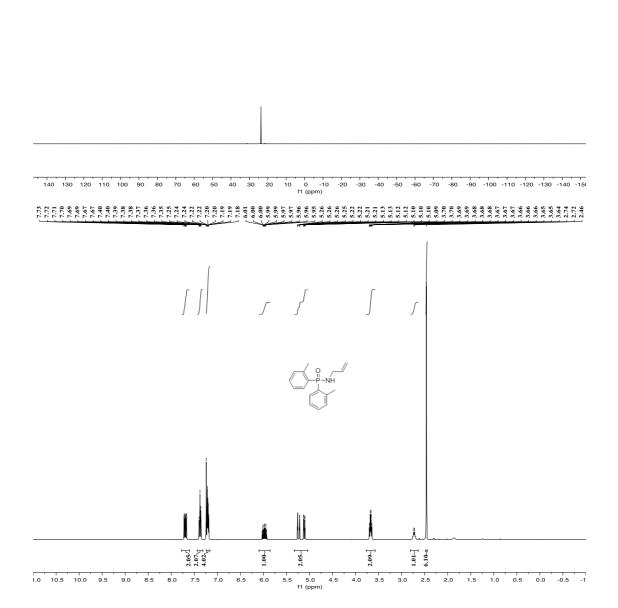

Reaction conditions: **1d** (0.2 mmol), NH₄OTs (0.04 mmol) and **3f** (0.04 mmol) in 0.2 mL of MeCN and 0.2 mL of H₂O at r.t. for 24 h in a sealed tube. The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

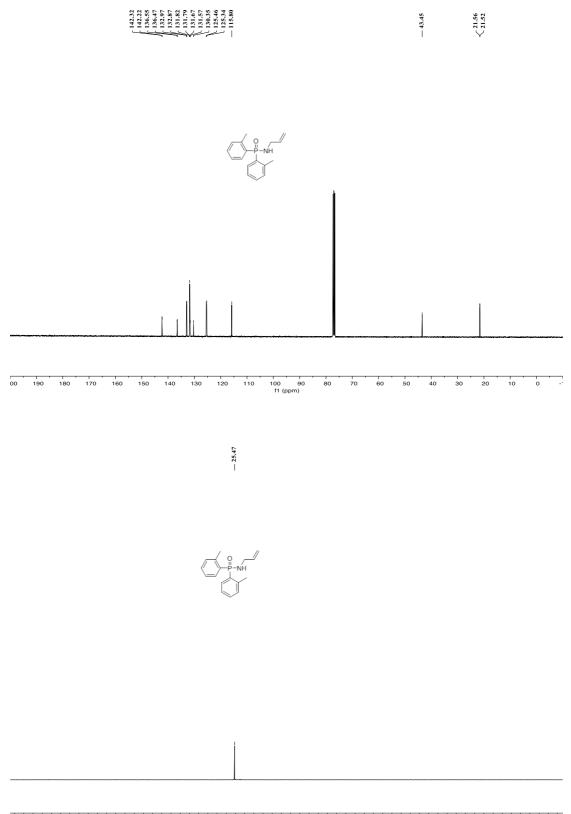
Reaction conditions: **1f** (0.2 mmol), NH₄OTs (0.04 mmol) and **3f** (0.04 mmol) in 0.2 mL of MeCN and 0.2 mL of H₂O at 50 °C for 24 h in a sealed tube. The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

