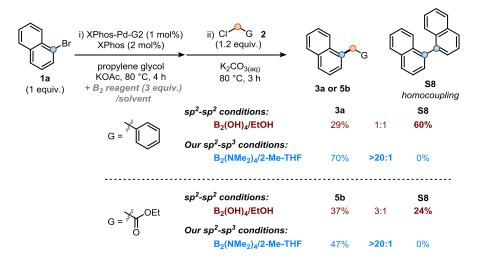
One-pot borylation/Suzuki-Miyaura sp²-sp³ cross coupling


Luke Whitaker, Hassan Y. Harb,* and Alexander P. Pulis,*

Electronic supplementary information

Contents

Supplement to Scheme 1A	S2
Comparison of the previous one-pot borylation/SM sp²-sp² cro	oss coupling conditions
with our conditions for sp ² -sp ³ coupling	S3
General information	S4
General procedure	S4
Substrate scope	S5
¹ H and ¹³ C NMR spectra	S20

Supplement to Scheme 1A. Additional drug molecules containing α -arylated alkyl motifs

Scheme S1. Comparison of the previous one-pot borylation/SM sp²-sp² cross coupling conditions ¹ with our conditions for sp²-sp³ coupling.

¹ (a) G. A. Molander, S. L. J. Trice and S. D. Dreher, *J. Am. Chem. Soc.*, 2010, **132**, 17701; (b) G. A. Molander, S. L. J. Trice, S. M. Kennedy, S. D. Dreher, and M. T. Tudge, *J. Am. Chem. Soc.*, 2012, **134**, 11667; (c) G. A. Molander, S. L. J. Trice and S. M. Kennedy, *J. Org. Chem.*, 2012, **77**, 8678; (d) G. A. Molander, S. L. J. Trice and B. Tschaen, *Tetrahedron*, 2015, **71**, 5758.

General information

XPhos-Pd-G2 (Aldrich), **XPhos** (Aldrich), propylene (Aldrich), glycol tetrakis(dimethylamino)diborane (Fluorochem), inhibitor free anhydrous 2-methyl tetrahydrofuran (Aldrich) were used as received. All other solvents and reagents were purchased from commercial sources and used as supplied. ¹H NMR and ¹³C NMR were recorded on 300, 400 and 500 MHz spectrometers with chemical shift values reported in parts per million (ppm) relative to the residual solvent signal, with coupling constant (J) values reported in Hz. All mass spectra were collected by the School of Chemistry Mass Spectrometry Service at The University of Manchester. EI (70 eV) was obtained via GCMS. Routine TLC analysis was carried out on aluminum sheets coated with silica gel 60 Å F254, 0.2 mm thickness. Plates were visualised using 254 nm ultraviolet light and/or dipped in aqueous potassium permanganate or p-anisaldehyde. Flash column chromatography was carried out on 40-63 μ, 60 Å silica gel. Automated reverse phase chromatography utilised Biotage Isolera (30 g SNAP C18 cartridges) with aqueous ammonium carbonate pH 10 buffer/acetonitrile as the eluent.

General procedure for one-pot borylation/Suzuki-Miyaura sp^2 - sp^3 cross coupling (GP)

Potassium acetate (109 mg, 1.10 mmol), aryl halide **1** (0.37 mmol, if solid), XPhos-Pd-G2 (2.87 mg, 1.00 mol%) and XPhos (3.48 mg, 2.00 mol%) was added to an oven dried flask (cooled under a stream of nitrogen) containing a Teflon coated magnetic stirrer bar. The atmosphere was purged with nitrogen via three vacuum/nitrogen cycles. Aryl halide **1** (0.37 mmol, if liquid), propylene glycol (0.162 mL, 2.20 mmol), tetrakis(dimethylamino)diborane (0.226 mL, 1.10 mmol) and anhydrous 2-methyl tetrahydrofuran (3.00 mL) were added through a septum

and the reaction mixture was stirred and heated at 80 °C until the consumption of aryl halide 1 was observed (borylation time). Aqueous potassium carbonate (1.8 M, 1.10 mL, 1.98 mmol) was added, followed by alkyl chloride 2 (0.43 mmol), and heating continued at 80 °C until the consumption of the boronate intermediate was observed (Suzuki-Miyaura coupling time). The reaction mixture was cooled to room temperature and filtered through a pad of celite, washing the filter cake with ethyl acetate (25.0 mL). The solvent was evaporated under reduced pressure and the crude mixture purified by automated reverse phase chromatography or manual flash column chromatography to give the desired product.

Substrate scope

1-Benzylnaphthalene 3a²

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 4 h, SM time 3 h, purifying by Biotage Isolera gave **3a** (56 mg, 70 %) as a white solid.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.00 (d, J=9.2, 1H, ArH), 7.85 (m, 1H, ArH), 7.75 (d, J=8.2, 1H, ArH), 7.49-7.41 (m, 3H, ArH), 7.31-7.20 (m, 6H, ArH), 4.45 (s, 2H, CH₂).

δ_C (101 MHz, CDCl₃): 140.60 (4°), 136.59 (4°), 133.89 (4°), 132.08 (4°), 128.73 (CH), 128.65 (CH), 128.44 (CH), 127.32 (CH), 127.14 (CH), 126.04 (CH), 125.96 (CH), 125.54 (CH), 124.27 (CH), 39.03 (CH₂).

-

² G. Tang, P. Zhang, J. Xu, Y. Gao, X. Li and Y. Zhao, *Synlett*, 2014, 25, 2928-2932.

4-Benzyl-1,1'-biphenyl 3b³

Following GP, using 4-bromobiphenyl (0.37 mmol, 86 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 3 h, purifying by Biotage Isolera gave **3b** (49 mg, 54%) as a white solid.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.60-7.25 (m, 14H, ArH), 4.06 (s, 2H, CH₂).

δ_C (101 MHz, CDCl₃): 140.96 (4°), 140.22 (4°), 138.98 (4°), 129.29 (CH), 128.94 (CH), 128.69 (CH), 128.50 (CH), 127.18 (CH), 127.05 (CH), 126.98 (CH), 126.11 (CH), 41.55 (CH₂).

1-(4-Benzylphenyl)ethanone 3c⁴

Following GP, using 4-chloroacetaphenone (0.37 mmol, 48 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 2 h, purifying by Biotage Isolera gave **3c** (52 mg, 67%) as a white solid.

Following GP, using 4-bromoacetaphenone (0.37 mmol, 74 mg) and benzyl chloride (0.41 mmol, 47μ L) with borylation time = 1 h, SM time 2 h, purifying by Biotage Isolera gave 3c (44 mg, 56%) as a white solid.

Following GP, using 4-acetylphenyl trifluoromethanesulfonate (0.37 mmol, 99 mg) and benzyl chloride (0.41mmol, 47 μ L) with borylation time = 2 h, SM time 16 h, gave **3c** (58 mg, 75%) by internal standard NMR (1,5-cyclooctadiene as internal standard).

-

³ G. Tang, P. Zhang, J. Xu, Y. Gao, X. Li and Y. Zhao, *Synlett*, 2014, 25, 2928-2932.

⁴ S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant and C. Gosmini, *Advanced Synthesis & Catalysis*, 2016, 358, 2431-2435.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.88 (d, J = 8.3, 2H, ArH), 7.34-7.17 (m, 7H, ArH), 4.04 (s, 2H, CH₂), 2.57 (s, 3H, COCH₃).

δ_C (101 MHz, CDCl₃): 197.76 (4°), 146.76 (4°), 139.99 (4°), 135.17 (4°), 129.06 (CH), 128.88 (CH), 128.59 (CH), 126.37 (CH), 41.85 (CH₂), 26.53 (CH₃).

LRMS (EI): [210.28], 210.1, 195.1 (100%), 165.0, 152.0

Ethyl 4-benzylbenzoate 3d⁵

Following GP, using ethyl 4-chlorobenzoate (0.37 mmol, 68 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 2 h, purifying by Biotage Isolera gave **3d** (58 mg, 65%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.97 (d, J = 8.3, 2H, Ar*H*), 7.31-7.17 (m, 7H, Ar*H*), 4.37 (q, *J* = 7, 2H, OC*H*₂), 4.00 (s, 2H, C*H*₂), 1.39 (t, *J* = 7.1, 3H, C*H*₃).

δ_C (101 MHz, CDCl₃): 166.53 (4°), 146.34 (4°), 140.13 (4°), 129.73 (CH), 128.86 (CH), 128.54 (CH), 128.39 (CH), 126.31 (CH), 60.78 (CH₂), 41.85 (CH₂), 14.30 (CH₃).

LRMS (ESI+): [240.12], 241.09

⁵S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant and C. Gosmini, *Advanced Synthesis & Catalysis*, 2016, 358, 2431-2435.

Ethyl 3-benzylbenzoate 3e⁶

Following GP, using ethyl 4-bromobenzoate (0.37 mmol, 59 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 2 h, purifying by Biotage Isolera gave **3e** (55 mg, 65%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.93-7.88 (m, 2H, Ar*H*), 7.36-7.17 (m, 7H, Ar*H*), 4.37 (q, J = 7.1, 2H, OC*H*₂), 4.04 (s, 2H, C*H*₂), 1.39 (t, J = 7.2, 3H, C*H*₃).

δ_C (101 MHz, CDCl₃): 166.65 (4°), 141.35 (4°), 140.49 (4°), 133.41 (CH), 130.63 (4°), 129.98 (CH), 128.83 (CH), 128.53 (CH), 128.46 (CH), 127.37 (CH), 126.24 (CH), 60.97 (CH₂), 41.67 (CH₂), 14.30 (CH₃).

LRMS (ESI+): [240.12], 241.09

4-Benzylbenzonitrile 3f⁷

Following GP, using 4-chlorobenzonitrile (0.37 mmol, 51 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 2 h, purifying by Biotage Isolera gave **3f** (48 mg, 68%) as a white solid.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.56 (d, J = 8.3, 2H, ArH), 7.29-7.16 (m, 7H, ArH), 4.03 (s, 2H, CH₂). $\delta_{\rm C}$ (101 MHz, CDCl₃): 146.72 (4°), 139.32 (4°), 132.30 (CH), 129.63 (CH), 128.96 (CH), 128.76 (CH), 126.67 (CH), 118.99 (4°), 110.04 (4°), 41.97 (CH₂).

⁶ S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant and C. Gosmini, *Advanced Synthesis & Catalysis*, 2016, 358, 2431-2435.

⁷ S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant and C. Gosmini, *Advanced Synthesis & Catalysis*, 2016, 358, 2431-2435.

1-Benzyl-4-methoxybenzene 3g⁸

Following GP, using 4-chloroanisole (0.37 mmol, 45 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 2 h, purifying by Biotage Isolera gave **3g** (40 mg, 55%) as a white solid.

Following GP, using 4-bromoanisole (0.37 mmol, 46 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 3 h, SM time 16 h, purifying by Biotage Isolera gave **3g** (42 mg, 58%) as a white solid.

