Electronic Supporting Information

Palladium-Catalyzed Alkene ChainRunning Isomerization

Andrew L. Kocen, Maurice Brookhart*, and Olafs Daugulis*
Department of Chemistry, University of Houston, Houston, Texas 77024-5003, USA.

Table of Contents
Page
General Considerations S-2
Synthesis of New Starting Materials S-3
Reaction Optimization S-6
General Procedure for Isomerization of Alkenes S-8
References S-20
NMR Spectral Data S-22

General Considerations

Reactions were performed using standard glassware or were run in 2-dram vials with PTFE/Liner screw caps. Column chromatography was performed on $60 \AA$ silica gel (Silicycle). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and 2D-NMR spectra were recorded on JEOL EC-400, JEOL EC-500, or JEOL EC-600 spectrometers using residual solvent peak as a reference. Analytical thin layer chromatography was performed on silica gel TLC Al foils with fluorescent indicator (254 nm) from Fluka. Low temperature reactions were performed using Cryo Immersion Cooler FC100 with Flexi Probe from SP Scientific. All procedures were performed under ambient air unless otherwise noted. Reagents and starting materials were obtained from commercial sources and used without further purification unless otherwise noted. Complex $\mathbf{3}^{1}$ and NaBArF (sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) ${ }^{2}$ were prepared according to literature procedure. Hexene was distilled from sodium under nitrogen. Methylene chloride was purified on a Glasscontour solvent purification system.

Synthesis of New Starting Materials

3-tert-Butyldimethylsiloxymethylcyclohexene

OTBS Intermediate alcohol was produced by a known procedure. ${ }^{3}$ In a glove box $\mathrm{KOtBu}(1.68 \mathrm{~g}, 15 \mathrm{mmol})$ was added to a 100 mL oven dried round bottom flask equipped with a stir bar. Outside the glovebox, cyclohexene (19.5 mL) was added via syringe and the suspension was cooled to $0^{\circ} \mathrm{C} . \mathrm{nBuLi}(10.3 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 16.5 mmol) was added slowly and the mixture was stirred for 2 hours, warmed to room temperature, and stirred overnight. The solution was heated to $60^{\circ} \mathrm{C}$ and paraformaldehyde (495 $\mathrm{mg}, 16.5 \mathrm{mmol}$) was added slowly in 3 portions. The mixture was heated for 3 h at $60^{\circ} \mathrm{C}$. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ by addition of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Imidazole ($1.12 \mathrm{~g}, 16.5 \mathrm{mmol}$) was added with stirring followed by $\operatorname{TBSCl}(2.49 \mathrm{~g}, 16.5 \mathrm{mmol})$. The mixture was stirred overnight at room temperature and quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The mixture was concentrated on silica and purified by column chromatography on silica gel (eluent: pentane) to give 1.14 g of 3-tertbutyldimethylsiloxymethylcyclohexene (34%) as a clear liquid. $R_{f}($ pentane $)=0.40$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 5.78-5.55(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{qd}, \mathrm{J}=9.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-$ $2.19(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 1 \mathrm{H})$, 0.89 ($\mathrm{s}, 9 \mathrm{H}$), 0.04 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 128.5, 67.4, 38.4, 26.1, 25.7, 25.6, 20.9, 18.5, 14.2, -5.2.

HR-MS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}-\mathrm{H}]^{+} 225.1675$; found: 225.1680

tert-Butyldimethyl(pent-4-en-3-yloxy)silane

1-Penten-3-ol ($2.05 \mathrm{~mL}, 20 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. Imidazole ($1.5 \mathrm{~g}, 22 \mathrm{mmol}$) was added in one portion and the mixture was stirred for 10 minutes. $\mathrm{TBSCl}(3.32 \mathrm{~g}, 22 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and then
the solution was warmed to room temperature and stirred overnight. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and the organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated to give 3.32 g of 3-tert-butyldimethyl(pent-4-en-3-yloxy)silane (83\%) as a clear liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.84-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=6.1,1 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 141.7,113.6,75.1,30.9,26.0,18.4,9.7,-4.3,-4.8$.

HR-MS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{OSi}[\mathrm{M}]^{+} 200.1596$; found: 200.1599

tert-Butyldimethyl(1-m-chlorophenyl-prop-2-en-1-yloxy)silane

In a 200 mL flame dried round bottom flask m-chlorobenzaldehyde $(1.13 \mathrm{~mL}, 10$ mmol) was dissolved in THF (50 mL) and cooled to $0^{\circ} \mathrm{C}$. Vinyl magnesium bromide solution (10.0 mL of a 1 M solution in THF) was added dropwise at 0 ${ }^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 3 hours. The reaction was quenched with aqueous 1 M HCl and extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$. The extra was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and cooled to $0^{\circ} \mathrm{C}$. Imidazole ($750 \mathrm{mg}, 11 \mathrm{mmol}$) was added and the mixture was stirred for 5 minutes. TBSCl ($1.65 \mathrm{~g}, 11 \mathrm{mmol}$) was added and the mixture was allowed to warm to room temperature and was stirred overnight. The reaction was quenched with water $(20 \mathrm{~mL})$ and the organic layer was separated and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated on silica and purified by column chromatography on silica gel (eluent: hexane) to give 1.45 g of tert-buytldimethyl(1-m-chlorophenyl-prop-2-en-1-yloxy)silane (51\%) as a clear liquid. R_{f} (pentane) $=0.66$.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.30-7.08(\mathrm{~m}, 4 \mathrm{H}), 5.98-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.05(\mathrm{~m}$, $3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, ppm) δ 146.0, 141.1, 134.2, 129.6, 127.2, 126.2, 124.2, 114.1, 75.4, 25.9, 18.4, -4.6, -4.8.