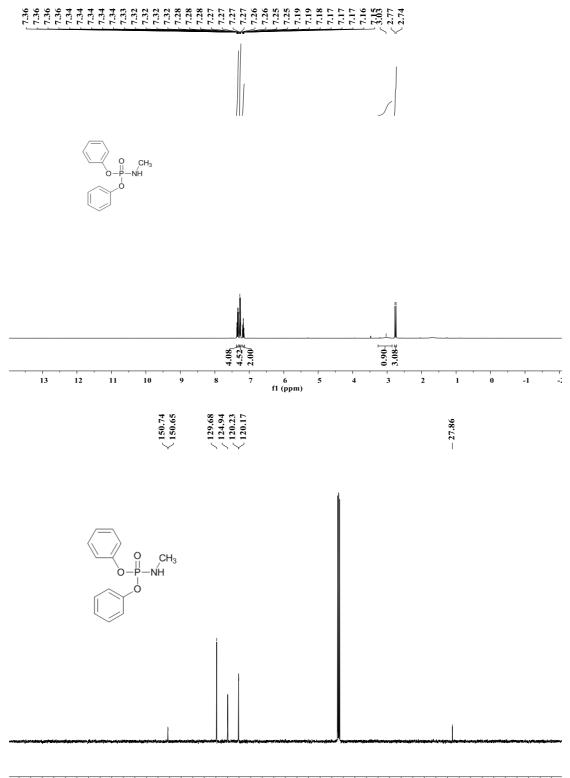

Table S11. Study the reaction at room temperature^a

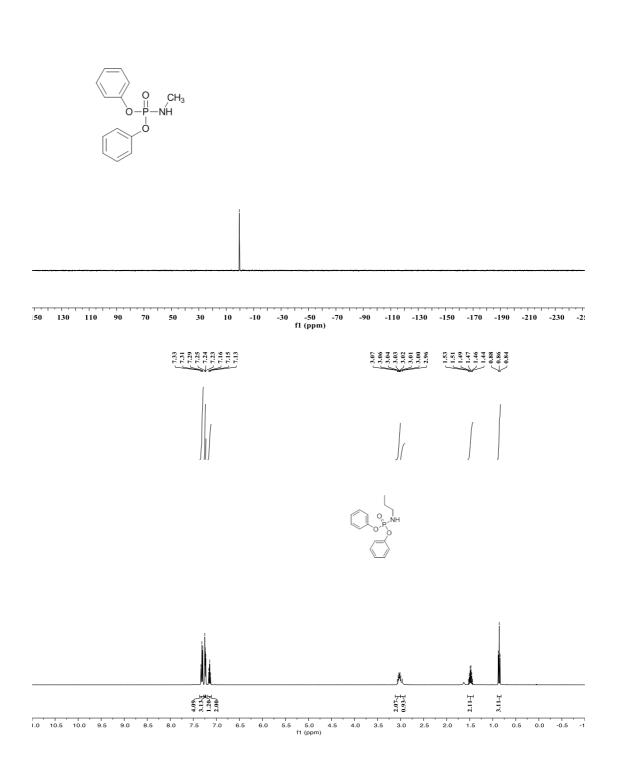


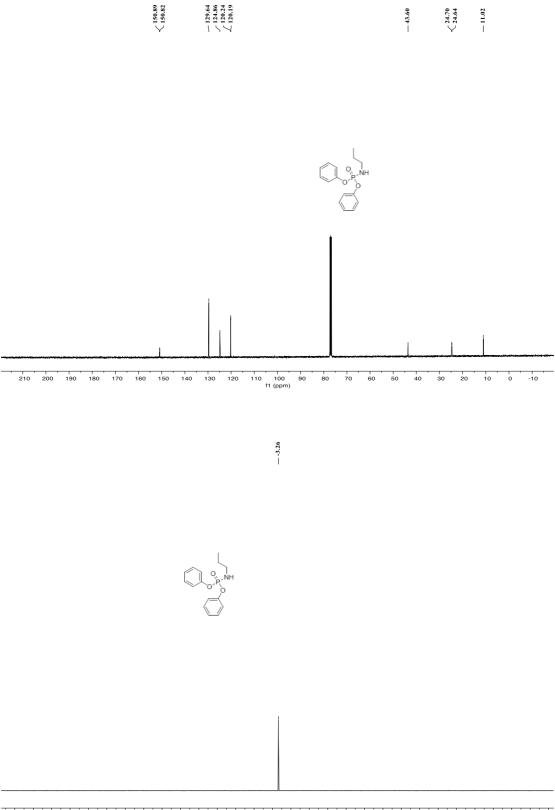

^{*a*} Reaction conditions: **1** (0.2 mmol), NH₄OTs (0.2 mmol) and **3f** (0.04 mmol) in 0.2 mL of MeCN and 0.2 mL of H₂O at room temperature for 24 h in a sealed tube. ^{*b*} Isolated yield based on diphenylphosphinic acid. ^{*c*} NH₄OTs (0.04 mmol) was used.