Following GP, using 4-methoxyphenyl trifluoromethanesulfonate (0.37 mmol, 95 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 2 h, SM time 16 h, gave **3g** (51 mg, 70%) by internal standard NMR (1,5-cyclooctadiene as internal standard).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.30-7.07 (m, 7H, Ar*H*), 6.82 (d, J = 8.6, 2H, Ar*H*), 3.92 (s, 2H, C*H*₂), 3.76 (s, 3H, OC*H*₃).

δ_C (101 MHz, CDCl₃): 157.89 (4°), 141.54 (4°), 133.21 (4°), 129.84 (CH), 128.79 (CH), 128.40 (CH), 125.95 (CH), 113.81 (CH), 55.22 (CH₂), 41.00 (CH₃).

LRMS (EI): [198.27], 198.1 (100%), 183.1, 167.1, 153.1, 121.1

1-Benzyl-3-methoxybenzene 3h⁹

Following GP, using 3-bromoanisole (0.37 mmol, 47 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 3 h, purifying by Biotage Isolera gave **3h** (40 mg, 56%) as a colourless oil.

⁸ S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant and C. Gosmini, *Advanced Synthesis & Catalysis*, 2016, 358, 2431-2435.

⁹ E. Alacid and C. Nájera, *Organic Letters*, 2008, 10, 5011-5014.

δ_H (300 MHz, CDCl₃): 7.31-7.19 (m, 6H, Ar*H*), 6.82-6.75 (m, 3H, Ar*H*), 3.98 (s, 2H, C*H*₂), 3.79 (s, 3H, OC*H*₃).

δ_C (101 MHz, CDCl₃): 159.65 (4°), 142.67 (4°), 140.87 (4°), 129.38 (CH), 128.88 (CH), 128.43 (CH), 126.07 (CH), 121.34 (CH), 114.73 (CH), 111.23 (CH), 55.10 (CH₃), 42.91 (CH₂).

LRMS (ESI+): [198.26], 199.07

3-Benzylphenol 3i¹⁰

Following GP, using 3-chlorophenol (0.37 mmol, 39 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 3 h, purifying by Biotage Isolera gave **3i** (52 mg, 76%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.31-7.15 (m, 6H, Ar*H*), 6.80 (d, J = 7.6, 1H, Ar*H*), 6.71-6.67 (m, 2H, Ar*H*), 4.55 (brs, 1H, O*H*), 3.94 (s, 2H, C*H*₂).

δ_C (101 MHz, CDCl₃): 155.66 (4°), 142.93 (4°), 140.78 (4°), 129.56 (CH), 128.91 (CH), 128.42 (CH), 126.07 (CH), 121.25 (CH), 115.84 (CH), 113.03 (CH), 41.68 (CH₂).

LRMS (ESI-): [184.24], 183.14

$$H_2N$$

3-Benzylanaline 3j

Following GP, using 3-chloroaniline (0.37 mmol, 39 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1 h, SM time 3 h, purifying by Biotage Isolera gave **3j** (21 mg, 31%) as a colourless oil.

¹⁰ S. Bernhardt, Z. Shen and P. Knochel, *Chemistry - A European Journal*, 2012, 19, 828-833.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.31-7.27 (m, 2H, Ar*H*), 7.20 (m, 3H, Ar*H*), 7.09 (app. t, J = 7.7, 1H, Ar*H*), 6.62 (d, J = 7.6, 1H, Ar*H*), 6.55 (d, J = 8, 1H, Ar*H*), 6.52 (s, 1H, Ar*H*), 3.90 (s, 2H, C*H*₂), 3.49 (br. s, 2H, NH₂).

δ_C (101 MHz, CDCl₃): 146.09 (4°), 142.33 (4°), 141.07 (4°), 129.32 (CH), 128.93 (CH), 128.37 (CH), 125.98 (CH), 119.55 (CH), 115.85 (CH), 113.10 (CH), 41.85 (CH₂).

HRMS (APCI): calc. for C₁₃H₁₃N+H; 184.1121. Found; 184.1116

Diisopropyl 4-bromopyridine-2,6-dicarboxylate

To a stirring solution of chelidamic acid (2.73 mmol, 500 mg) in chloroform (3 mL) was added phosphorus pentabromide (13.7 mmol, 5.88 g). The mixture was heated to 90 °C for 18 h. The reaction mixture was cooled to 0 °C and anhydrous 2-propanol (4.00 mL) was added drop-wise with stirring. The mixture was stirred for a further 2 h at room temperature. The reaction mixture was diluted with dichloromethane (10 mL) and added drop-wise to a stirred solution of saturated aqueous sodium hydrogen carbonate (25 mL). The phases were separated and the aqueous phase extracted with dichloromethane (2 × 10 mL) and the combined organics were dried over magnesium sulphate. The solvent was evaporated under reduced pressure and the crude mixture was purified by column chromatography to give the desired product as a white solid (715 mg, 79%).

 $\delta_{\rm H}$ (500 MHz, CDCl₃): 8.37 (s, 2H, ArH), 5.32 (sept., J = 6.3, 2H, CH(CH₃)₂), 1.43 (d, J = 6.3, 12H, CH(CH₃)₂).

δ_C (126 MHz, CDCl₃): 162.91 (4°), 149.87 (4°), 134.67 (4°), 130.75 (CH), 70.60 (CH), 21.76 (CH₃).

HRMS (ESI+): calc. for C₁₃H₁₆NBrO₄+H; 330.0335. Found; 330.0330

Diisopropyl 4-benzylpyridine-2,6-dicarboxylate 3k

Following GP, using diisopropyl 4-bromopyridine-2,6-dicarboxylate (0.37 mmol, 122 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 2 h, SM time 2 h, purifying by Biotage Isolera gave **3k** (48 mg, 38%) as an orange solid.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.04 (s, 2H, Ar*H* Pyr), 7.45-7.10 (m, 5H, Ar*H* Bn), 5.28 (sept, J=6.0, 2H, C*H*(CH₃)₂), 4.10 (s, 2H, C*H*₂), 1.41 (d, J=6.0, 12H, CH(C*H*₃)₂)

δ_C (101 MHz, CDCl₃): 164.30 (4°), 152.67 (4°), 149.21 (4°), 137.84 (4°), 128.97 (CH), 127.95 (CH), 127.05 (CH), 127.2 (CH), 70.07 (CH ⁱPr), 41.18 (CH₂), 21.80 (CH₃).

HRMS (APCI): calc. for C₂₀H₂₄O₄N; 342.1700. Found; 342.1693

1,1'-(4-benzylpyridine-2,6-diyl)bis(ethan-1-one) 3l

Following GP, using 1,1'-(4-bromopyridine-2,6-diyl)bis(ethan-1-one) (0.37 mmol, 90 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 3 h, SM time 3 h, purifying by Biotage Isolera gave **3l** (32 mg, 34%) as a white solid.

δ_H (300 MHz, CDCl₃): 8.05 (s, 2H, Ar*H* Pry), 7.35-7.17 (m, 5H, Ar*H* Bn), 4.08 (s, 2H, C*H*₂), 2.76 (s, 6H, C*H*₃).

δ_C (101 MHz, CDCl₃): 199.68 (4°), 152.88 (4°), 152.72 (4°), 138.03 (4°), 128.94 (CH), 126.98 (CH), 124.98 (CH), 41.45 (CH₂), 25.69 (CH₃).

HRMS (APCI): calc. for C₁₆H₁₆NO₂; 254.1176. Found; 254.1170

4-Benzylquinoline 3m¹¹

Following GP, using 4-chloroquinoline (0.37 mmol, 48 μ L) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 2 h, SM time 2 h, purifying by Biotage Isolera gave **3m** (60 mg, 73%) as a white solid.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.79 (d, J=4.5, 1H, ArH), 8.10 (d, J=8.3, 1H, ArH), 7.99 (d, J=8.6, 1H, ArH), 7.65 (m, 1H, ArH), 7.49 (m, 1H, ArH), 7.29-7.08 (m, 6H, ArH), 4.40 (s, 2H CH₂). $\delta_{\rm C}$ (101 MHz, CDCl₃): 150.27 (CH), 148.31 (4°), 146.50 (4°), 138.54 (4°), 130.14 (CH), 129.11 (CH), 128.88 (CH), 128.68 (CH), 127.55 (4°), 126.59 (CH), 126.53 (CH), 123.81 (CH), 121.81 (CH), 38.10 (CH₂).

LRMS (ESI+): [219.29], 220.15

-

¹¹ H. Sterckx, J. De Houwer, C. Mensch, W. Herrebout, K. Tehrani and B. Maes, *ChemInform*, 2016, 47.

Ethyl 5-benzyl-1*H*-indole-2-carboxylate 3n

Following GP, using ethyl 5-chloro-1*H*-indole-2-carboxylate (0.37 mmol, 83 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1.5 h, SM time 2.5 h, purifying by Biotage Isolera gave **3n** (73 mg, 71%) as a white solid.

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 9.14 (brs, 1H, N*H*), 7.49 (s, 1H, Ar*H* indole), 7.36-7.14 (m, 8H, Ar*H*), 4.41 (q, J = 7.2, 2H, OC*H*₂), 4.07 (s, 2H, C*H*₂), 1.41 (t, J = 7.1, 3H, C*H*₃).

δ_C (101 MHz, CDCl₃): 162.13 (4°), 141.72 (4°), 135.60 (4°), 133.51 (4°), 128.87 (CH), 128.39 (CH), 127.66 (4°), 127.59 (4°), 127.02 (CH), 125.94 (CH), 122.07 (CH), 111.90 (CH), 108.37 (CH), 60.98 (CH₂), 41.89 (CH₂), 14.36 (CH₃).

HRMS (APCI): calc. for C₁₈H₁₇NO₂+H; 280.1332. Found; 280.1323

3-Benzylbenzofuran 3o

Following GP, using 3-bromo-1-benzofuran (0.37 mmol, 73 mg) and benzyl chloride (0.41 mmol, 47 μ L) with borylation time = 1.5 h, SM time 2.5 h, purifying by Biotage Isolera gave **3o** (49 mg, 64%) as a white solid.

δ_H (300 MHz, CDCl₃): 7.50-7.37 (m, 3H, Ar*H*), 7.29-7.15 (m, 7H, Ar*H*), 4.02 (s, 2H, C*H*₂). δ_C (101 MHz, CDCl₃): 155.51 (4°), 142.11 (CH), 139.17 (4°), 128.62 (CH), 128.50 (CH), 127.98 (4°), 126.35 (CH), 124.19 (CH), 122.33 (CH), 119.87 (CH), 119.68 (4°), 111.42 (CH), 29.97 (CH₂).

HRMS (APCI+): Found 209.0961, C₁₅H₁₃O requires 209.0961.

