Electronic Supplementary Information for

Migratory insertion and hydrogenation of a bridging azide in thiolate-bridged dicobalt reaction platform

Yixin Zhang,^a Peng Tong,^a Dawei Yang,^{*,a} Jianzhe Li,^a Baomin Wang,^a and Jingping Qu^{*,a,b}
 ^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
 ^bKey Laboratory for Advanced Materials, East China University of Science & Technology, Shanghai 200237, P. R. China

Table of Contents

I. General Materials and Methods	S2
II. Experimental Procedures and Analytical Data	S3
III. References	S5
IV. X-ray Crystallographic Data	S6
V. NMR Spectra	S13
VI. IR Spectra	S18
VII. ESI-HRMS Spectra	\$22

I. General Materials and Methods

General Consideration. All manipulations were performed under an argon atmosphere by standard Schlenk techniques unless otherwise specified. All solvents were dried and distilled over an appropriate drying agent under argon. [Cp*CoI₂(CO)] was prepared according to literature procedure.¹ EtSH (Energy Chemical), NaOAc (Energy Chemical), NH₄PF₆ (Energy Chemical), NaN₃ (Aldrich), Na(¹⁵N=N=N) (Cambridge Isotope Laboratories), and NaBPh₄ (Energy Chemical) are commercial available and used as received without further purification.

Spectroscopic Measurements. NMR spectra were recorded on a Brüker 400 Ultra Shield spectrometer. The chemical shifts (δ) are given in parts per million relative to CD₂Cl₂ (5.31 ppm for ¹H; 53.84 ppm for ¹³C). Infrared spectra were recorded on a NEXVSTM FT-IR spectrometer. ESI-HRMS spectra were recorded on a HPLC/Q-Tof micro-spectrometer, except that ¹⁵N-labeled **3[BPh4]** was recorded on an SYNAPT G2-Si spectrometer. Elemental analyses were performed on a Vario EL analyzer.

X-ray Crystallography Procedures. Single crystal X-ray diffraction studies were carried out on a Brüker SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were performed using the SADABS program.² All structures were solved by direct methods and refined by full-matrix least-squares procedures on F^2 using SHELXTL 2014.³ All of the non-hydrogen atoms were refined anisotropically. All of the hydrogen atoms were generated and refined in ideal positions.

For **1[BPh4]**, the thermal parameters of I and CO ligands were restrained to be similar with the adjacent atoms due to the substitutional disorder, and the "simu" restraint was used with the deviation being 0.02 to help the refinement. The thermal parameters of CH₂Cl₂ were restrained to be similar with the adjacent atoms, and the "simu" restraint was used with the deviation being 0.02 to avoid the Hirshfeld Test Diff on C–Cl bonds. The C–Cl bond distances in the solvent CH₂Cl₂ molecule were fixed at 1.80 Å. For **2[PF6]**, the thermal parameters of the PF₆ anion were restrained to be similar with the adjacent atoms, and the "simu" restraint was used with the deviation being 0.02 to avoid the Hirshfeld Test Diff on 0.02 to avoid the Hirshfeld Test Diff on P–F bonds. For **3[BPh4]**, the thermal parameters of N atom and the SEt ligands were restrained to be similar with the adjacent atoms, and the "delu" restraint was used with the deviation being 0.005 to avoid the Hirshfeld Test Diff on several C–C bonds. The "isor" restraint was used with the deviation being 0.005 on C6

atom to help the refinement. The PLATON SQUEEZE tool was used for the calculation of the disordered solvent contribution to the calculated structure factors.⁴

II. Experimental Procedures and Analytical Data

Synthesis of $[Cp*Co(I)(\mu-SEt)_2(CO)CoCp*]I(1[I])$. To a solution of $[Cp*CoI_2(CO)]$ (475 mg, 1.00 mmol) in CH₂Cl₂ (30 mL) and H₂O (30 mL), EtSH (248 mg, 4.00 mmol) and AcONa (820 mg, 10.00 mmol) were added. The color of the reaction mixture gradually changed from violet-red to brown-red. After stirring at room temperature for 12 h, the organic phase was collected and the aqueous phase was washed with small amount of CH₂Cl₂. The combined CH₂Cl₂ solution was dried over MgSO₄ and filtered. The filtrate was dried under vacuum and washed with small amount of Et₂O to afford brown powder 1[I] (602 mg, 0.76 mmol, 76%). Crystals of 1[I] were unable to obtain using various available systems, therefore, the anion exchange reaction of 1[I] with NaBPh₄ was performed to give complex 1[BPh₄] in good yield. Single-crystals of 1[BPh₄] suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution layered with *n*-hexane at room temperature.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 2.55 (m, 2H, S*CH*₂CH₃), 2.16 (m, 2H, S*CH*₂CH₃), 1.77 (s, 15H, Cp*-*CH*₃), 1.62 (s, 15H, Cp*-*CH*₃), 1.08 (t, *J* = 7.4 Hz, 6H, SCH₂*CH*₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 104.03 (CO-*C*), 94.50 (Cp*-*C*), 35.28 (SEt-*CH*₂), 17.61 (SEt-*CH*₃), 11.03 (Cp*-*CH*₃). ESI-HRMS (CH₂Cl₂): Calcd. For [**1**]⁺ 665.0229; Found 665.0209; Calcd. For [**1**-**CO**]⁺ 637.0280; Found 637.0305. IR (Film, cm⁻¹): 2039 (v_{CO}). Anal. Calcd. For C₂₅H₄₀Co₂I₂OS₂: C, 37.89; H, 5.09. Found: C, 37.52; H, 5.01.