HR-MS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClOSi}[\mathrm{M}-\mathrm{H}]^{+} 282.1128$; found: 282.1132

tert-Butyldimethyl(1-fluoropent-4-en-2-yloxy)silane

OTBS Using a modified procedure, ${ }^{4} \mathrm{InI}_{3}(990 \mathrm{mg}, 2 \mathrm{mmol})$ was added to a 100 mL oven dried round bottom flask inside a glovebox. The flask was sealed with a rubber septum and taken outside the glovebox. Dichloromethane $(10 \mathrm{~mL})$ was added via syringe followed by allyltrimethylsilane ($6.24 \mathrm{~mL}, 40 \mathrm{mmol}$) and ethyl 2-fluoroacetate $(0.98 \mathrm{~mL}, 10$ mmol; CAUTION-TOXIC). In a separate 25 mL oven-dried round bottom flask methyldiphenylsilane (3.96 mL , 20 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. This solution was added dropwise using canula over 2 hours to the mixture of allylsilane and fluoroacetate followed by stirring for additional 15 minutes. TBAF (1 M in THF, $50 \mathrm{~mL}, 50 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with 1 M HCl and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The organic layer was separated and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated on silica and purified by column chromatography on silica gel (eluent: hexanes then 5:1 hexanes: ethyl acetate). All fractions containing 5 -fluoro-1-penten-4-ol were combined, concentrated, and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. Imidazole ($1.30 \mathrm{~g}, 20 \mathrm{mmol}$) was added and the mixture was stirred for 5 minutes followed by addition of $\operatorname{TBSCl}(2.26 \mathrm{~g}, 15 \mathrm{mmol})$. The mixture was stirred overnight. The reaction was quenched with water and the organic layer was separated and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated on silica and purified by column chromatography on silica gel (eluent: pentane) to give 172 mg of tert-butyldimethyl(1-fluoropent-4-en-2yloxy)silane (8%) as a clear liquid. $\mathrm{R}_{\mathrm{f}}($ pentane $)=0.36$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.80(\mathrm{ddt}, \mathrm{J}=17.4,10.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-4.99(\mathrm{~m}, 2 \mathrm{H})$, 4.42 - 4.11 (m, 2H), 3.92 (ddd, $\mathrm{J}=15.2,6.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.13(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 134.0,117.8,86.3(\mathrm{~d}, J=171.9 \mathrm{~Hz}), 70.8(\mathrm{~d}, J=19.6 \mathrm{~Hz})$, 38.2 (d, $J=6.5 \mathrm{~Hz}$), 25.9, 18.2, -4.6, -4.7.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta-224.59(\mathrm{td}, J=47.4,15.2 \mathrm{~Hz})$.

Reaction Optimization

General Procedure for Optimization Reactions

A 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar was charged with $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7 \mathrm{mg}, 8 \mu \mathrm{~mol})\right.$ and tert-butyldimethyl(allyloxy)silane ${ }^{5}(1.0 \mathrm{mmol})$. A freshly prepared solution of catalyst (20 mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed, placed in cooling bath at $0{ }^{\circ} \mathrm{C}$ and allowed to stir for the specified time. After the reaction had finished, a solution of $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. An internal standard, 1,4bis(trifluoromethyl)benzene $(7.8 \mu \mathrm{~L}, 0.050 \mathrm{mmol})$ was added to the vial and the whole reaction mixture was transferred to an NMR tube. Yields were determined by NMR. Spectra were taken with relaxation time of 20 seconds.

Figure S1. Palladium Complexes Used in Optimization

3: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H}$
S1: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H}$
S2: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Ph}$
S3: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Cl}$
S4: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{pCF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}_{3}=\mathrm{H}$

S5

S6

Table S1. Catalyst Optimization Results ${ }^{\text {a }}$

Entry	Catalyst	Yield
$\mathbf{1}$	$\mathbf{S 1}$	36%
$\mathbf{2}^{\mathbf{b}}$	$\mathbf{3}$	79%
$\mathbf{3}$	$\mathbf{S 2}$	7%
$\mathbf{4}$	$\mathbf{S 3}$	27%
$\mathbf{5}$	$\mathbf{S 4}$	28%
$\mathbf{6}$	$\mathbf{S 5}$	49%
$\mathbf{7}$	S6	5%

${ }^{\text {a) }}$ Olefin ($1.0 \mathrm{mmol}, 1$ equiv), catalyst ($0.002 \mathrm{mmol}, 0.2 \mathrm{~mol} \%$), NaBArF ($0.008 \mathrm{mmol}, 0.8 \mathrm{~mol} \%$), $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL}), 0^{\circ} \mathrm{C}, 3 \mathrm{~h}$, yields measured by NMR. ${ }^{\text {b) }}$ Catalyst ($0.1 \mathrm{~mol} \%$)

Table S2. Optimization of Reaction Conditions and Control Experiments ${ }^{\text {a }}$

${ }^{\text {a) }}$ Olefin ($1.0 \mathrm{mmol}, 1 \mathrm{eq}$), catalyst ($0.002 \mathrm{mmol}, 0.2 \mathrm{~mol} \%$), NaBArF (0.008 mmol , $0.8 \mathrm{~mol} \%), \mathrm{CDCl}_{3}(0.5 \mathrm{~mL}), 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, yields measured by NMR. ${ }^{\mathrm{b})}$ Reaction time: 3 h

Isomerization of Olefins

General Procedure for Isomerization of Olefins

A 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar was charged with $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7 \mathrm{mg}, 8 \mu \mathrm{~mol})\right.$ and olefin $(0.2 \mathrm{mmol})$. A freshly prepared solution of $\mathbf{3}$ (20 mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed, placed in cooling bath at the indicated temperature and allowed to stir for the specified time. After the reaction had finished, a solution of $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. An internal standard, 1,4bis(trifluoromethyl)benzene $(7.8 \mu \mathrm{~L}, 0.050 \mathrm{mmol})$ was added to the vial and the whole reaction mixture was transferred to an NMR tube. Either the allylic $-\mathrm{CH}_{3}$, allylic $-\mathrm{CH}_{2}$, or the olefin signal was used for quantification based on the best resolution in the spectra. Spectra were taken with relaxation time of 20 seconds. The signal used for quantification is designated in bold in each entry.