(8R,9S,13S,14S)-3-Benzyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one 3p

Following GP, using (8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfonate (0.37 mmol, 149 mg) and benzyl chloride (0.41mmol, 47 μ L) with borylation time = 2 h, SM time 16 h. Product 3p was isolated by column chromatography (ethyl acetate 5:95 hexane) as a white solid (41 mg, 32%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.27 (m, 6H, Ar*H*), 6.99 (m, 2H, Ar*H*), 3.94 (s, 2H Ar-C*H*₂-Ar), 2.89 (m, 2H, C*H*₂-C=O), 2.53 (dd, J = 18.8, 8.5, 1H, C*H*-Ar), 2.43 (m, 1H, C*H*), 2.29 (m, 1H, C*H*), 2.06 (m, 4H, 2xC*H*₂), 1.56 (m, 6H, 3xC*H*₂), 0.93 (s, 3H, C*H*₃).

δ_C (101 MHz, CDCl₃): 220.95 (4°), 141.17 (4°), 138.57 (4°), 137.42 (4°), 136.48 (4°), 129.40 (CH), 128.88 (CH), 128.41 (CH), 126.29 (CH), 125.97 (CH), 125.41 (CH), 50.44 (CH), 47.96 (4°), 44.24 (CH), 41.43 (CH₂), 38.14 (CH), 35.83 (CH₂), 31.55 (CH₂), 29.34 (CH₂), 26.50 (CH₂), 25.68 (CH₂), 21.55 (CH₂), 13.81 (CH₃).

HRMS (ESI+): Found 367.2031, C₂₅H₂₈ONa requires 367.2032.

1-(2-Methylbenzyl)naphthalene 3q¹²

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 2-methylbenzyl chloride (0.43 mmol, 57 μ L) with borylation time = 4 h, SM time 16 h. Yield of product **3q** was determined by internal standard NMR (1,5-cyclooctadiene) (60%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.10 (m, 1H, Ar*H*), 8.00 (dd, J=6.1, 3.4, 1H, Ar*H*), 7.87 (d, <math>J=8.3, 1H, ArH), 7.48 (t, J=7.6, 1H, ArH), 7.38-7.35 (m, 3H, Ar*H*), 7.29 (t, J=7.2, 1H, ArH), 7.22-7.15 (m, 2H, Ar*H*), 7.03 (d, J=7.3, 1H, ArH), 4.52 (s, 2H, C*H*₂), 2.45 (s, 3H, C*H*₃).

LRMS (EI): [232.33], 232.2 (100%), 217.1, 202.1, 141.1, 104.1

Ethyl 4-(naphthalen-1-ylmethyl)benzoate 3r13

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and ethyl 4-(chloromethyl)benzoate (0.43 mmol, 47 μ L) with borylation time = 4 h, SM time 16 h. Product **3r** was isolated by column chromatography (ethyl acetate 1:19 hexane) as a colourless oil (74 mg, 70%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.96-7.87 (m, 4H, Ar*H*), 7.80 (d, J=8.3, 1H, Ar*H*), 7.49-7.42 (m, 3H, Ar*H*), 7.32-7.26 (m, 3H, Ar*H*), 4.51 (s, 2H, C*H*₂), 4.36 (q, J=7.1, 2H, OC*H*₂), 1.37 (t, J=7.1, 3H, C*H*₃).

.

¹² X. Liu, H. Zhu, Y. Shen, J. Jiang and T. Tu, *Chinese Chemical Letters*, 2017, 28, 350-353.

¹³ M. Dinesh, S. Archana, R. Ranganathan, M. Sathishkumar and A. Ponnuswamy, *Tetrahedron Letters*, 2015, 56, 6975-6979.

δ_C (101 MHz, CDCl₃): 166.56 (4°), 146.01 (4°), 135.67 (4°), 133.94 (4°), 131.95 (4°), 129.74 (CH), 128.73 (CH), 128.64 (CH), 128.42 (4°), 127.47 (CH), 126.09 (CH), 125.67 (CH), 125.52 (CH), 124.07 (CH), 60.79 (CH₂), 39.14 (CH₂), 14.31 (CH₃).

HRMS (APCI): calc. for C₂₀H₁₉O₂; 291.1380. Found; 291.1374

1-(3-(Trifluoromethyl)benzyl)naphthalene 3s

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 3-(trifluoromethyl)benzyl chloride (0.43 mmol, 47 μ L) with borylation time = 2 h, SM time 16 h. Product **3s** was isolated by column chromatography (IPA 2:98 hexane) as a colourless oil (48 mg, 45 %).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.96-7.89 (m, 2H, Ar*H*), 7.82 (d, J=8.3, 1H, Ar*H*), 7.54-7.44 (m, 5H, Ar*H*), 7.40-7.30 (m, 3H, Ar*H*), 4.51 (s, 2H, C*H*₂)

 $\delta_{\rm C}$ (101 MHz, CDCl₃): 141.54 (4°), 135.48 (4°), 133.96 (4°), 132.02 (CH), 131.89 (4°), 130.73 (q, $J = 32.3, 4^{\circ}$), 128.88 (CH), 128.79 (CH), 127.56 (CH), 127.45 (CH), 126.18 (CH), 125.72 (CH), 125.55 (CH), 125.38 (q, J = 3.91, CH), 124.18 (q, $J = 272.9, 4^{\circ}$), 123.93 (CH), 123.03 (q, J = 3.91, CH), 38.78 (CH₂).

 δ_F (376 MHz, CDCl₃): -62.47 (CF₃)

HRMS (APCI): calc. for C₁₈H₁₃F₃; 286.0964. Found; 286.0962

1-(3-Fluorobenzyl)naphthalene 3t

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 3-fluorobenzyl chloride (0.43 mmol, 52 μ L) with borylation time = 4 h, SM time 16 h. Product **3t** was isolated by column chromatography (ethyl acetate 1:99 hexane) as a colourless oil (61 mg, 70%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.98 (d, J = 8.3, 1H, ArH), 7.91 (d, J = 7.3, 1H, ArH), 7.83 (d, J = 8.1, 1H, ArH), 7.55-7.47 (m, 3H, ArH), 7.34 (d, J = 7.1, 1H, ArH), 7.26 (m, 1H, ArH), 7.03 (d, J = 7.6, 1H, ArH), 6.95-6.92 (m, 2H, ArH), 4.47 (s, 2H, CH₂).

 δ_{C} (101 MHz, CDCl₃): 162.98 (d, $J = 245.51, 4^{\circ}$), 143.28 (d, $J = 6.85, 4^{\circ}$), 135.74 (4°), 133.94 (4°), 131.96 (4°), 129.78 (d, J = 8.80, CH), 128.72 (CH), 127.44 (CH), 126.08 (CH), 125.58 (d, J = 11.74, CH), 124.28 (d, J = 1.96, CH), 124.08 (CH), 115.63 (CH), 115.43 (CH), 113.07 (CH), 112.85 (CH), 38.77 (CH₂)

 δ_F (376 MHz, CDCl₃): -113.41 (Ar*F*)

HRMS (APCI): calc. for C₁₇H₁₃F; 236.0996. Found; 236.0993

$$O_2N$$

1-(3,5-Dinitrobenzyl)naphthalene 3u

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 3,5-dinitrobenzyl chloride (0.43 mmol, 93 mg) with borylation time = 2 h, SM time 16 h. Product **3u** was isolated by column chromatography (DCM 1:1 pentane) as a yellow solid (66 mg, 58%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.77 (s, 1H, Ar*H*), 8.28 (s, 2H, Ar*H*), 7.81 (d, J=7.6, 1H, Ar*H*), 7.77 (d, J=8.3, 1H, Ar*H*), 7.70 (d, J=8.1, 1H, Ar*H*), 7.42-7.37 (m, 3H, Ar*H*), 7.29 (d, J=6.8, 1H, Ar*H*), 4.54 (s, 2H, C*H*₂).

δ_C (101 MHz, CDCl₃): 148.52 (4°), 145.42 (4°), 134.14 (4°), 133.08 (4°), 131.32 (4°), 129.16 (CH), 128.64 (CH), 128.57 (CH), 127.98 (CH), 126.77 (CH), 126.10 (CH), 125.65 (CH), 123.24 (CH), 116.90 (CH), 38.67(CH₂)

HRMS (APCI): calc. for C₁₇H₁₂N₂O₄; 308.0792. Found; 308.0787

4-(Naphthalen-1-ylmethyl)pyridine 3v¹⁴

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 4-(chloromethyl)pyridine hydrochloride (0.43 mmol, 71 mg) with borylation time = 4 h, SM time 16 h. Yield of product 3v was determined by internal standard NMR (1,5-cyclooctadiene) (56%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.51 (d, J = 5.9, 2H, ArH), 7.87-7.79 (m, 3H, ArH), 7.48-7.41 (m, 3H, ArH), 7.31 (d, J = 7.1, 1H, ArH), 7.09 (d, J = 5.6, 2H, ArH), 4.41 (s, 2H, CH₂).

LRMS (EI): [219.29], 219.1 (100%), 204.1, 189.1, 165.1, 141.1, 115.1

3-(Naphthalen-1-ylmethyl)pyridine 3x¹⁵

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 3-(chloromethyl)pyridine hydrochloride (0.43 mmol, 71 mg) with borylation time = 5 h, SM time 16 h. Product 3x was isolated by column chromatography (diethyl ether 1:9 DCM) as a pale yellow oil (64 mg, 79%). δ_H (300 MHz, CDCl₃): 8.59 (s, 1H, Ar*H*), 8.46 (d, J = 4.6, 1H, Ar*H*), 7.95-7.88 (m, 2H, Ar*H*), 7.80 (d, J = 8.3, 1H, Ar*H*), 7.51-7.41 (m, 4H, Ar*H*), 7.31 (d, J = 6.8, 1H, Ar*H*), 7.18-7.15 (m, 1H, Ar*H*), 4.46 (s, 2H, C*H*₂).

δ_C (101 MHz, CDCl₃): 150.08 (CH), 147.61 (CH), 136.01 (CH), 136.00 (4°), 135.21 (4°), 133.95 (4°), 131.76 (4°), 128.79 (CH), 127.59 (CH), 127.39 (CH), 126.22 (CH), 125.73 (CH), 125.50 (CH), 123.88 (CH), 123.38 (CH), 36.21 (CH₃).

¹⁴ F. Dai, Q. Gui, J. Liu, Z. Yang, X. Chen, R. Guo and Z. Tan, *Chemical Communications*, 2013, 49, 4634.

¹⁵ G. Stewart, P. Maligres, C. Baxter, E. Junker, S. Krska and J. Scott, *Tetrahedron*, 2016, 72, 3701-3706.

4-(Naphthalen-1-ylmethyl)thiazole 3y

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 4-(chloromethyl)thiazole hydrochloride (0.43 mmol, 73 mg) with borylation time = 4 h, SM time 16 h. Product **3y** was isolated by column chromatography (ethyl acetate 1:4 hexane) as a yellow oil (36 mg, 43%). $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.80 (s, 1H S-C*H*=N), 8.03-7.98 (m, 1H, Ar*H*), 7.88 (d, *J* = 9, 1H, Ar*H*), 7.81 (d, *J* = 7.8, 1H, Ar*H*), 7.51-7.42 (m, 4H, Ar*H*), 6.70 (s, 1H, C=C-*H*), 4.67 (s, 2H, C*H*₂) $\delta_{\rm C}$ (101 MHz, CDCl₃): 156.98 (4°), 152.49 (CH), 135.04 (4°), 133.94 (4°), 131.88 (4°), 128.67 (CH), 127.53 (CH), 127.31 (CH), 126.04 (CH), 125.62 (CH), 124.19 (CH), 114.46 (CH), 35.32 (CH₂).