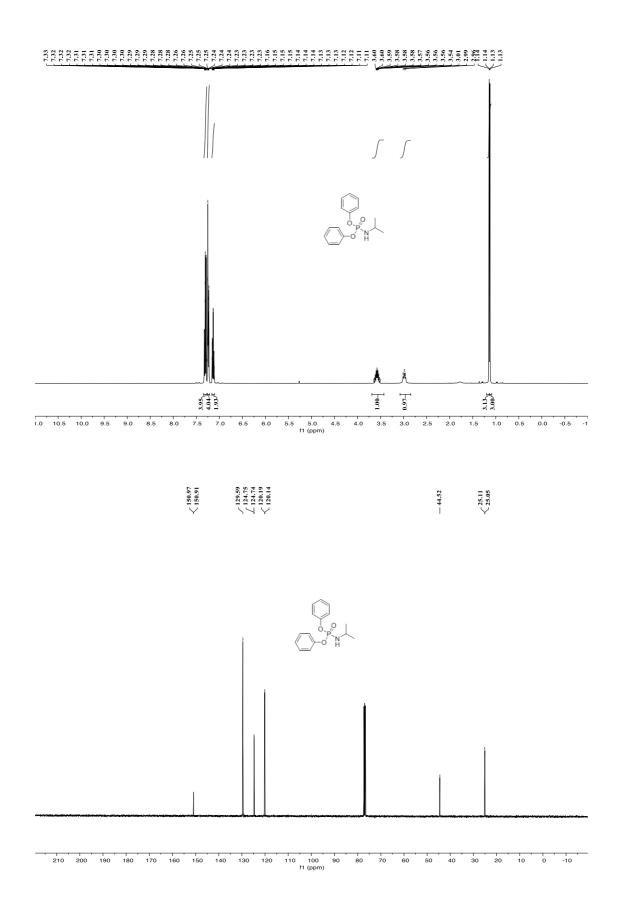


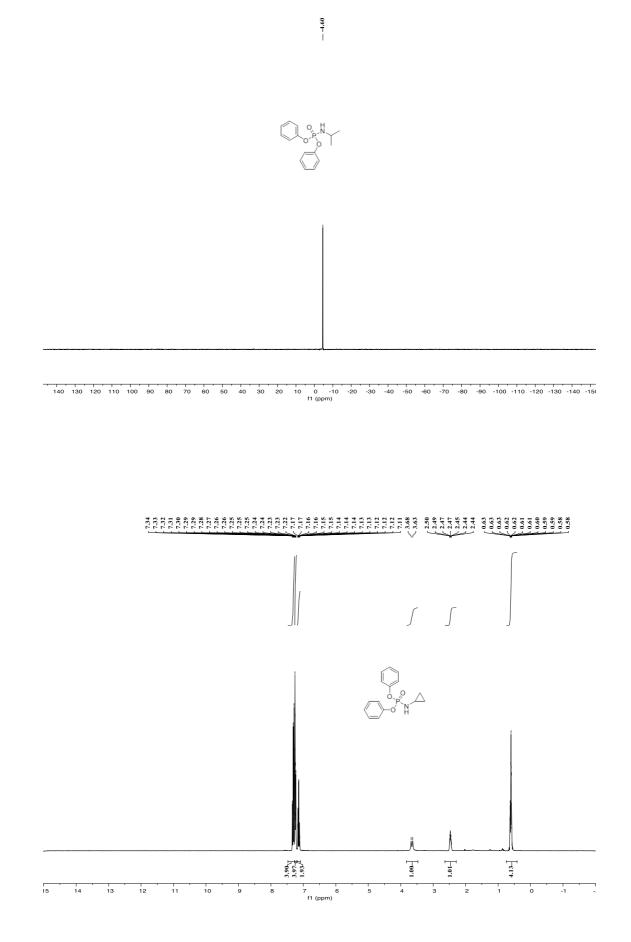


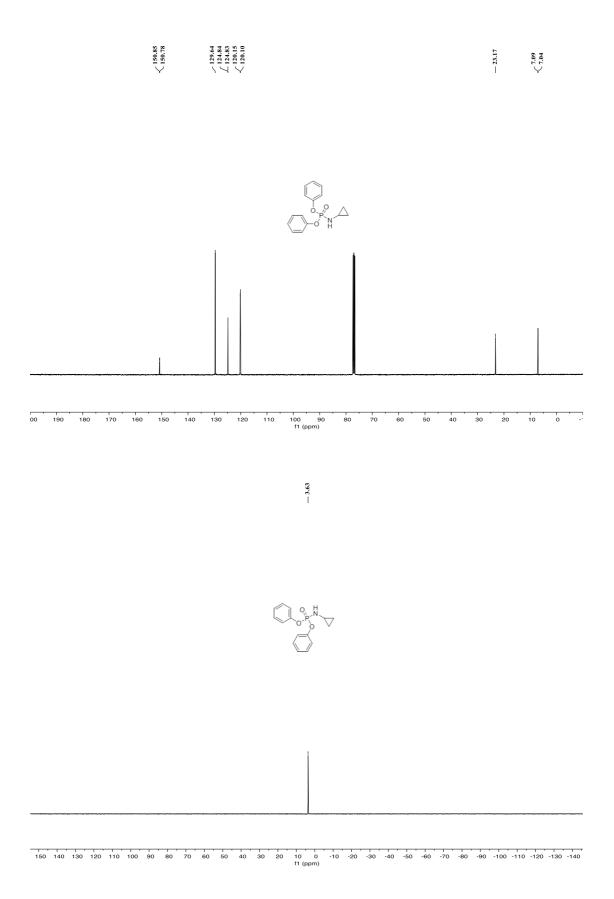