Synthesis of $[Cp*Co(\mu-SEt)(MeCN)]_2[PF_6]_2$ (2[PF_6]_2). The solution of 1[I] (791 mg, 1.00 mmol) and NH₄PF₆ (652 mg, 4.00 mmol) in MeCN (50 mL) was stirred at room temperature in the air for 2 weeks. After removal of the solvent, the residue was extracted with CH₂Cl₂ (50 mL), and dried under vacuum. The solids were washed with Et₂O (10 mL × 3) to give black product 2[PF₆]₂ (750 mg, 0.85 mmol, 85%). Crystals suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution layered with Et₂O at room temperature.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 2.69 (s, 6H, *CH*₃CN), 1.85 (q, *J* = 7.4 Hz, 4H, S*CH*₂CH₃), 1.44 (s, 30H, Cp*-*CH*₃), 1.33 (t, *J* = 7.4 Hz, 6H, SCH₂*CH*₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 132.94 (MeCN-*CN*), 97.86 (Cp*-*C*), 27.46 (MeCN-*CH*₃), 17.13 (SEt-*CH*₂), 9.67 (Cp*-*CH*₃), 4.08 (SEt-*CH*₃). ESI-HRMS (MeCN): Calcd. For [**2**]²⁺

296.0883; Found 296.0891; Calcd. For [**2–MeCN**]²⁺ 275.5750; Found 275.5748; Calcd. For [**2–2MeCN**]²⁺ 255.0618; Found 255.0627. Anal. Calcd. For C₂₈H₄₆Co₂F₁₂N₂P₂S₂: C, 38.10; H, 5.25; N, 3.17. Found: C, 38.07; H, 5.15; N, 3.26.

Synthesis of $[Cp*Co(\mu-SEt)_2(\mu_{1,1}-\eta^1:\eta^1-N_3)CoCp*][BPh4]$ (3[BPh4]). A solution of 2[PF6]₂ (103 mg, 0.12 mmol) and NaBPh₄ (42 mg, 0.12 mmol) in MeCN (5 mL) was mixed with a solution of NaN₃ (10 mg, 0.15 mmol) in MeOH (5 mL) at room temperature. The reaction mixture was stirred for 6 h, and then dried in vacuum. The crude product was extracted with CH₂Cl₂ (5 mL), and then dried in vacuum. The solids were washed with Et₂O (5 mL × 2) to give dark green product **3[BPh4]** (85 mg, 0.10 mmol, 84%). The crystals suitable for X-ray diffraction were obtained from a THF solution layered with Et₂O at -30 °C.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.30 (br, 8H, Ph-*H*), 7.01 (t, *J* = 7.4 Hz, 8H, Ph-*H*), 6.86 (t, *J* = 7.2 Hz, 4H, Ph-*H*), 3.02 (q, *J* = 7.6 Hz, 2H, SCH₂CH₃), 1.91 (q, *J* = 7.6 Hz, 2H, SCH₂CH₃), 1.71 (t, *J* = 7.6 Hz, 3H, SCH₂CH₃), 1.50 (t, *J* = 7.6 Hz, 3H, SCH₂CH₃), 1.39 (s, 30H, Cp*-CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 136.27 (Ph-*C*), 126.00 (Ph-*C*), 122.08 (Ph-*C*), 92.56 (Cp*-*C*), 27.29 (SEt-*CH*₂), 23.02 (SEt-*CH*₂), 20.23 (SEt-*CH*₃), 18.43 (SEt-*CH*₃), 9.20 (Cp*-*CH*₃). ESI-HRMS (CH₂Cl₂): Calcd. For [**3**]⁺ 552.1328; Found 552.1335. IR (Film, cm⁻¹): 2046 (v_{N3}). Due to the instability of **3**[**BPh4**], the elemental analysis was unable to perform.