(Prop-1-enyloxy)benzene (Table 1, Entry 1)

Allyl phenyl ether $(27.4 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0\right.$ $\mu \mathrm{mol})$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and placed in a cooling bath at $0^{\circ} \mathrm{C}$ for 16 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed formation of 90% (prop-1-enyloxy)benzene ($\mathrm{E}: \mathrm{Z}=2.7: 1$). This product is known. ${ }^{6}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~m}, 3 \mathrm{H}), 6.43(\mathrm{Z}, \mathrm{dd}, \mathrm{J}=12.1,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{E}, \mathrm{dd}, \mathrm{J}=5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{5 . 3 9}(\mathbf{Z}, \mathbf{d q}, \mathbf{J}=\mathbf{1 2 . 1}, \mathbf{6 . 9} \mathbf{H z}, \mathbf{1 H}), \mathbf{4 . 9 3} \mathbf{- 4 . 8 2}$ (E, m, $\mathbf{1 H}), 1.73(\mathrm{E}, \mathrm{dd}, \mathrm{J}=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{Z}, \mathrm{dd}, \mathrm{J}=7.0,1.5 \mathrm{~Hz}, 3 \mathrm{H})$.

(Prop-1-enyloxy)-2-bromobenzene (Table 1, Entry 2)

 o-Allyl-2-bromophenol (43 mg, 0.20 mmol$)$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}\right.$, $8.0 \mu \mathrm{~mol})$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}(20 \mathrm{mM}$ in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in cooling bath at $0{ }^{\circ} \mathrm{C}$ for 16 hrs. After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed formation of 94% (prop-1-enyloxy)benzene ($\mathrm{E}: \mathrm{Z}=1.1: 1$). This product is known. ${ }^{7}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.79$ $(\mathrm{m}, 1 \mathrm{H}), 6.42$ - $6.26(\mathrm{~m}, 1 \mathrm{H}), \mathbf{5 . 4 4}$ (Z, dq, J = 12.1, $\mathbf{6 . 9} \mathbf{~ H z}, \mathbf{1 H}), \mathbf{5 . 0 3 - 4 . 9 2 (E , ~ m , ~ 1 H) , ~} 1.75$ (E. dd, $J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{Z}, \mathrm{dd}, \mathrm{J}=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H})$.

1-Propenylbenzene (Table 1, Entry 3)

Allylbenzene $(26.5 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and placed in a cooling bath at $0^{\circ} \mathrm{C}$ for 2 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed formation of $90 \% 1$ propenylbenzene $(\mathrm{E}: \mathrm{Z}=>50: 1)$. This product is known. ${ }^{8}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.41-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{dd}, \mathrm{J}=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{6 . 2 5}$ $\mathbf{(d q}, \mathbf{J}=\mathbf{1 5 . 7}, \mathbf{6 . 6} \mathrm{Hz}, \mathbf{1 H}), 1.89(\mathrm{dd}, \mathrm{J}=6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H})$. (Only E isomer is visible in reaction mixture)

1-(4'-Methoxyphenyl)prop-1-ene (Table 1, Entry 4)

Allylanisole $(30.7 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0\right.$ $\mu \mathrm{mol})$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of 3 (20 mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 16 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv
relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 100% 1-(4'-methoxyphenyl)prop-1-ene ($\mathrm{E}: \mathrm{Z}=22.5: 1$). This product is known. ${ }^{8}$ ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.29-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=15.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dq}, \mathrm{J}=15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), \mathbf{1 . 8 9}$ (Z, dd, J = 7.2, $\mathbf{1 . 8}$ $\mathbf{H z}, \mathbf{3 H}), \mathbf{1 . 8 6}(\mathbf{E}, \mathbf{d d}, \mathbf{J}=\mathbf{6 . 5}, \mathbf{1 . 7} \mathrm{Hz}, \mathbf{3 H})$. Not all Z isomer signals are resolvable.

1-Hexene Isomerization (Table 1, Entry 5)

1-Hexene ($25.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $3\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 1 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 57\% 2-hexene and 23\% 3-hexene. This product is known. ${ }^{8}$

2-Hexene:

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.50-5.26(\mathrm{~m}, 2 \mathrm{H}, 2$-hexene and 3-hexene signals overlap), $2.03-1.87(\mathrm{~m}, 2 \mathrm{H}, 2$-hexene and 3-hexene signals overlap), $1.68-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.31(\mathrm{~m}$, 2H), 0.99 - 0.91 ($\mathbf{m}, \mathbf{3 H}$).

3-Hexene:
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.50-5.26(\mathrm{~m}, 2 \mathrm{H}, 2$-hexene and 3-hexene signals overlap), $2.03-1.87(\mathrm{~m}, 4 \mathrm{H}, 2$-hexene and 3-hexene signals overlap), $\mathbf{0 . 8 8}-\mathbf{0 . 8 3}(\mathbf{m}, \mathbf{6 H})$.

2-Methyl-2-pentene (Table 1, Entry 6)

2-Methyl-1-pentene $(24.8 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0\right.$ $\mu \mathrm{mol})$ were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was
added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 3 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 84% 2-methyl-2pentene. This product is known. ${ }^{8}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.14$ - $\mathbf{5 . 0 8}(\mathbf{m}, \mathbf{1 H}), 1.98(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 3 \mathrm{H})$.

tert-Butyldimethyl(prop-1-en-1-yloxy)silane (Table 2, Entry 1)