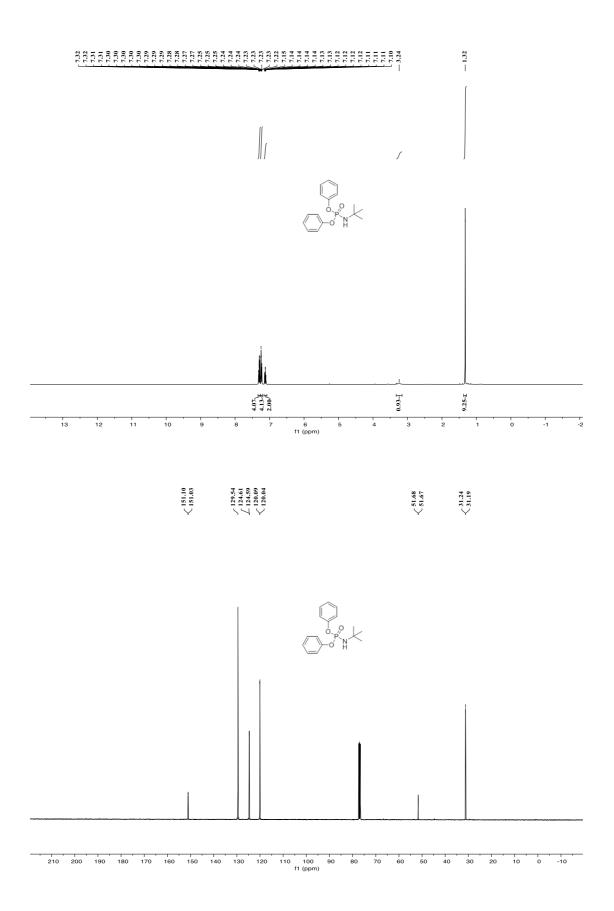


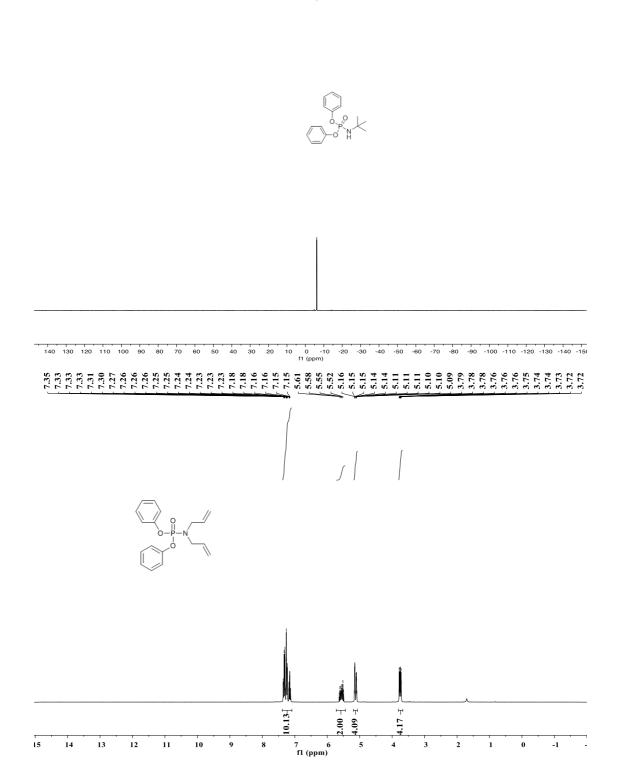

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -15(f1 (ppm)