HRMS (APCI): calc. for C₁₄H₁₂NS; 226.0685. Found; 226.0683

1-Cinnamylnaphthalene 4a¹⁶

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and cinnamyl chloride (0.43 mmol, 47 μ L) with borylation time = 2 h, SM time 16 h. Product **4a** was isolated by column chromatography (DCM 1:4 pentane) as a white solid (42 mg, 47 %).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.11 (d, J = 7.8, 1H, ArH), 7.89 (d, J = 7.8, 1H, ArH), 7.78 (d, J = 7.8, 1H, ArH), 7.55-7.41 (m, 4H, ArH), 7.36-7.25 (m, 4H, ArH), 7.22-7.19 (m, 1H, ArH), 6.68-6.47 (m, 2H, HC=CH), 4.02 (d, J = 4.4, 2H, CH₂).

16 R. Ghosh, N. Adarsh and A. Sarkar, *The Journal of Organic Chemistry*, 2010, 75, 5320-5322.

.

δ_C (101 MHz, CDCl₃): 137.42 (4°), 136.21 (4°), 133.83 (4°), 132.00 (4°), 131.27 (CH), 128.85 (CH), 128.68 (CH), 128.46 (CH), 127.06 (CH), 126.37 (CH), 126.08 (CH), 125.93 (CH), 125.63 (CH), 125.56 (CH), 123.99 (CH), 36.40 (CH₂)

LRMS (EI): [244.13], 244.1, 229.1, 168.1, 153.1 (100%)

Trimethyl(2-(naphthalen-1-ylmethyl)allyl)silane 4b

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 2-(chloromethyl)allyl-trimethylsilane (0.43 mmol, 78 μ L) with borylation time = 4 h, SM time 16 h. Product **4b** was isolated by column chromatography (hexane) as a colourless oil. Product was still impure so yield was determined by internal standard NMR (35%). Following GP, using 2-(chloromethyl)allyl-trimethylsilane (3 equiv., 1.11 mmol, 201 μ L) with borylation time = 4 h, SM time 16 h, gave **4b** (63%) by NMR yield (1,5-cyclooctadiene as internal standard).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.83-7.81 (m, 1H, Ar*H*), 7.66-7.50 (m, 3H, Ar*H*), 7.31-7.20 (m, 2H, Ar*H*), 7.14 (d, J = 6.6, 1H, Ar*H*), 4.48 (s, 1H, C=C*H*), 4.25 (d, J = 1.2, 1H, C=C*H*), 3.55 (s, 2H, Ar-C*H*₂), 1.44 (s, 2H, Si-C*H*₂), -0.10 (s, 9H, Si-C*H*₃).

δ_C (101 MHz, CDCl₃): 146.07 (4°), 135.94 (4°), 133.79 (4°), 132.54 (4°), 128.55 (CH), 127.23 (CH), 126.90 (CH), 125.64 (CH), 125.46 (CH), 125.39 (CH), 124.42 (CH), 109.91 (CH₂), 42.11 (CH₂), 26.93 (CH₂), -1.17 (CH₃).

LRMS (EI): [254.45], 254.2, 239.2, 180.1, 167.1, 141.1, 115.1, 73.1 (100%)

N,N-Diethyl-2-(naphthalen-1-yl)acetamide 5a¹⁷

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and 2-chloro-*N*,*N*-diethylacetamide (0.43 mmol, 47 μ L) with borylation time = 4 h, SM time 16 h. Product **5a** was isolated by column chromatography (ethyl acetate 1:5 hexane) as a colourless oil (51 mg, 57%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.98 (d, J=8.1, 1H, ArH), 7.88 (d, J=7.8, 1H, ArH), 7.78 (d, J=8.3, 1H, ArH), 7.56-7.48 (m, 2H, ArH), 7.43 (t, J=7.6, 1H, ArH), 7.34 (d, J=7.1, 1H, ArH), 4.14 (s, 2H, C H_2 -C=O), 3.47 (q, J=7.1, 2H, NC H_2), 3.33 (q, J=7.2, 2H, NC H_2), 1.20 (t, J=7.1, 3H, C H_3), 1.13 (t, J=7.1, 3H, C H_3).

δ_C (101 MHz, CDCl₃): 170.16 (4°), 133.77 (4°), 132.05 (4°), 131.81 (4°), 128.74 (CH), 127.51 (CH), 126.22 (CH), 126.09 (CH), 125.68 (CH), 125.51 (CH), 123.42 (CH), 42.42 (CH₂), 40.20 (CH₂), 38.35 (CH₂), 14.23 (CH₃), 12.97 (CH₃).

LRMS (EI): [241.33], 241.2, 141.1, 115.1, 100.1 (100%)

Ethyl 2-(naphthalen-1-yl)acetate 5b18

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and ethyl chloroacetate (0.43 mmol, 47 μ L) with borylation time = 5 h, SM time 16 h. Product **5b** was isolated by column chromatography (ethyl acetate 1:9 hexane) as a pale yellow oil (58 mg, 73%).

¹⁷ B. Zheng, T. Jia and P. Walsh, *Advanced Synthesis & Catalysis*, 2014, 356, 165-178.

¹⁸ M. Dinesh, S. Archana, R. Ranganathan, M. Sathishkumar and A. Ponnuswamy, *Tetrahedron Letters*, 2015, 56, 6975-6979.

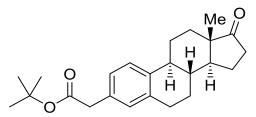
 $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.98 (d, J = 8.3, 1H, ArH), 7.84 (d, J = 7.8, 1H, ArH), 7.77 (d, J = 7.3, 1H, ArH), 7.53-7.45 (m, 2H, ArH), 7.41-7.38 (m, 2H, ArH), 4.13 (q, 2H, J = 7.2, CO₂CH₂), 4.04 (s, 2H, CH₂), 1.20 (t, J = 7.1, 3H, CH₃).

δ_C (101 MHz, CDCl₃): 171.57 (4°), 133.77 (4°), 132.08 (4°), 130.65 (4°), 128.67 (CH), 127.98 (CH), 127.92 (CH), 126.27 (CH), 125.72 (CH), 125.45 (CH), 123.80 (CH), 60.93 (CH₂), 39.24 (CH₂), 14.14 (CH₃).

LRMS (EI): [214.26], 214.1, 141.1 (100%), 115.1

tert-Butyl 2-(naphthalen-1-yl)acetate 5c¹⁹

Following GP, using 1-bromonaphthalene (0.37 mmol, 52 μ L) and *tert*-butyl chloroacetate (0.43 mmol, 61 μ L) with borylation time = 4 h, SM time 16 h. Product **5c** was isolated by column chromatography (ethyl acetate 1:19 hexane) as a yellow oil (68 mg, 76%).

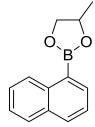

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.03 (d, J = 8.3, 1H, ArH), 7.89 (d, J = 7.8, 1H, ArH), 7.81 (d, J = 7.8, 1H, ArH), 7.58-7.41 (m, 4H, ArH), 4.01 (s, 2H, CH₂), 1.44 (s, 9H, CH₃).

δ_C (101 MHz, CDCl₃): 170.92 (4°), 133.78 (4°), 132.13 (4°), 131.28 (4°), 128.62 (CH), 127.78 (CH), 127.76 (4°), 126.08 (CH), 125.61 (CH), 125.43 (CH), 123.90 (CH), 80.96 (4°), 40.48 (CH₂), 27.96 (CH₃).

LRMS (EI): [242.32], 242.1, 186.1, 141.1 (100%), 115.1, 57.1

S23

¹⁹ R. Delley, S. Bandyopadhyay, M. Fox, C. Schliehe, D. Hodgson, F. Hollfelder, A. Kirby and A. O'Donoghue, *Org. Biomol. Chem.*, 2012, 10, 590-596.

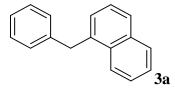

tert-Butyl 2-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)acetate 5d

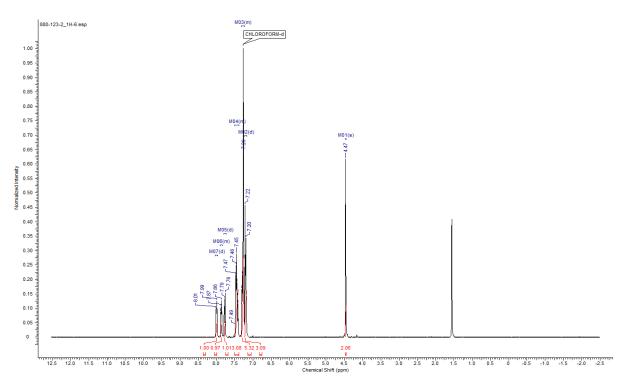
Following GP, using (8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfonate (0.326 mmol, 131 mg) and *tert*-butyl 2-chloroacetate (0.391 mmol, 55.9 µl), with borylation time = 2 h, SM time 16 h. Product **1b** was isolated by column chromatography (ethyl acetate 25:75 hexane) as a white amorphous solid (112 mg, 93%).

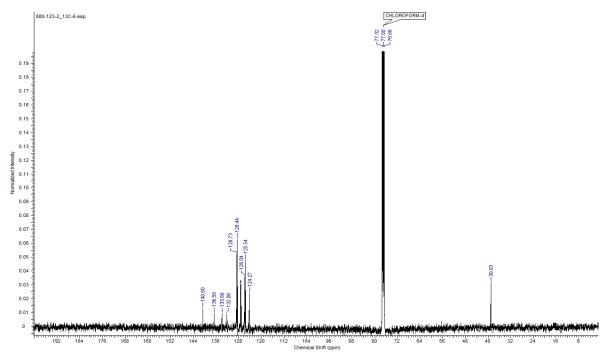
 $\delta_{\rm H}$ (500 MHz, CDCl₃): 7.25 (d, 1H, J = 8.0, ArH), 7.06 (d, 1H, J = 8.0, ArH), 7.06 (s, 1H, ArH), 3.48 (s, 2H, CH₂-CO₂^tBu), 2.89 (app. dd, 2H, J = 9.0, 4.1, ArCH₂CH₂), 2.51 (dd, 1H, J = 19.0, 8.9, CH-Ar), 2.42 (m, 1H), 2.29 (m, 1H), 2.20-1.94 (m, 4H), 1.68-1.41 (m, 6H), 1.46 (s, 9H, tBu), 0.92 (s, 3H, C(O)CCH₃).