OTBS tert-Butyldimethyl(allyloxy)silane ${ }^{5}(34 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}\right.$ ($7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol}$) were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and placed in a cooling bath at $0^{\circ} \mathrm{C}$ for 2 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 86% tert-butyldimethyl(prop-1-en1 -yloxy)silane ($\mathrm{E}: \mathrm{Z}=1.4: 1$). This product is known ${ }^{5}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 6.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{E}$ and Z signals overlap), 4.98 ($\boldsymbol{E}, \mathbf{d q}, \boldsymbol{J}=$ 11.9, $6.8 \mathrm{~Hz}, \mathbf{1 H}), 4.55-4.41(\boldsymbol{Z}, \mathbf{m}, \mathbf{1 H}), 1.57(Z, \mathrm{dd}, J=6.7,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(E, \mathrm{dd}, J=6.8$, $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(Z, \mathrm{~s}, 9 \mathrm{H}), 0.91(E, \mathrm{~s}, 9 \mathrm{H}), 0.12(Z, \mathrm{~s}, 6 \mathrm{H}), 0.12(E, \mathrm{~s}, 6 \mathrm{H})$.

tert-Butyldimethyl(2-methylprop-1-en-1-yloxy)silane (Table 2, Entry 2)

OTBS

tert-Butyldimethyl((2-methylallyloxy)silane ${ }^{5}$ ($\left.37.0 \mathrm{mg}, 0.200 \mathrm{mmol}\right)$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}(20 \mathrm{mM}$ in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was filled with ethylene and then sealed and placed in a cooling bath at $0^{\circ} \mathrm{C}$ for 16 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 87% tert-butyldimethyl(2-methylprop-1-en-1-yloxy)silane. This product is known. ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta \mathbf{6 . 0 3}(\mathrm{s}, \mathbf{1 H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}$, $6 \mathrm{H})$.

tert-Butyldimethyl(but-2-en-2-yloxy)silane (Table 2, Entry 3)

 tert-Butyldimethyl(but-1-en-3-yloxy)silane ${ }^{9} \quad(37 \mathrm{mg}, \quad 0.20 \mathrm{mmol})$ and cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}(20 \mathrm{mM}$ in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 3 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 60% of tert-butyldimethyl(but-2-en-2-yloxy)silane ($\mathrm{E}: \mathrm{Z}=4.4: 1$). This product is known. ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \boldsymbol{\delta} \mathbf{4 . 6 5}(\mathbf{Z}, \mathbf{q}, \mathbf{J}=\mathbf{6 . 9} \mathbf{~ H z}, \mathbf{1 H}), \mathbf{4 . 4 5}(\mathbf{E}, \mathbf{q}, \mathbf{J}=\mathbf{6 . 8} \mathbf{~ H z}, \mathbf{1 H})$, $1.74(\mathrm{E}, \mathrm{s}, 3 \mathrm{H}), 1.70(\mathrm{Z}, \mathrm{s}, 3 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 3 \mathrm{H}, \mathrm{E}$ and Z signals overlap), $0.94(\mathrm{E}, \mathrm{s}, 9 \mathrm{H})$, 0.90 ($\mathrm{Z}, \mathrm{s}, 9 \mathrm{H}$), 0.12 ($\mathrm{E}, \mathrm{s}, 6 \mathrm{H}), 0.10(\mathrm{Z}, \mathrm{s}, 6 \mathrm{H})$.

tert-Buytldinethyl(pent-2-en-3-yloxy)silane (Table 2, Entry 4)

 tert-Butyldimethyl(pent-1-en-3-yloxy)silane (40 mg, 0.20 mmol$)$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 3 h . After the reaction was finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 77% tert-buytldinethyl(pent-2-en-3-yloxy)silane ($\mathrm{E}: \mathrm{Z}=4.1: 1$). This product is known. ${ }^{11}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta \mathbf{4 . 5 7}(\mathbf{Z}, \mathbf{q}, \mathbf{J}=\mathbf{6 . 9} \mathbf{~ H z}, \mathbf{1 H}), 4.48(\mathbf{E}, \mathbf{q}, \mathbf{J}=\mathbf{6 . 6} \mathbf{~ H z}, \mathbf{1 H})$, $2.11-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.96(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{E}, \mathrm{s}, 6 \mathrm{H}), 0.11$ (Z s, 6H).

tert-Buytldimethyl[1-(3-Chlorophenyl)prop-1-enyloxy]silane (Table 2, Entry 5)

 tert-Butyldimethyl(1-m-chlorophenyl-prop-2-en-1-yloxy)silane (57 mg, 0.20 $\mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial.

The vial was sealed and placed in a cooling bath at $-30{ }^{\circ} \mathrm{C}$ for 22 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 87% tert-buytldimethyl $[1-(3-$ chlorophenyl)prop-1-enyloxy]silane ($\mathrm{E}: \mathrm{Z}=1.6: 1$). This product is known. ${ }^{12}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.41-7.11(\mathrm{~m}, 4 \mathrm{H}), 5.34-4.99(\mathrm{~m}, 1 \mathrm{H}), \mathbf{1 . 7 1}(\mathbf{Z}, \mathbf{d}, \mathbf{J}=\mathbf{6 . 9}$ $\mathbf{H z}, \mathbf{3 H}$), $\mathbf{1 . 6 8}$ (E, d, J = 7.4 Hz, 3H), 0.98 (Z, s, 9H), 0.90 (E, s, 9H), 0.02 (E, s, 6H), -0.05 (Z, s, $6 \mathrm{H})$.

tert-Butyldimethyl(but-1-en-1-yloxy)silane (Table 2, Entry 6)

tert-Butyldimethyl(but-2-en-1-yloxy)silane ${ }^{13}$ (37 mg, 0.20 mmol) and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}$ (20 mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 48 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed $93 \% 1$ - tert-butyldimethyl(but-1-en-lyloxy)silane ($\mathrm{E}: \mathrm{Z}=2.0: 1$). This product is known. ${ }^{14}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 6.22(\mathrm{Z}, \mathrm{dt}, \mathrm{J}=12.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{E}, \mathrm{dt}, \mathrm{J}=5.8,1.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $\mathbf{5 . 0 1}(\mathbf{Z}, \mathbf{d t}, \mathbf{J}=\mathbf{1 2 . 0}, \mathbf{7 . 2} \mathbf{~ H z}, \mathbf{1 H}), \mathbf{4 . 4 4}(\mathbf{E}, \mathbf{t d}, \mathbf{J}=\mathbf{7 . 0}, \mathbf{5 . 8} \mathbf{H z}, \mathbf{1 H}), 2.08(\mathrm{E}, \mathrm{pd}, \mathrm{J}=$ $7.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{Z}, \mathrm{pd}, \mathrm{J}=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.02-0.92(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{E}, \mathrm{s}, 9 \mathrm{H}), 0.90(\mathrm{Z}$, s, 9H), 0.11 (Z, s, 6H), 0.11 (E, s, 6H).