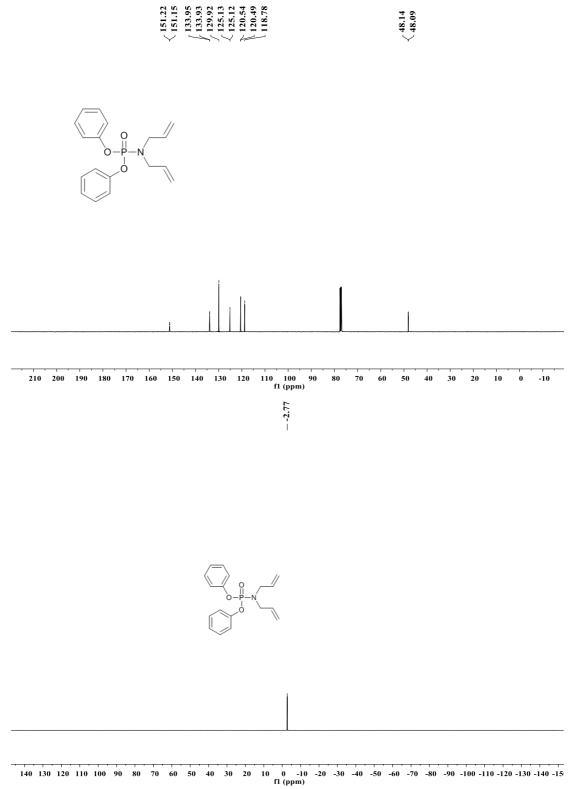

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

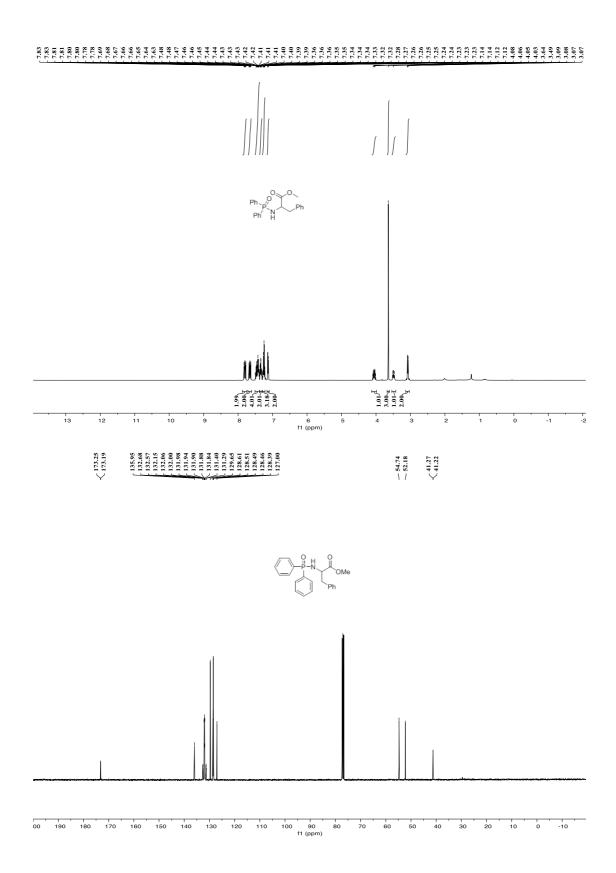

- 0.42

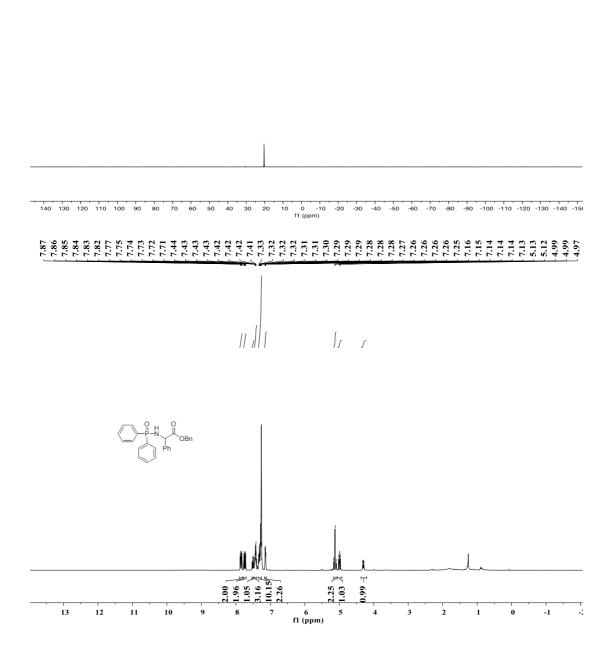

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15(f1 (ppm)