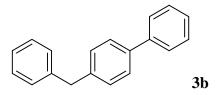
δ_C (101 MHz, CDCl₃): 220.90 (4°), 171.16 (4°), 138.24 (4°), 136.51 (4°), 132.01 (4°), 129.82 (CH), 126.57 (CH), 125.45 (CH), 80.72 (4°), 50.48 (CH), 47.96 (4°), 44.27 (CH), 41.92 (CH₂), 38.06 (CH), 35.84 (CH₂), 31.57 (CH₂), 29.30 (CH₂), 28.06 (CH₃), 26.47 (CH₂), 25.66 (CH₂), 21.57 (CH₂), 13.81 (CH₃).

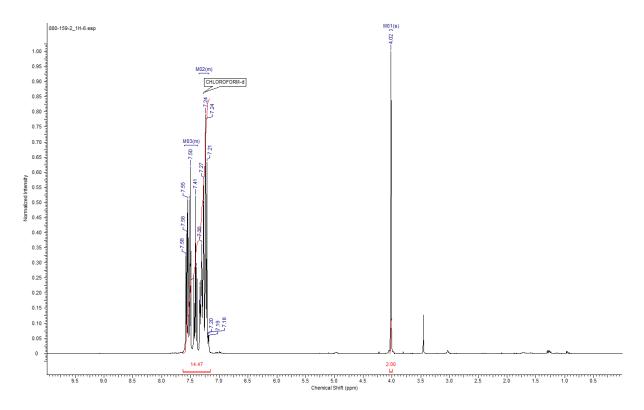
HRMS (ESI+): Found 391.2237, C₂₄H₃₂O₃Na requires 391.2244.

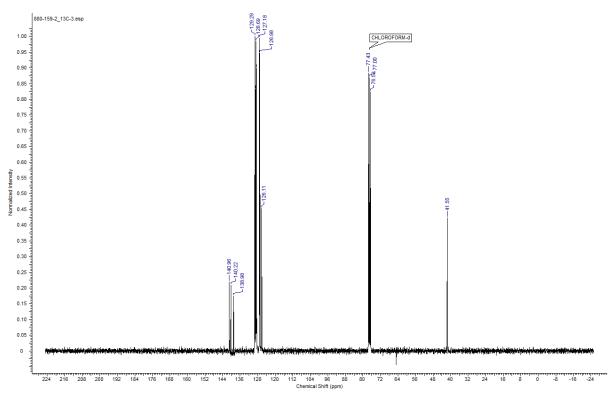

4-Methyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane 7a

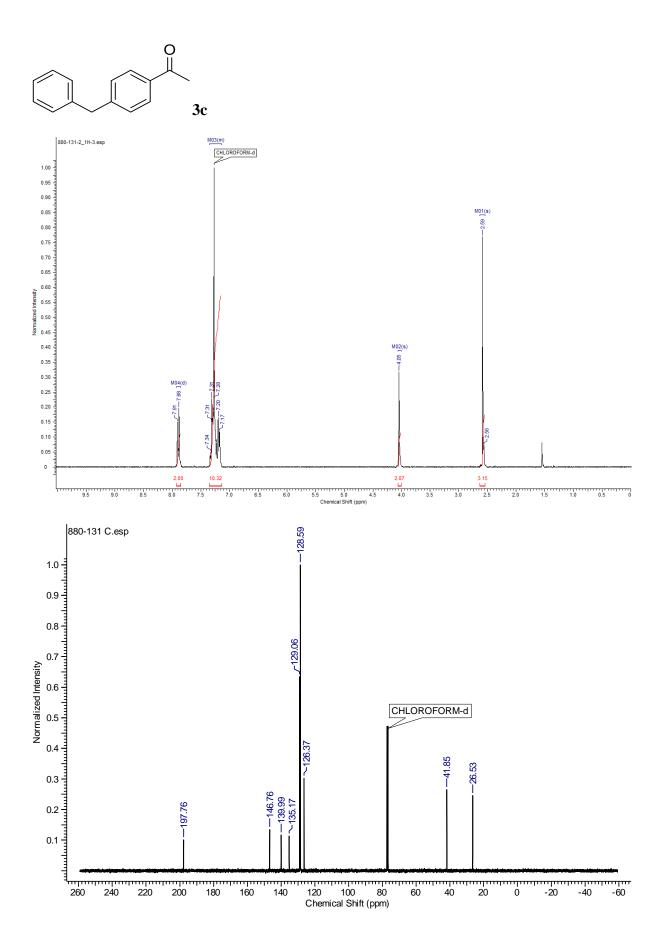

 $\delta_{\rm H}$ (300 MHz, CDCl₃): 8.68 (d, J = 8.3, 1H, ArH), 8.03 (d, J = 6.1, 1H, ArH), 7.88 (d, J = 8.1, 1H, ArH), 7.77 (d, J = 7.8, 1H, ArH), 7.48-7.39 (m, 3H, ArH), 4.73 (m, 1H, H₂C-CH-CH₃), 4.47 (t, J = 8.54, 1H, CH₂), 3.19 (dd, J = 8.8, 7.3, 1H, CH₂), 1.41 (d, J = 6.1, 3H, CH₃) $\delta_{\rm C}$ (101 MHz, CDCl₃): 136.84, 135.98, 133.18, 131.86, 128.38, 128.25, 126.40, 125.51, 124.96, 73.64, 72.39, 21.90.

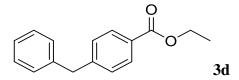

LRMS (EI): [212.10], 212.1 (100%), 197.1, 154.1, 127.1, 98.5, 77.1, 51.1.

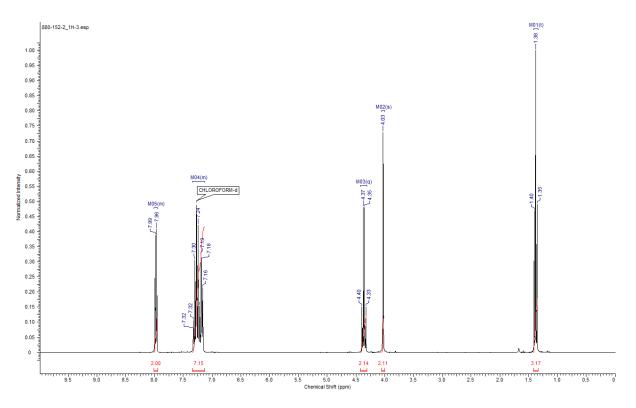

HRMS (ESI+): calc. for C₁₃H₁₃BO₂+H; 213.1081. Found; 213.1080.