1,4-Bis(tert-butyldimethylsilyloxy)-1-butene (Table 2, Entry 7)

TBSO (E)-1,4-Bis(tert-butyldimethylsilyloxy)-2-butene ${ }^{15}$ ($63 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of 3 (20 mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in a cooling bath at $0^{\circ} \mathrm{C}$ for 3 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in CDCl_{3} (>20 equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 62% 1,4-bis(tert-butyldimethylsilyloxy)-1-butene ($\mathrm{E}: \mathrm{Z}=1.3: 1$). This product is known. ${ }^{15}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 6.27-6.22(\mathrm{E}, \mathrm{m}, 1 \mathrm{H}), 6.20(\mathrm{Z}, \mathrm{dt}, \mathrm{J}=5.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.94 ($\mathbf{E}, \mathbf{d t}, \mathbf{J}=\mathbf{1 2 . 0}, \mathbf{7 . 7} \mathbf{~ H z}, \mathbf{1 H}), 4.45(\mathbf{Z}, \mathbf{t d}, \mathbf{J}=\mathbf{7 . 1}, \mathbf{5 . 9} \mathbf{~ H z}, \mathbf{1 H}), 3.58-3.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{E}$ and Z signals overlap), 2.29 ($\mathrm{Z}, \mathrm{m}, 2 \mathrm{H}$), 2.08 ($\mathrm{E}, \mathrm{m}, 2 \mathrm{H}$), $0.90-0.87$ (m, 9H, E and Z signals overlap), $0.11-0.01$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{E}$ and Z signals overlap).

Isomerization of tert-Butyldimethyl(hex-1-en-3-yloxy)silane (Table 2, entry 8)

tert-Butyldimethyl(hex-1-en-3-yloxy)silane ${ }^{16}(44 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0\right.$ $\mathrm{mg}, 8.0 \mu \mathrm{~mol}$) were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $3\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and placed in a cooling bath at $0^{\circ} \mathrm{C}$ for 24 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 51% tert-butyldimethyl(hex-2-en-3-yloxy)silane ($\mathrm{E}: \mathrm{Z}=4.7: 1$) and 20% tert-butyldimethyl(hex-3-en-3yloxy)silane (E:Z 5.6:1). These products are known. ${ }^{17,18}$
tert-Butyldimethyl(hex-2-en-3-yloxy)silane:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \boldsymbol{\delta} \mathbf{4 . 6 2}(\mathbf{q}, \mathbf{J}=\mathbf{6 . 9} \mathbf{~ H z}, \mathbf{1 H}, \mathbf{E}), \mathbf{4 . 4 7}(\mathbf{q}, \mathbf{J}=\mathbf{6 . 4} \mathbf{~ H z}, \mathbf{1 H}, \mathbf{Z})$, $2.03-1.99(\mathrm{~m}, 3 \mathrm{H}, \mathrm{E}), 1.97-1.93(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Z}), 1.53-1.48$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{E}$ and Z signals overlap), 0.94 (s, 9H, E and Z signals overlap), $0.93-0.83$ (m, 3H, E and Z signals overlap), 0.11 (s, 6 H , E and Z signals overlap).
tert-Butyldimethyl(hex-3-en-3-yloxy)silane:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \boldsymbol{\delta} \mathbf{4 . 5 6}(\mathbf{t}, \mathbf{J}=\mathbf{7 . 5} \mathbf{~ H z}, \mathbf{1 H}, \mathbf{Z}), \mathbf{4 . 4 0}(\mathbf{t}, \mathbf{J}=\mathbf{6 . 8} \mathbf{~ H z}, \mathbf{1 H}, \mathbf{E}), 2.08$ - 1.86 (m, 4H, E and Z signals overlap), 0.94 (s, 9H, E and Z signals overlap), $0.92-0.86$ (m, $6 \mathrm{H}, \mathrm{E}$ and Z signals overlap), 0.11 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{E}$ and Z signals overlap).

tert-Butyldimethyl(4-phenylbut-3-en-2-yloxy)silane (Table 2, Entry 9)

tert-Butyldimethyl(4-phenylbut-1-en-4-yloxy)silane ${ }^{9}(52 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $3\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and stirred at $0^{\circ} \mathrm{C}$ for 24 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 49% tert-butyldimethyl(4-phenylbut-3-en-2-yloxy)silane ($\mathrm{E}: \mathrm{Z}=>50: 1$). This product is known. ${ }^{19}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, \mathrm{J}=16.0$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.41(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$.