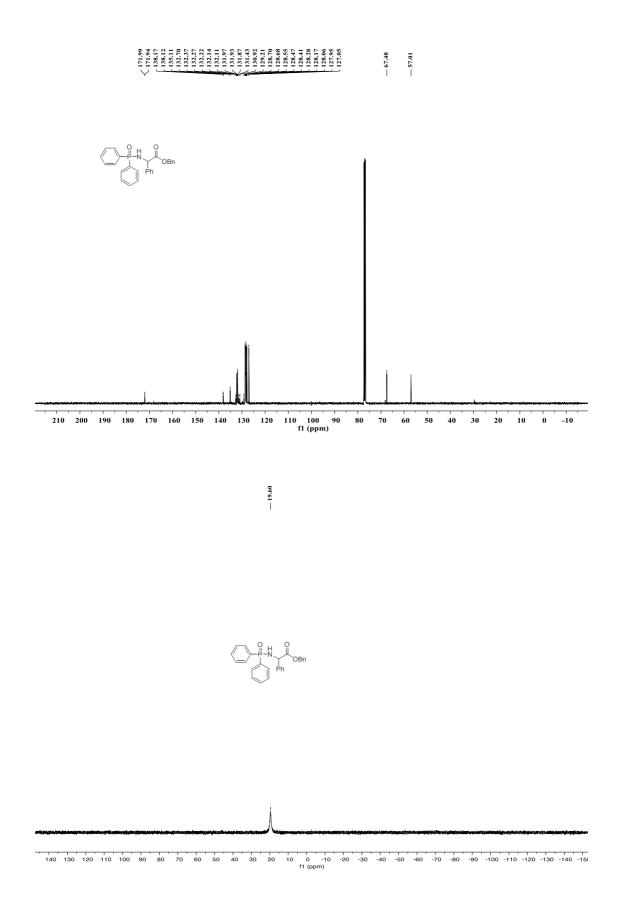


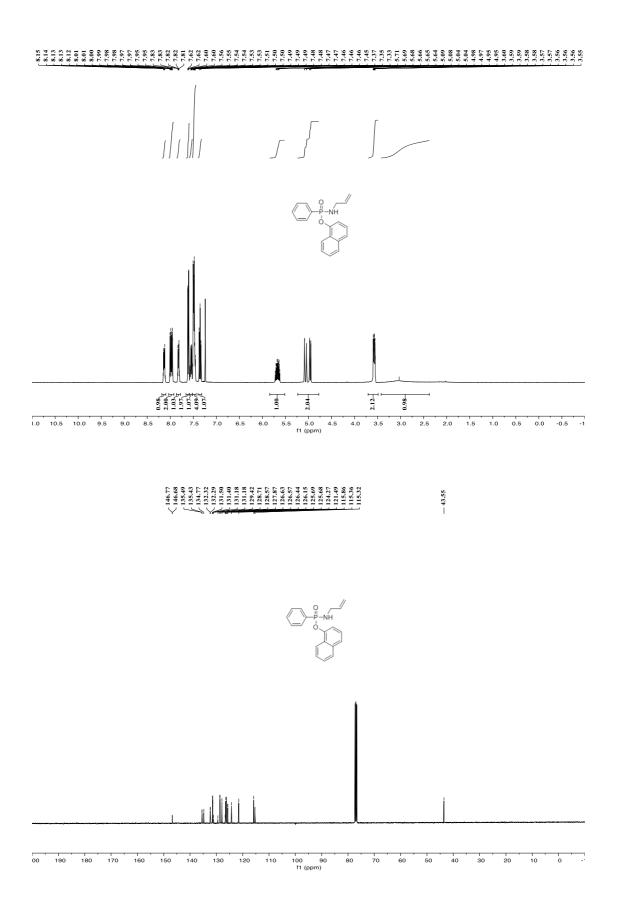

- 28 -

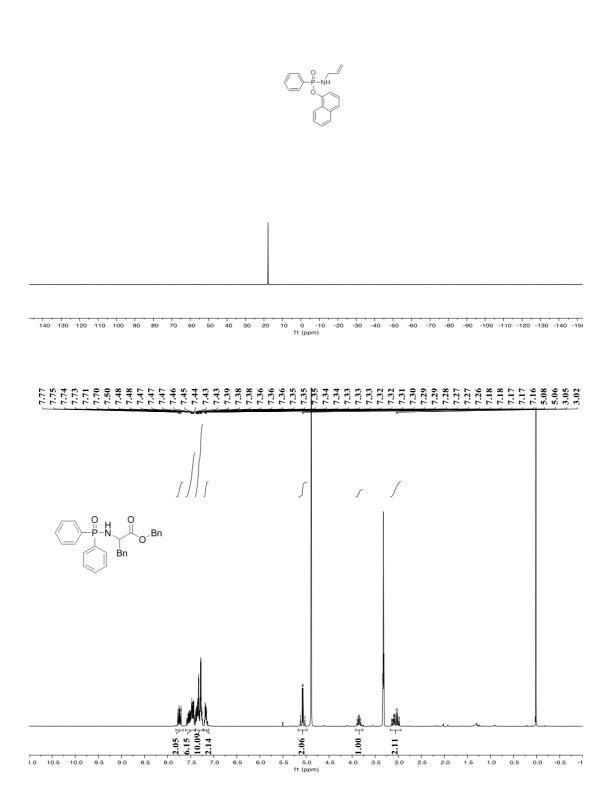



- 29 -

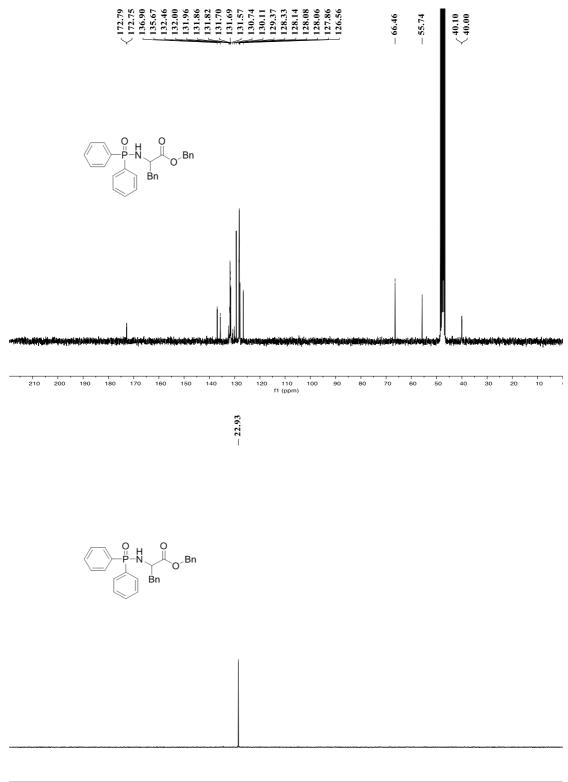


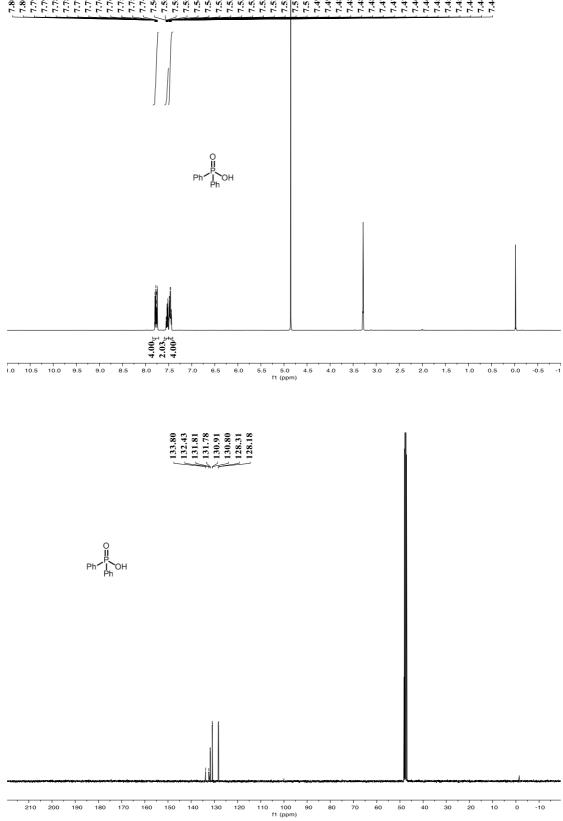

- 34 -


O H O P-N OMe Ph

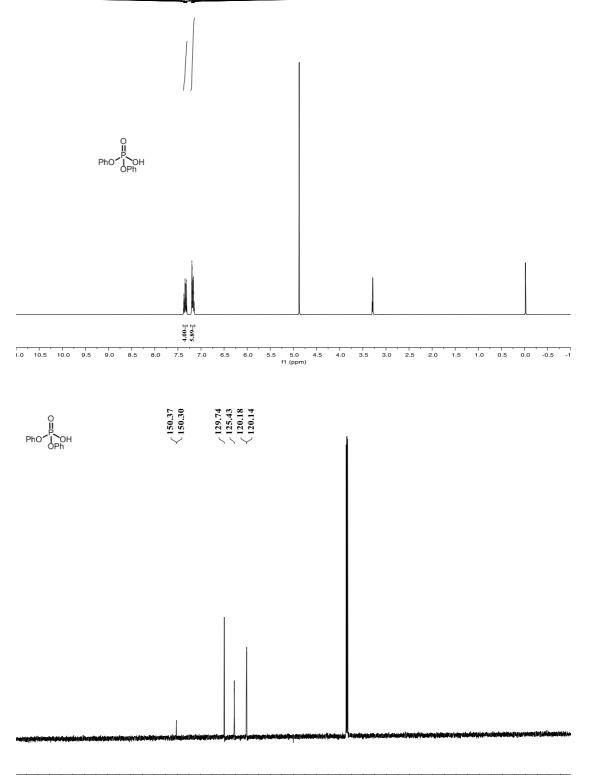

— 20.31