A sample of ¹⁵N-labelled **3[BPh4]** was synthesized using an analogous synthetic procedure starting from Na(¹⁵N=N=N) in 85% yield. ¹H NMR spectrum is similar to that of the unlabeled complex. ESI-HRMS (CH₂Cl₂): Calcd. For [¹⁵N-3]⁺ 553.1298; Found 553.1310. IR (Film, cm⁻¹): 2039 (v_{15N3}).

Synthesis of $[Cp*Co(\mu-SEt)(\mu-NSEt)CoCp*][BPh_4]$ (4[BPh_4]). A solution of 3[BPh_4] (116 mg, 0.13 mmol) in THF (5 mL) was stirred at 60 °C for 10 h, and then dried in vacuum. The crude product was extracted with CH₂Cl₂ (5 mL), and then dried in vacuum. The resulting solids were washed with Et₂O (5 mL × 2) to give black product 4[BPh_4] (81 mg, 0.10 mmol, 72%). Crystals suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution layered with *n*-hexane at room temperature.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.30 (br, 8H, Ph-*H*), 7.02 (t, *J* = 7.4 Hz, 8H, Ph-*H*), 6.86 (t, *J* = 7.2 Hz, 4H, Ph-*H*), 3.38 (q, *J* = 7.5 Hz, 2H, NS*CH*₂CH₃), 1.69 (s, 30H, Cp*-*CH*₃), 1.12 (t, *J* = 7.5 Hz, 3H, NSCH₂*CH*₃), 0.90 (t, *J* = 7.2 Hz, 3H, SCH₂*CH*₃), 0.80 (q, *J* = 7.2 Hz, 2H, S*CH*₂CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 136.28 (Ph-*C*), 125.96 (Ph-*C*), 122.05 (Ph-*C*), 95.13 (Cp*-*C*), 48.35 (NSEt-*CH*₂), 35.69 (NSEt-

*CH*₃), 19.62 (SEt-*CH*₃), 11.76 (SEt-*CH*₂), 10.30 (Cp*-*CH*₃). ESI-HRMS (CH₂Cl₂): Calcd. For [**4**]⁺ 524.1266; Found 524.1253. Anal. Calcd. For C₄₈H₆₀BCo₂NS₂: C, 68.32; H, 7.17; N, 1.66. Found: C, 68.40; H, 7.27; N, 1.57.

Synthesis of $[Cp*Co(\mu-SEt)_2(\mu_{1,3}-\eta^1:\eta^1-NHNNH)CoCp*][BPh4]$ (5[BPh4]). A solution of 3[BPh4] (131 mg, 0.15 mmol) in THF (15 mL) was stirred for 24 h under 20 atm H₂, and then dried in vacuum. The crude product was extracted with CH₂Cl₂ (5 mL), and then dried in vacuum. The solids were washed with Et₂O (5 mL × 3) to give black solids (110 mg). The solids (7.3 mg) were dissolved in CD₂Cl₂ (0.6 mL) and ferrocene (3.4 mg) was used as an internal standard for ¹H NMR. Formation of 5[BPh4] (55% NMR yield) and 4[BPh4] (15% NMR yield) were observed by ¹H NMR spectrum. Crystals suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution layered with *n*-hexane at room temperature.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 8.26 (s, 2H, N*H*), 7.30 (br, 8H, Ph-*H*), 7.03 (t, *J* = 7.3 Hz, 8H, Ph-*H*), 6.86 (t, *J* = 7.1 Hz, 4H, Ph-*H*), 1.44~1.40 (br, 34H, Cp*-*CH*₃ & S*CH*₂CH₃), 1.16 (t, *J* = 7.6 Hz, 6H, SCH₂*CH*₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 136.25 (Ph-*C*), 125.93 (Ph-*C*), 122.02 (Ph-*C*), 94.59 (Cp*-*C*), 28.90 (SEt-*CH*₂), 18.00 (SEt-*CH*₃), 9.11 (Cp*-*CH*₃). ESI-HRMS (CH₂Cl₂): Calcd. For [**5**]⁺ 554.1484; Found 554.1493. IR (Film, cm⁻¹): 3306 (v_{NH}). Since complexes **5**[**BPh**₄] and **4**[**BPh**₄] cannot be separated entirely, the elemental analysis of **5**[**BPh**₄] was unable to perform.

A sample of D-labelled **5[BPh4]** was synthesized using an analogous synthetic procedure starting from D₂ in 67% ¹H NMR yield. ¹H NMR spectrum is similar to that of the unlabeled complex, except that the resonance at 8.26 ppm disappears. ESI-HRMS (CH₂Cl₂): Calcd. For [**D-5**]⁺ 556.1609; Found 556.1599. IR (Film, cm⁻¹): 2451 (v_{ND}).