tert-Butyldimethyl(pent-1-en-1-yloxy)silane (Table 3, Entry 1)

tert-Butyldimethyl(pent-4-en-1yloxy)silane ${ }^{20}$ ($40 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}$ (20 mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 48 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 66% tert-butyldimethyl(pent-1-en-1yloxy)silane ($\mathrm{E}: \mathrm{Z}=2: 1$). This product is known. ${ }^{19}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 6.19(\mathrm{Z}, \mathrm{dt}, \mathrm{J}=11.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{E}, \mathrm{dt}, \mathrm{J}=6.1,1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.96$ (Z, dt, J = 11.9, $7.5 \mathrm{~Hz}, \mathbf{1 H}$), $\mathbf{4 . 4 2}(\mathrm{E}, \mathbf{t d}, \mathbf{J}=\mathbf{7 . 3}, \mathbf{6 . 1} \mathbf{H z}, \mathbf{1 H}), 2.06-2.00(\mathrm{E}, \mathrm{m}$, $2 \mathrm{H}), 1.86-1.80(\mathrm{Z}, \mathrm{m}, 2 \mathrm{H}), 1.45-1.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{E}$ and Z signals overlap), $0.89(\mathrm{E}, \mathrm{s}, 9 \mathrm{H}), 0.88(\mathrm{Z}$, $\mathrm{s}, 9 \mathrm{H}), 0.86(\mathrm{~m}, 3 \mathrm{H}, \mathrm{E}$ and Z signals overlap), $0.10(\mathrm{E}, \mathrm{s}, 6 \mathrm{H}), 0.09(\mathrm{Z}, \mathrm{s}, 6 \mathrm{H})$.

tert-Butyldimethyl(pent-2-en-2-yloxy)silane (Table 3, Entry 2)

tert-Butyldimethyl(pent-4-en-2-yloxy)silane ${ }^{22}$ (40 mg, 0.20 mmol$)$ and
$\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}$ (20
mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 16 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 64% tert-butyldimethyl(pent-2-en-2-yloxy)silane ($\mathrm{E}: \mathrm{Z}=3.3: 1$). This product is known. ${ }^{23}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta \mathbf{4 . 6 4}(\mathbf{Z}, \mathbf{t}, \mathbf{J}=\mathbf{7 . 4} \mathbf{~ H z}, \mathbf{1 H}), 4.38(\mathbf{E}, \mathbf{d t}, \mathbf{J}=7.7$, $\mathbf{3 . 9} \mathbf{~ H z}$, 1H), $2.03-1.95(\mathrm{E}, \mathrm{m}, 2 \mathrm{H}), 1.94-1.89(\mathrm{Z}, \mathrm{m}, 2 \mathrm{H}), 1.74(\mathrm{E}, \mathrm{dd}, \mathrm{J}=2.1,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{Z}, \mathrm{s}$, $3 H), 0.96(t, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{E}, \mathrm{s}, 9 \mathrm{H}), 0.85(\mathrm{Z}, \mathrm{s}, 9 \mathrm{H}), 0.11(\mathrm{E}, \mathrm{s}, 6 \mathrm{H}), 0.10(\mathrm{Z}, \mathrm{s}, 6 \mathrm{H})$.

tert-Butyldimethyl(3-methylbut-1-en-1-yloxy)silane (Table 3, Entry 3)

tert-Butyldimethyl(3-methylbut-3-en-1-yloxy)silane ${ }^{24}$ ($400 \mathrm{mg}, 2.0 \mathrm{mmol}$ and OTBS $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(35 \mathrm{mg}, 40 \mu \mathrm{~mol})\right.$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}$ (20 mM in $\mathrm{CDCl}_{3}, 1.0 \mathrm{~mL}, 20 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and stirred at room temperature for 24 h . The mixture was concentrated on silica and purified by column chromatography on silica gel (eluent: pentane) to give 319 mg of tert-butyldimethyl(3-methylbut-1-en-1-yloxy)silane (80%, E:Z 1.3:1). Rf $($ pentane $)=0.34$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta \mathbf{6 . 2 3}$ - $\mathbf{6 . 1 5}(\mathbf{Z}, \mathbf{m}, \mathbf{1 H}), \mathbf{6 . 0 4}(\mathbf{E}, \mathbf{d d}, \mathbf{J}=\mathbf{5 . 8}, \mathbf{0 . 9} \mathbf{~ H z}, \mathbf{1 H})$, $4.94(\mathrm{Z}, \mathrm{dd}, \mathrm{J}=12.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{E}, \mathrm{dd}, \mathrm{J}=8.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.71(\mathrm{E}, \mathrm{m}, 1 \mathrm{H}), 2.24$ $-2.14(\mathrm{Z}, \mathrm{m}, 1 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{E}, \mathrm{s}, 9 \mathrm{H}), 0.89(\mathrm{Z}, \mathrm{s}, 9 \mathrm{H}), 0.10(\mathrm{Z}, \mathrm{s}, 6 \mathrm{H}), 0.09(\mathrm{E}$, s, 6 H$)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm ; isomer mixture) $\delta 138.4,136.7,119.5,118.5,77.4,77.1$, $76.9,27.3,25.8,25.7,23.7,23.6,23.3,18.4,-5.2,-5.3$.

HR-MS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$201.1675; found: 201.1679
(tert-Butyldimethylsiloxymethylidene)cyclohexane (Table 3, Entry 4)

3-tert-Butyldimethylsiloxymethylcyclohexene ($40 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}$ (20
mM in $\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and placed in a cooling bath at $0{ }^{\circ} \mathrm{C}$ for 48 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 80\% (tert-butyldimethylsiloxymethylidene)cyclohexane ($\mathrm{E}: \mathrm{Z}=1.7: 1$). This product is known. ${ }^{12}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \boldsymbol{\delta} \mathbf{6 . 0 0}(\mathbf{d}, \mathbf{J}=\mathbf{1 . 0} \mathbf{~ H z}, \mathbf{1 H}), 2.18-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.