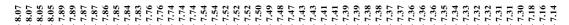
- 35 -

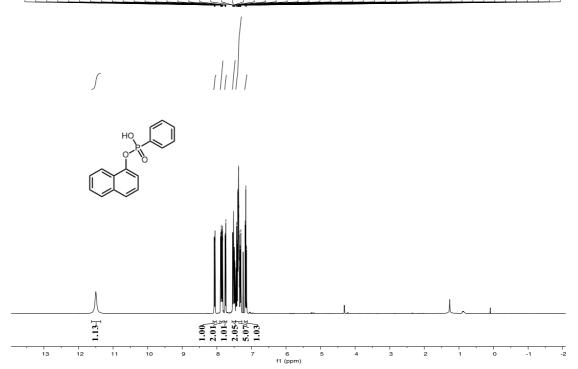

- 36 -

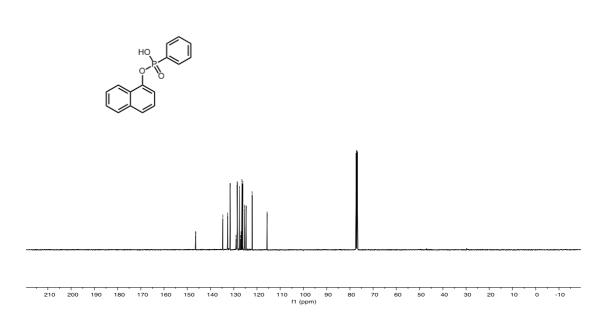


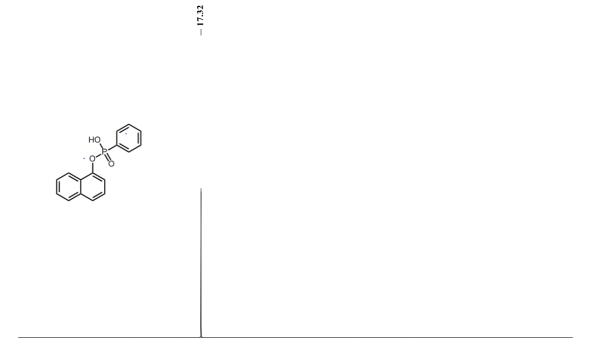
- 17.80

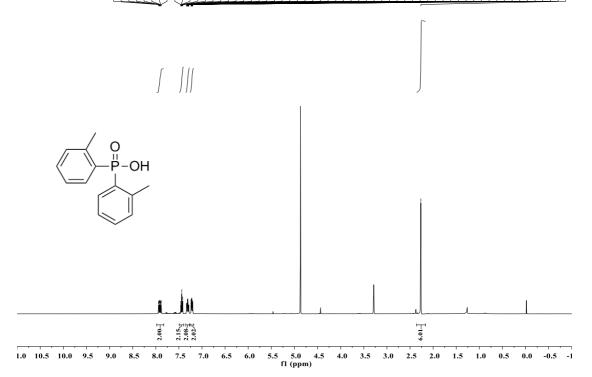

- 38 -


140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15(f1(ppm)