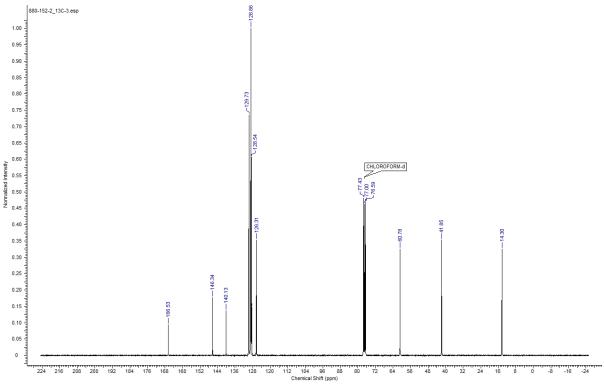

¹H and ¹³C NMR spectra

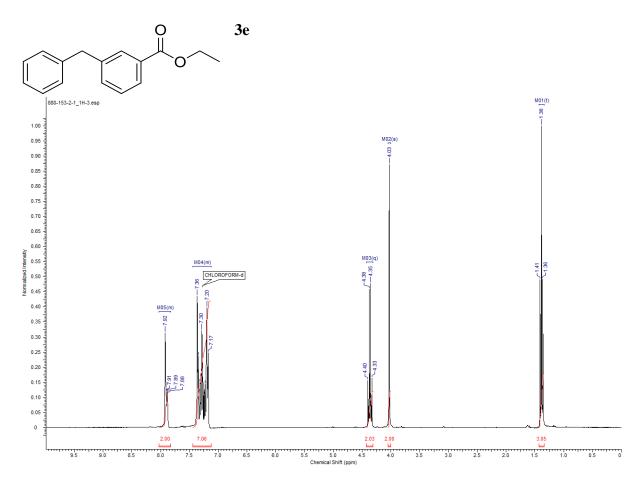


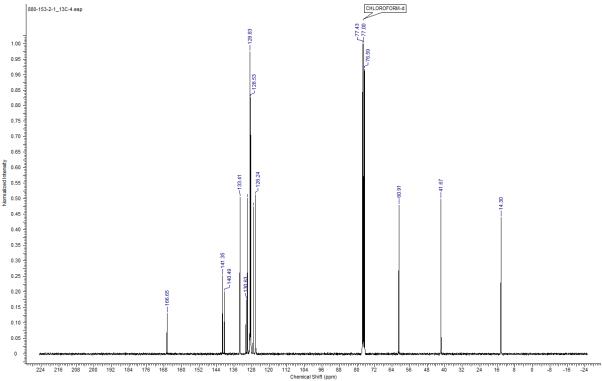


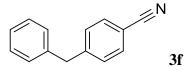


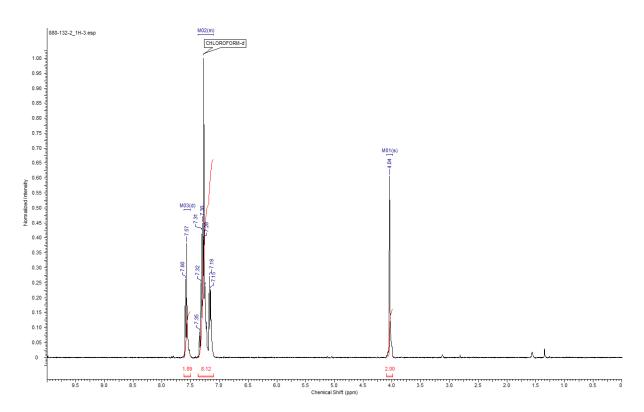


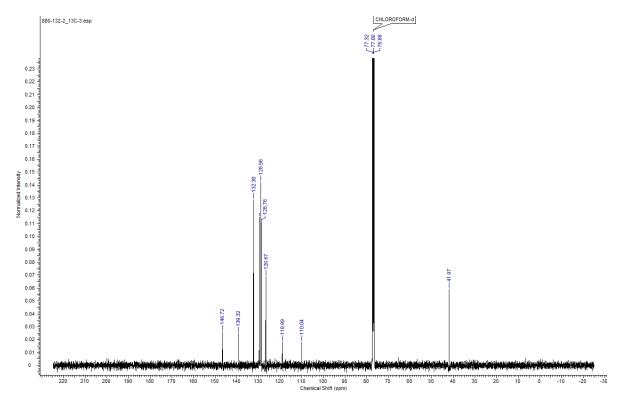


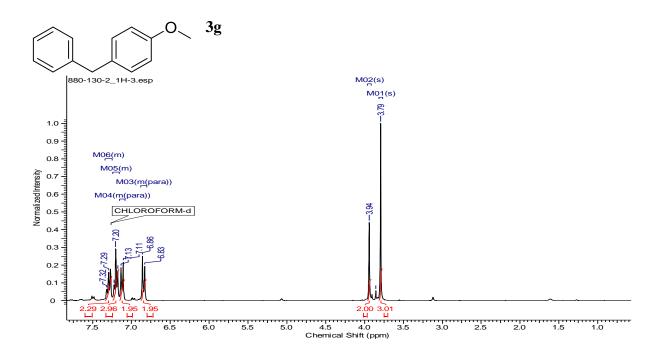


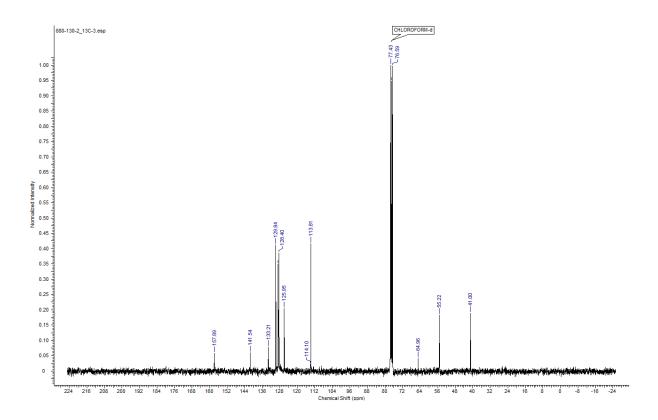


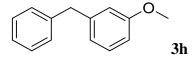


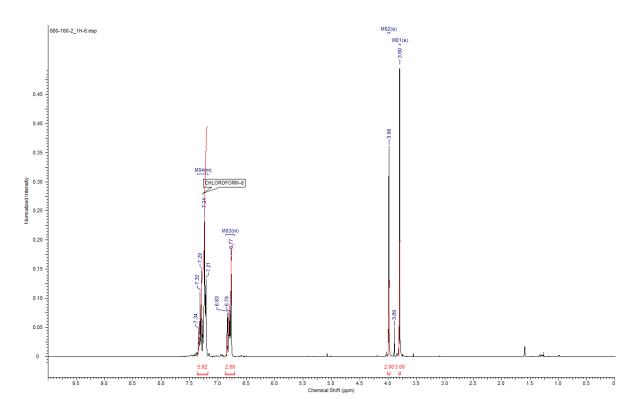


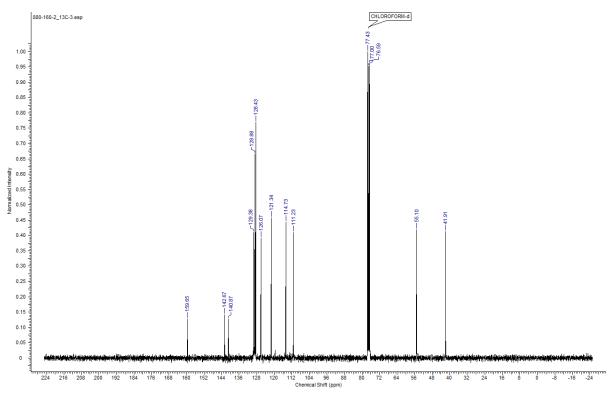


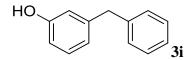


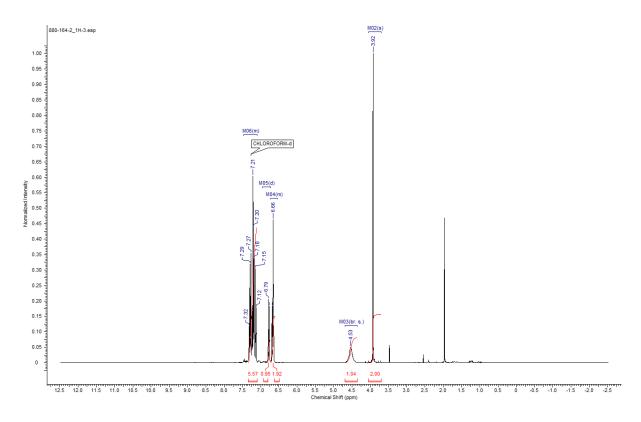


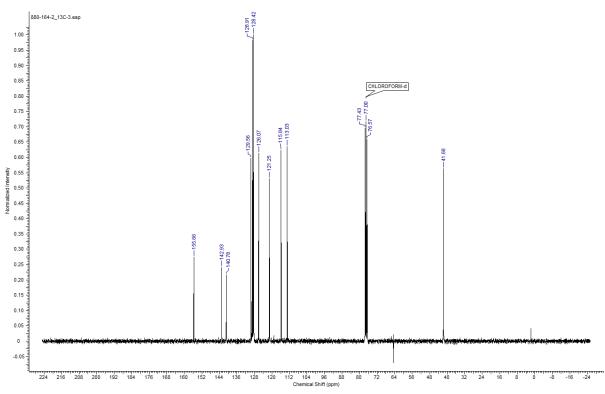


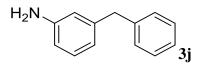


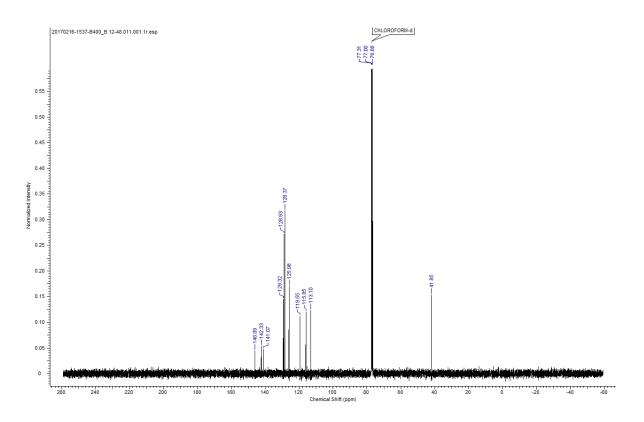


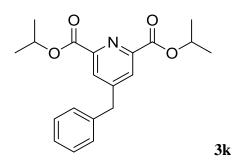


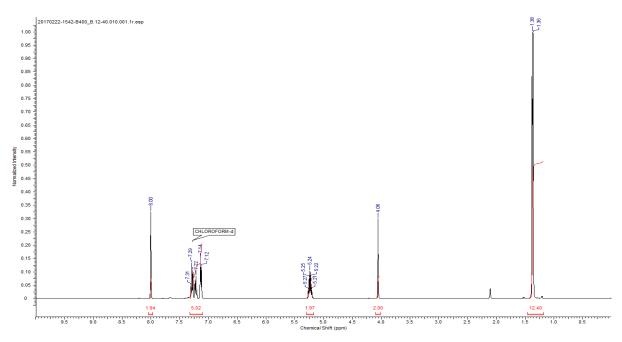


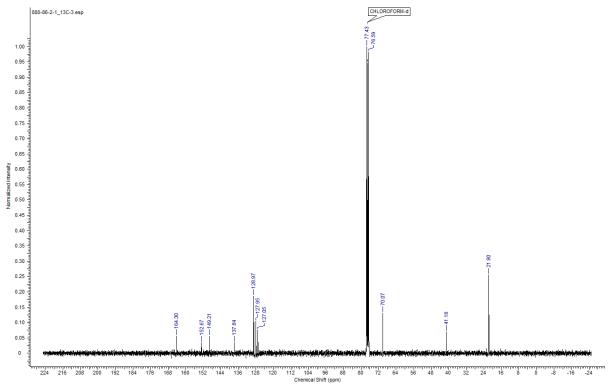


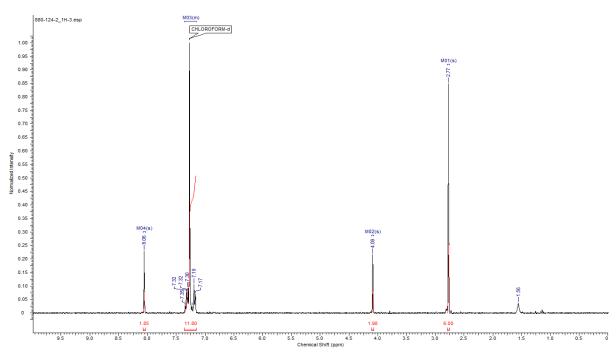


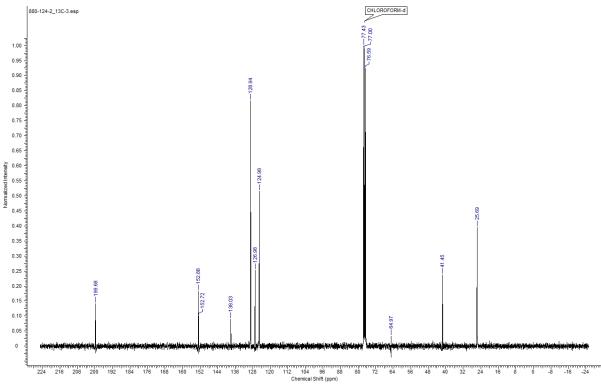