1-Phenylbut-1-ene (Table 3, Entry 5)

1-Phenyl-3-butene $(30 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0\right.$ $\mu \mathrm{mol}$) were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3}, 0.1 \mathrm{~mL}, 2 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and stirred at room temperature for 48 h . After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. ${ }^{1} \mathrm{H}$ NMR analysis revealed 56% 1-phenylbut-1-ene $(\mathrm{E}: \mathrm{Z}=>50: 1)$. This product is known. ${ }^{8}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.38-7.14(\mathrm{~m}, 5 \mathrm{H}), \mathbf{6 . 3 8}(\mathbf{d}, \mathbf{J}=\mathbf{1 5 . 9} \mathbf{~ H z}, \mathbf{1 H}), 6.28(\mathrm{dt}, \mathrm{J}=$ $15.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

tert-Butyldimethyl(dec-1-en-1-yloxy)silane (Table 3, Entry 6)

 tert-Butyldimethyl(dec-9-en-1-yloxy)silane ($1.26 \mathrm{~g}, 4.6 \mathrm{mmol}$) and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(8.8 \mathrm{mg} \mathrm{mg}, 10 \mu \mathrm{~mol})\right.$ were added to a 2-dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}\left(20 \mathrm{mM}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.115 \mathrm{~mL}, 2.3 \mu \mathrm{~mol}\right)$ was added to the vial. The vial was sealed and stirred at room temperature for 24 hours. The reaction was poured into hexanes (10 mL) and filtered. The mixture was concentrated on silica and purified by column chromatography on silica gel (eluent: pentane) to give 962 mg of tert-butyldimethyl(dec-1-en-1-yloxy)silane (76%, $\mathrm{E}: \mathrm{Z}=2.6: 1$). The two isomers can be separated by column chromatography, $\operatorname{Rf}($ pentane $)=0.74$ $(\operatorname{spot} 1), 0.56(\operatorname{spot} 2)$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 6.20(\mathrm{Z}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{E}, \mathrm{dt}, \mathrm{J}=6.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathbf{Z}, \mathbf{d t}, \mathbf{J}=\mathbf{1 1 . 8}, \mathbf{7 . 5} \mathbf{~ H z}, \mathbf{1 H}), 4.43(\mathbf{E}, \mathbf{t d}, \mathbf{J}=\mathbf{7 . 2}, \mathbf{6 . 0} \mathbf{H z}, \mathbf{1 H}), 2.09-2.01(\mathrm{Z}, \mathrm{m}, 2 \mathrm{H})$, $1.85(\mathrm{E}, \mathrm{dt}, \mathrm{J}=7.7,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 12 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{E}, \mathrm{s}, 9 \mathrm{H}), 0.90$ (Z, s, 9H), 0.11 (Z, s, 6H), 0.11 (E, s, 6H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 140.0,138.4,111.8,111.0,32.0,30.5,29.8,29.6,29.5$, 29.4, 29.2, 27.4, 25.8, 25.7, 23.7, 22.8, 18.4, 14.2, -5.1, -5.3.

HR-MS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 271.2457$; found: 271.2452

tert-Butyldimethyl(2-fluoroprop-1-en-1-yloxy)silane (5, Scheme 2)

OTBS A modified procedure was used. tert-Butyldimethyl((2-fluoroallyl)oxy)silane ${ }^{25}$ ($38 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(7.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$, and solution of $\mathbf{3}$ (0.1 mL of a 20 mM solution in $\mathrm{CDCl}_{3}, 2.0 \mu \mathrm{~mol}$) were cooled $-30^{\circ} \mathrm{C}$. Phenylsilane ($0.7 \mu \mathrm{~L}, 6.0$ $\mu \mathrm{mol}$) was added via syringe and the reaction mixture was stirred for 16 h at $-30^{\circ} \mathrm{C}$. After the reaction had finished, $n \mathrm{Bu}_{4} \mathrm{NCl}$ in $\mathrm{CDCl}_{3}(>20$ equiv relative to catalyst) was added and the mixture was shaken to terminate the reaction. An internal standard (1,4bis(trifluoromethyl)benzene $(7.8 \mu \mathrm{~L}, 0.050 \mathrm{mmol})$ was added to the vial and the whole reaction mixture was transferred to an NMR tube. ${ }^{1} \mathrm{H}$ NMR analysis revealed 78% tert-butyldimethyl(2-fluoroprop-1-en-1-yloxy)silane ($\mathrm{E}: \mathrm{Z}=1.7: 1$). This product was isolated via column chromatography (pentane) as well to confirm its structure. The two isomers are separable by column chromatography, $\operatorname{Rf}($ pentane $)=0.62(\operatorname{spot} 1), 0.46(\operatorname{spot} 2)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \boldsymbol{\delta} \mathbf{6 . 4 8}(\mathbf{Z}, \mathbf{d d}, \mathbf{J}=\mathbf{7 . 2}, \mathbf{1 . 1 ~ H z}, \mathbf{1 H}), \mathbf{5 . 5 7}(\mathbf{E}, \mathbf{d d}, \mathbf{J}=\mathbf{2 1 . 7}, \mathbf{1 . 1}$ Hz, 1H), 1.92 (Z, dd, J = 17.4, $1.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.78 ($\mathrm{E}, \mathrm{dd}, \mathrm{J}=16.8,1.1 \mathrm{~Hz}, 3 \mathrm{H}$), 0.92 ($\mathrm{E}, \mathrm{s}, 9 \mathrm{H}$), 0.91 (Z, s, 9H), 0.13 (Z, s, 6H), 0.11 (E, s, 6H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm; list of signals, C-F couplings not resolved) $\delta 152.4,150.6$, $146.6,144.7,126.1,125.7,120.8,120.8,25.7,25.7,18.5,18.2,14.3,14.1,12.3,12.1,-5.3,-5.4$.
${ }^{19} \mathrm{~F}$ NMR ($\left.470 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta-128.1(\mathrm{dq}, \mathrm{J}=21.7,16.8 \mathrm{~Hz}),-147.8(\mathrm{qd}, \mathrm{J}=17.4,7.2 \mathrm{~Hz})$.