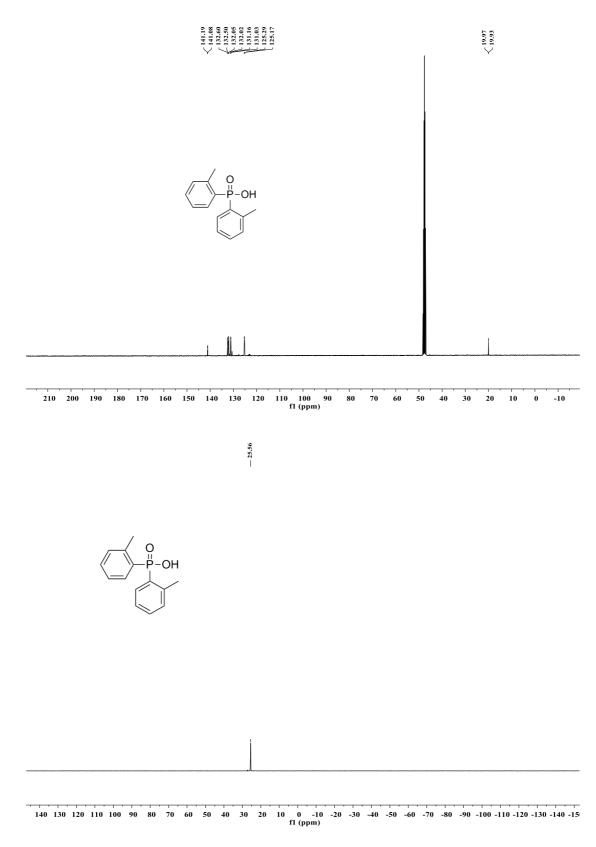





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



146.42 146.34 146.34 13.4.70 13.4.70 13.2.67 13.2.67 13.2.83 13.2.83 13.2.83 13.2.83 13.2.83 12.2.83 12.5.43 12.5.53 12.5.43 12.5.55 12.5.55 12.5.55 12.5.55 12.5.55 12.5.55 12.5.55 12.5.55 12.5.55 12.5.55 12.5.55 1



140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 11 (ppm)

7.7.1.2.
7.7.2.4.4.
7.7.2.4.4.
7.7.2.4.4.
7.7.2.4.4.
7.7.2.4.4.
7.7.2.4.4.
7.7.2.4.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.
7.7.2.4.

Reference;

- 1. M. Hatano, T. Miyamoto and K. Ishihara, Org. Lett., 2007, 9, 4535-4538.
- 2 B. Burns, N. Paul King, H. Tye, J. R. Studley, M. Gamble and M. Wills, J. Chem. Soc., *Perkin Trans.1*, 1998, 1027-1038.

- 3 A. Martínez-Asencio, D. J. Ramón and M. Yus, *Tetrahedron*, 2011, 67, 3140-3149.
- 4 C. Shen, G. Yang and W. Zhang, Org. Lett., 2013, 15, 5722-5725.
- 5 N. A. Bondarenko, A. V. Kharlamov and A. G. Vendilo, *Russ. Chem. Bull.*, 2009, 58, 1872-1885.
- 6 A. Brück, W. Kuchen and W. Peters, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1995, **107**, 129-133.
- 7 C. R. Graves, K. A. Scheidt and S. T. Nguyen, Org. Lett., 2006, 8, 1229-1232.
- 8 V. Moodley, L. Mthethwa, M. N. Pillay, B. Omondi and W. E. van Zyl, *Polyhedron*, 2015, 99, 87-95.
- 9 A. M. Z. Slawin, J. Wheatley and J. D. Woollins, *Eur. J. Inorg. Chem.*, 2005, 2005, 713-720.
- 10 D. A. Erzunov, G. V. Latyshev, A. D. Averin, I. P. Beletskaya and N. V. Lukashev, *Eur. J. Org. Chem.*, 2015, **2015**, 6289-6297.
- 11 B. Wahl, A. Cabré, S. Woodward and W. Lewis, Tetrahedron Lett., 2014, 55, 5829-5831.
- 12 C. S. Jones, S. D. Bull and J. M. J. Williams, Org. Biomol. Chem., 2016, 14, 8452-8456.
- 13 M. E. Masri and K. D. Berlin, Org. Prep. Proced. Int., 1995, 27, 161-169.
- 14 B. M. Trost, M. C. Ryan, M. Rao and T. Z. Markovic, J. Am. Chem. Soc., 2014, 136, 17422-17425.
- S. Kan, Y. Jin, X. He, J. Chen, H. Wu, P. Ouyang, K. Guo and Z. Li, *Polym. Chem.*, 2013, 4, 5432-5439.
- 16 Y. Hao, D. Wu, R. Tian, Z. Duan and F. Mathey, Dalton Trans., 2016, 45, 891-893.
- I. E. Nifant'ev, A. N. Tavtorkin, S. y. A. Korchagina, I. F. Gavrilenko, N. N. Glebova, N. N. Kostitsyna, V. A. Yakovlev, G. N. Bondarenko and M. P. Filatova, *Appl. Catal.*, A, 2014, 478, 219-227.