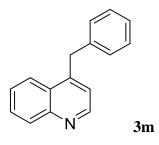


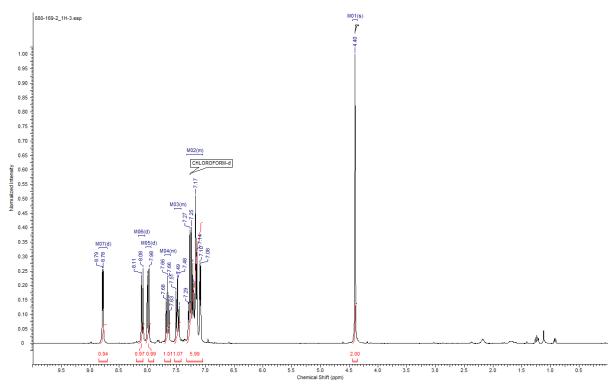


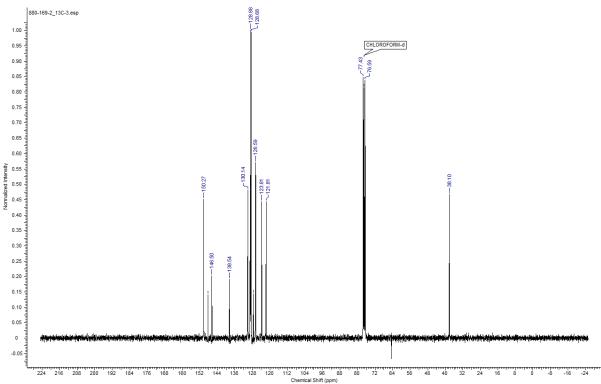


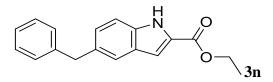


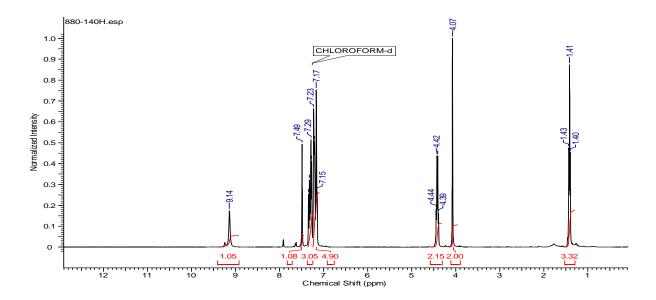


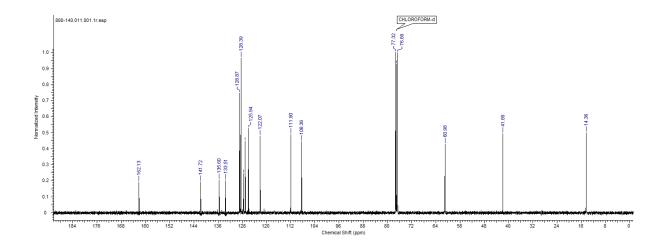


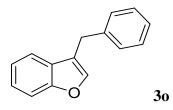


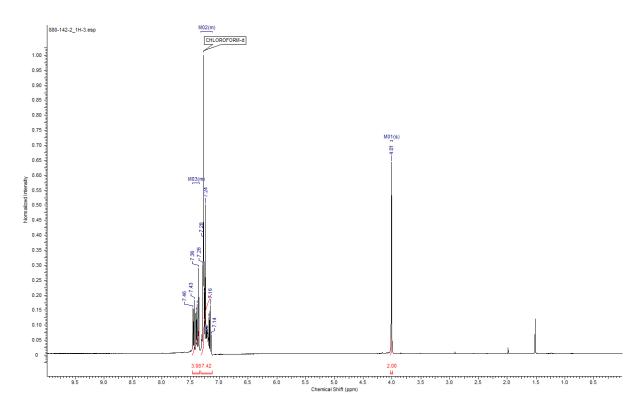


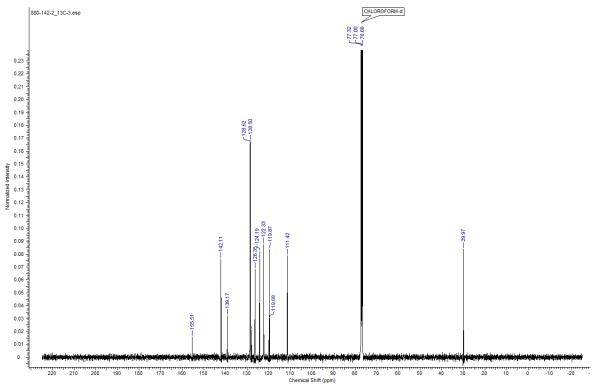


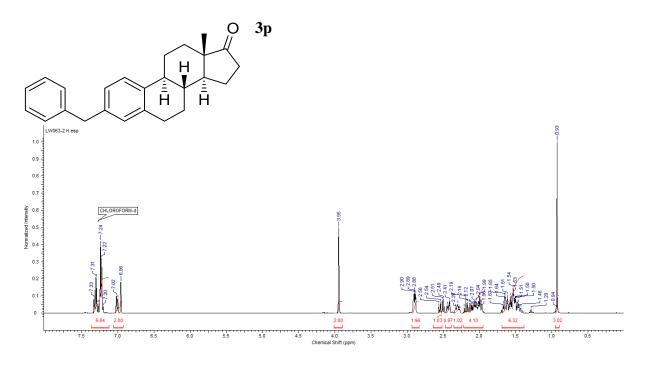


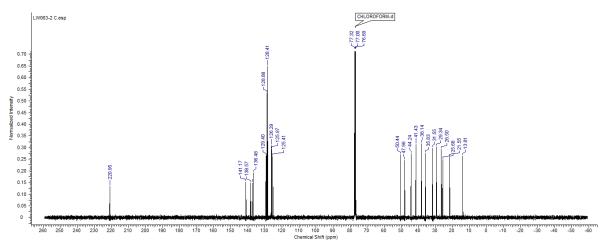


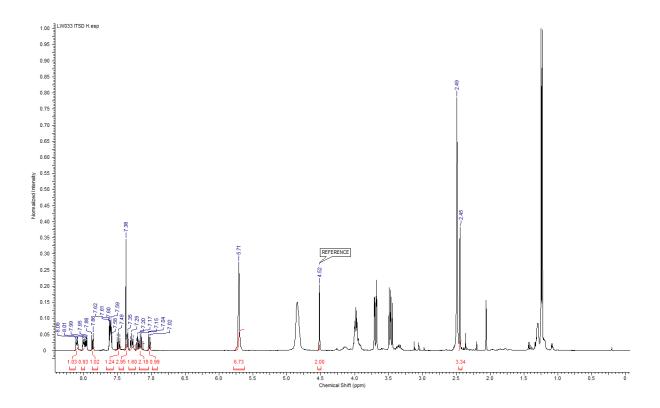


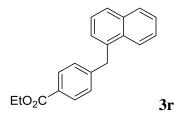


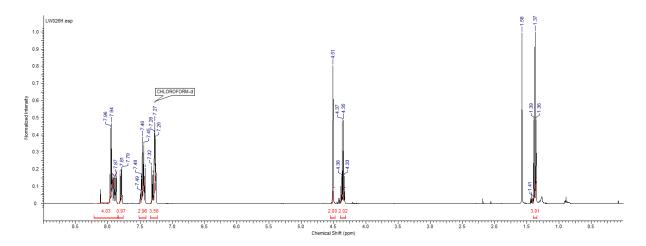


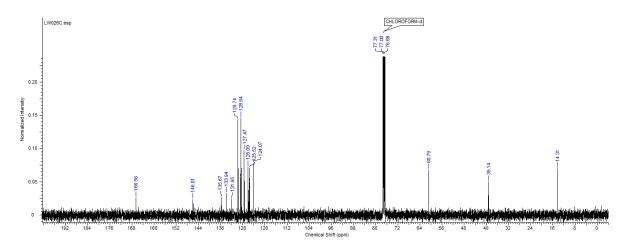


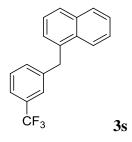


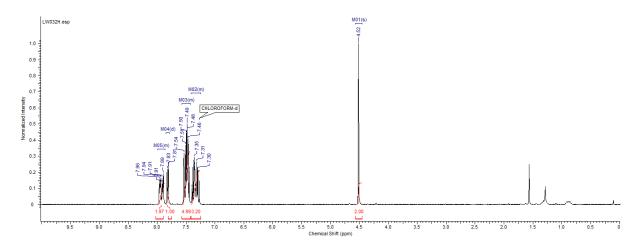


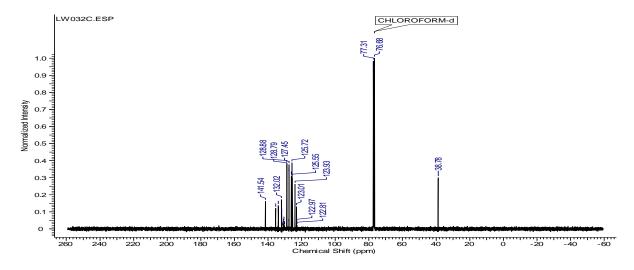


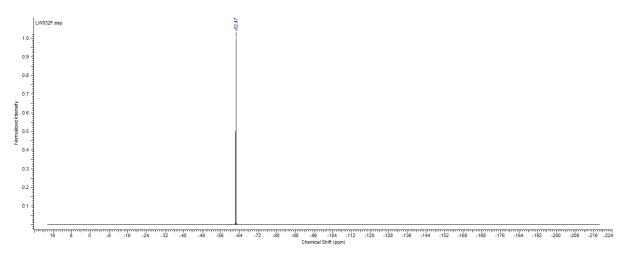


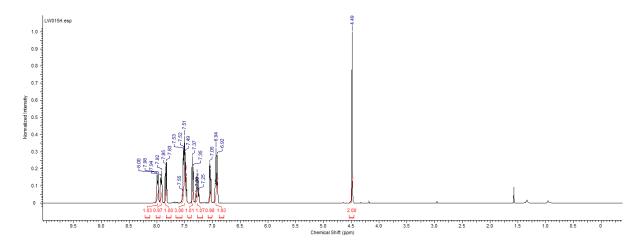


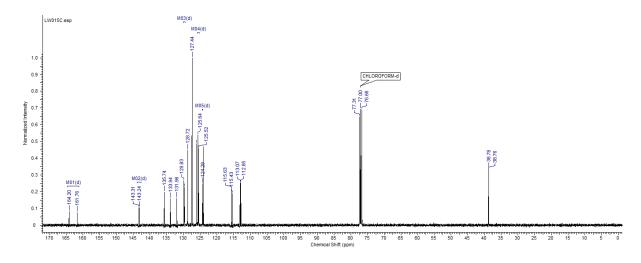

Internal standard NMR (1,5-cyclooctadiene)