HR-MS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{FOSi}[\mathrm{M}]^{+}$190.1189; found: 190.1200

tert-Butyldimethyl(1-fluoropent-2-en-2-yloxy)silane (7, Scheme 2)

tert-Butyldimethyl(1-fluoropent-4-en-2-yloxy)silane ($109 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaB}\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}(35 \mathrm{mg}, 40 \mu \mathrm{~mol})\right.$ were added to a 2 -dram vial with a screw cap (PTFE/Liner) equipped with a magnetic stir bar. A freshly prepared solution of $\mathbf{3}(20 \mathrm{mM}$ in $\mathrm{CDCl}_{3}, 2.0 \mathrm{~mL}, 40 \mu \mathrm{~mol}$) was added to the vial. The vial was sealed and cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 hours. The reactions mixture was poured into pentane (20 mL) and filtered through celite. The mixture was concentrated on silica and purified by column chromatography on silica gel (eluent: pentane) to give 50 mg of tert-butyldimethyl(1-fluoropent-2-en-2-yloxy)silane (46%, $\mathrm{E}: \mathrm{Z} 2.2: 1$). The two isomers are separable by column chromatography, $\operatorname{Rf}($ pentane $)=0.66($ spot 1), $0.44(\operatorname{spot} 2)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 4.96(\mathrm{td}, J=7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}), 4.88-4.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Z}), 4.78$ $(\mathrm{d}, J=50.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Z}), 4.62(\mathrm{~d}, J=46.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{E}), 2.15-1.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{E}$ and Z signals overlap), $1.00-0.93$ (m, 3H, E and Z signals overlap), 0.95 (s, 9H, E), 0.92 (s, 9H, Z), 0.14 (s, 6H, Z), 0.14 (s, 6H, E).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 145.7(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 145.1(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 117.0(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 84.6(\mathrm{~d}, J=166.1 \mathrm{~Hz}), 79.5(\mathrm{~d}, J=163.8 \mathrm{~Hz}), 25.9,25.7$, 20.1, 18.5, 18.4, 18.1, 15.4 (d, $J=3.0 \mathrm{~Hz}$), 13.9 (d, $J=3.6 \mathrm{~Hz}$), -4.3, -4.5.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-209.05(\mathrm{t}, \mathrm{J}=50.4 \mathrm{~Hz}),-215.93(\mathrm{t}, \mathrm{J}=46.2 \mathrm{~Hz})$.

HR-MS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{FOSi}[\mathrm{M}+\mathrm{H}]^{+}$219.1580; found: 219.1578

The substrates listed below did not give acceptable yields of isomerization products.

Figure S2. Substrates Giving Non-Acceptable Yields

References

1. K. Curran, W. Risse, L. Boggioni, I. Tritto, Macromol. Chem. Phys. 2008, 209, 707.
2. M. Brookhart, B. Grant, A. F. Volpe Jr, Organometallics 1992, 11, 3920.
3. M. B. Brennan, T. D. W. Claridge, R. G. Compton, S. G. Davies, A. M. Fletcher, M .C. Henstridge, D. S. Hewings, W. Kurosawa, J. A. Lee, P. M. Roberts, A. K. Schoonen, J. E. Thomson, J. Org. Chem. 2012, 77, 7241.
4. Y. Nishimito, Y. Inamoto, T. Saito, M. Yasuda, A. Baba, Eur. J. Org. Chem. 2010, 3382.
5. C. Su, P. G. Williard, Org. Lett. 2010, 12, 5378.
6. F. Weber, A. Schmidt, P. Röse, M. Fischer, O. Burghaus, G. Hilt, Org. Lett. 2015, 17, 2952.
7. E. Taskinen, J. Chem. Soc. Perkin Trans. 2, 2001, 1824.
8. C. Chen, T. R. Dugan, W. W. Brennessel, D. J. Weix, P. L. Holland, J. Am. Chem. Soc. 2014, 136, 945.
9. J. Uenishi, Y. Fujikura, N. Kawai, Org. Lett. 2011, 13, 2350.
10. T. Ohmura, Y. Shirai, Y. Yamamoto, N. Miyaura, Chem. Commun. 1988, 1337.
11. J. J. Song, Z. Tan, J. T. Reeves, D. R. Frandrick, N. K. Yee, C. H. Senanayake, Org Lett. 2008, 10, 877.
12. R. J. Lukas, A. Z. Muresan, M. I. Damaj, B. E. Blough, X. Haung, H. A. Navarro, S. W. Mascarella, J. B. Eaton, S. K. Marxer-Miller, F. I. Carroll, J. Med. Chem. 2010, 53, 4731.
13. P. S. Sabila, Y. Liang, A. R. Howell, Tet. Lett. 2007, 48, 8356.
14. P. Duhamel, L. Hennequin, J. M. Poirier, G. Tavel, C. Vottero, Tetrahedron 1986, 42, 4777.
15. S. H. Hong, D. P. Sanders, C. W. Lee, R. H. Grubbs, J. Am. Chem. Soc. 2005, 127, 17160.
16. R. J. Fox, G. Lalic, R. G. Bergman, J. Am. Chem. Soc. 2007, 129, 14144.
17. A. Ooguri, Z. Ikeda, S. Matsubara, Chem. Commun. 2007, 4761.
18. S. Akai, S. Kitagaki, S. Matsuda, Y. Tsuzuki, T. Naka, Y. Kita, Chem. Pharm. Bull. 1997, 45, 1135.
19. A. B. Charette, M.-C. Lacasse, Org Lett. 2002, 4, 3351.
20. S. Essig, S. Bretzke, R. Müller, D. Menche, J. Am. Chem Soc. 2012, 134, 19362.
21. D. B. Grotjahn, C. R. Larsen, J. L. Gustafson, R. Nair, A. Sharma, J. Am. Chem. Soc. 2007, 129, 9592.
22. S. Specklin, G. Boissonnat, C. Lecourt, G. Sorin, M.-I. Lannou, J. Ardisson, F. Sautel, G. Massiot, C. Meyer, J. Cossy, Org. Lett. 2015, 17, 2446.
23. Y. Sumida, H. Yorimitsu, K. Oshima, J. Org. Chem. 2004, 74, 7986.
24. C.-L. Kao, W. Kittleman, H. Zhang, H. Seta, H.-W. Liu, Org. Lett. 2005, 7, 5677.
25. J.-C. Lo, J. Gui, Y. Yabe, C.-M. Pan, P. S. Baran, Nature 2014, 516, 343.

(