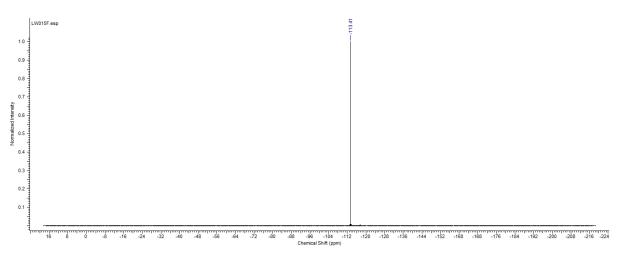


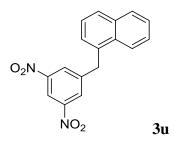


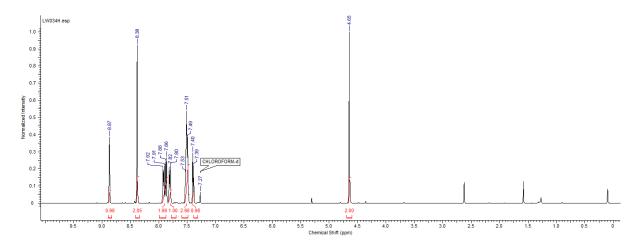


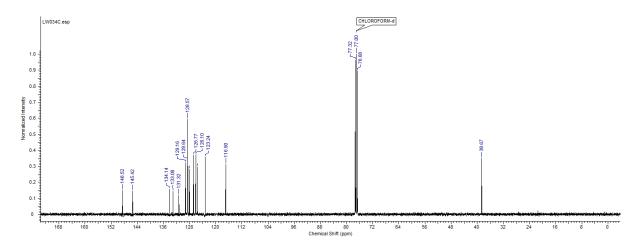


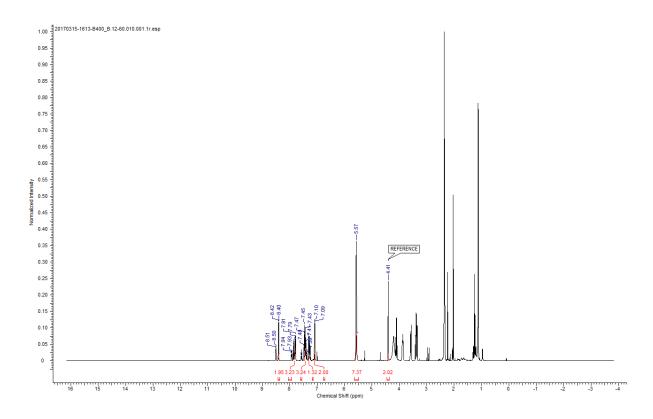


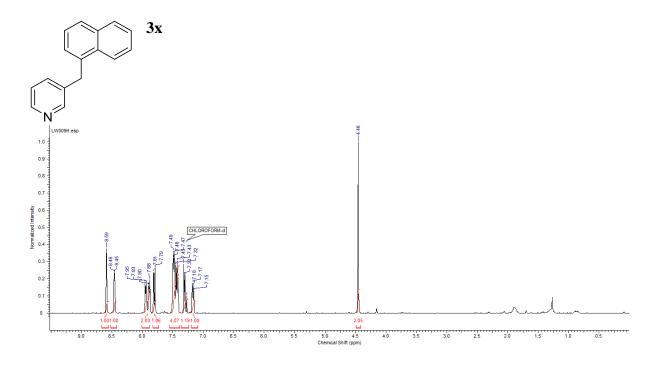


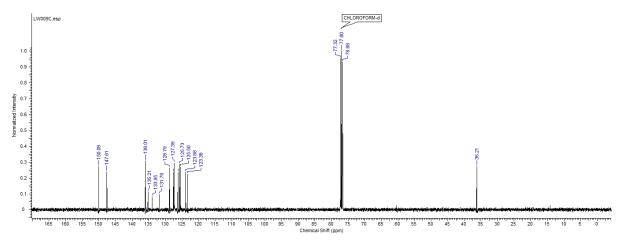


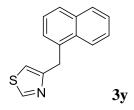


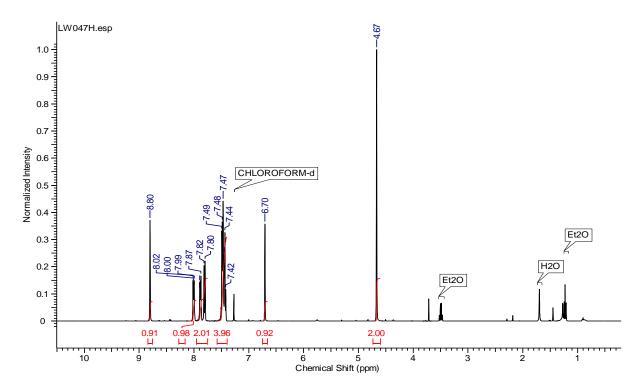


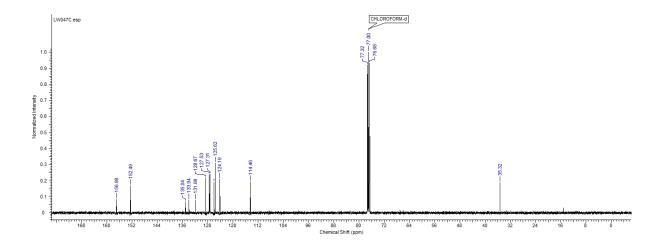


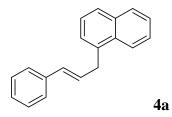


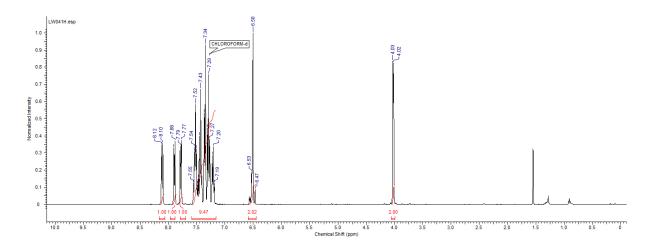


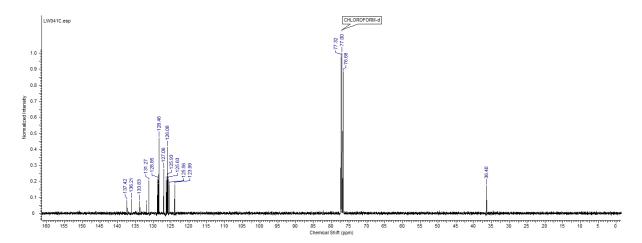



Internal standard NMR (1,5-cyclooctadiene)

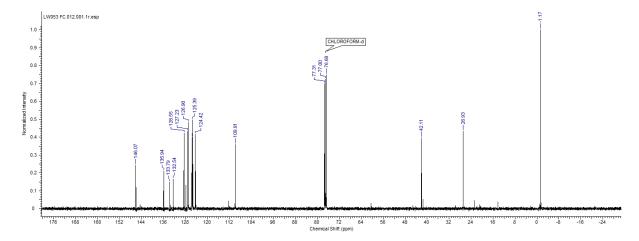


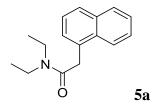


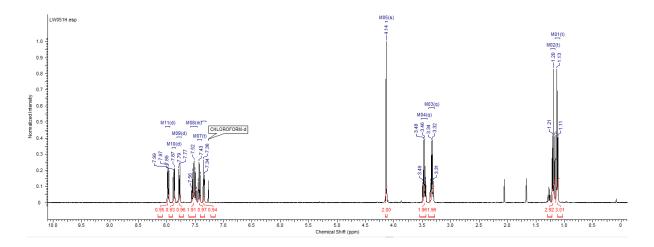


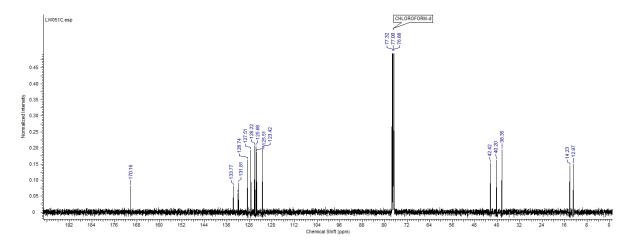


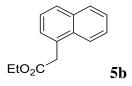


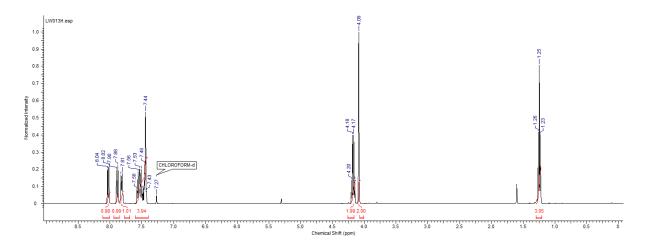


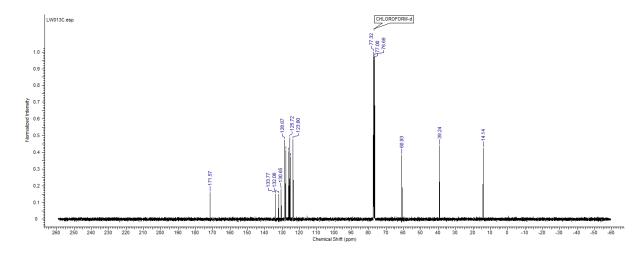


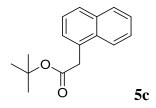


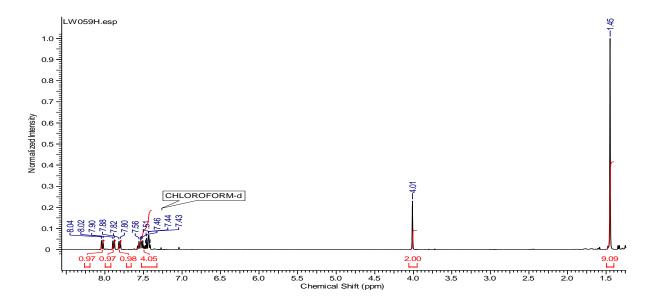

Internal standard NMR (1,5-cyclooctadiene)

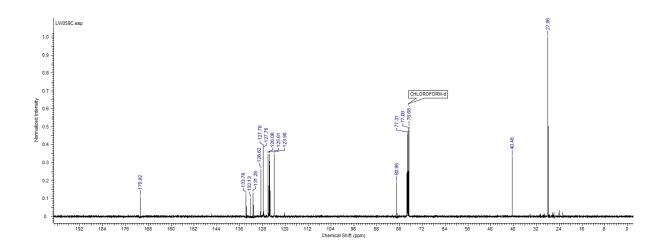


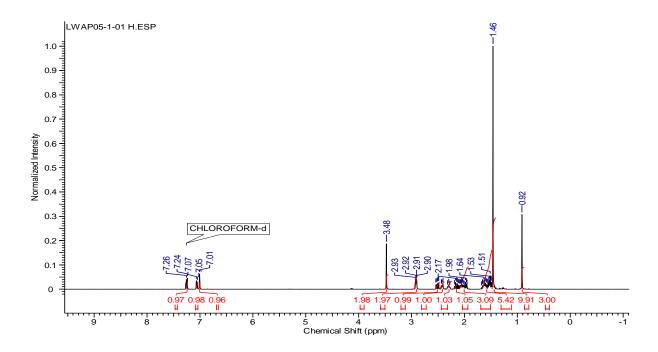


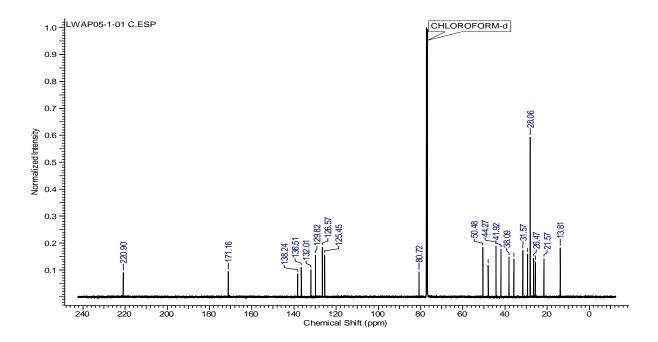


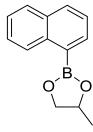


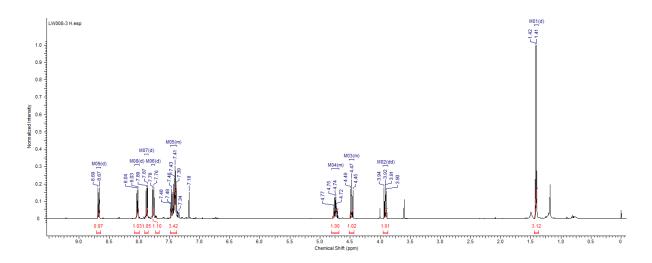


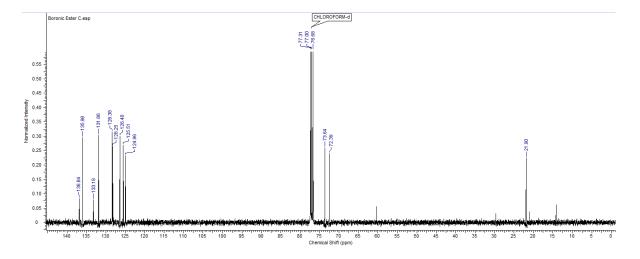












7a