III. References

1. S. A. Frith and J. L. Spencer, Inorg. Synth. 1985, 23, 15.

2. G. M. Sheldrick, SADABS, Program for area detector adsorption correction, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

3. (a) G. M. Sheldrick, SHELXL-2014, Program for refinement of crystal structures, University of G ättingen, Germany, 2014. (b) G. M. Sheldrick, SHELXS-2014, Program for solution of crystal structures, University of G ättingen, Germany, 2014.

4. A. L. Spek, Acta Cryst. 2014, C71, 9.

IV. X-ray Crystallographic Data

	1[BPh ₄]•0.5CH ₂ Cl ₂	2[PF ₆] ₂	3[BPh ₄]			
Formula	$C_{49.5}H_{61}BClCo_2IOS_2$	$C_{28}H_{46}Co_2F_{12}N_2P_2S_2$	$C_{48}H_{60}BCo_2N_3S_2$			
Formula weight	1027.12	882.59	871.78			
Crystal dimensions (mm ³)	$0.35 \times 0.27 \times 0.22$	$0.32\times 0.29\times 0.24$	0.30 imes 0.21 imes 0.14			
Crystal system	Triclinic	Monoclinic	Monoclinic			
Space group	P-1	C2/c	P2(1)/c			
a (Å)	8.8838(2)	19.185(2)	9.6350(6)			
b (Å)	21.8060(6)	11.4028(13)	32.469(2)			
c (Å)	25.6046(6)	16.908(2)	14.6586(9)			
α(9	83.6460(10)	90.00	90.00			
β(9	80.2610(10)	99.636(2)	91.9523(14)			
γ(9	86.086(2)	90.00	90.00			
Volume (Å ³)	4852.4(2)	3646.6(7)	4583.0(5)			
Ζ	4	4	4			
<i>T</i> (K)	298(2)	298(2)	173(2)			
D_{calcd} (g cm ⁻³)	1.406	1.608	1.263			
$\mu (\mathrm{mm}^{-1})$	1.495	1.197	0.850			
F (000)	2108	1808	1840			
No. of rflns. collected	51619	10027	43897			
No. of indep. rflns. $/R_{int}$	17097 / 0.0333	3222 / 0.0369	8080 / 0.0349			
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	12932	2603	6942			
Data / restraints / parameters	17097 / 128 / 992	3222 / 174 / 265	8080 / 24 / 571			
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0504 / 0.1226	0.0414 / 0.1039	0.0391 / 0.0993			
R_1 / wR_2 (all data)	0.0701 / 0.1297	0.0564 / 0.1104	0.0484 / 0.1037			
GOF (on F^2)	1.015	1.050	0.923			
Largest diff. peak and hole (e $Å^{-3}$)	0.969 / -0.731	0.782 / -0.542	0.529 / -0.395			
CCDC No.	1437845	1551865	1551839			

Table S1. Crystallographic data for 1[BPh4]•0.5CH₂Cl₂, 2[PF₆]₂ and 3[BPh4].

	4[BPh₄]• CH ₂ Cl ₂	5[BPh4]
Formula	$C_{49}H_{62}BCl_2Co_2NS_2$	$C_{48}H_{62}BCo_2N_3S_2$
Formula weight	928.68	873.79
Crystal dimensions (mm ³)	$0.40\times 0.19\times 0.11$	$0.34\times 0.17\times 0.10$
Crystal system	Monoclinic	Orthorhombic
Space group	P2(1)/c	Pbcm
a (Å)	13.9953(5)	9.675(3)
b (Å)	14.6819(6)	17.641(5)
c (Å)	23.9801(9)	26.834(7)
α(9	90	90
β ()	97.849(2)	90
γ(9	90	90
Volume (Å ³)	4881.2(3)	4580(2)
Ζ	4	4
<i>T</i> (K)	298(2)	298(2)
D_{calcd} (g cm ⁻³)	1.264	1.267
$\mu (\text{mm}^{-1})$	0.907	0.851
F (000)	1952	1848
No. of rflns. collected	34973	25793
No. of indep. rflns. $/R_{int}$	8598 / 0.0610	4128 / 0.0442
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	4724	3183
Data / restraints / parameters	8598 / 3 / 500	4128 / 0 / 256
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0695 / 0.1478	0.0473 / 0.1330
R_1/wR_2 (all data)	0.1280 / 0.1700	0.0654 / 0.1484
GOF (on F^2)	1.026	1.049
Largest diff. peak and hole (e $Å^{-3}$)	0.945 / -0.799	0.418 / -0.511
CCDC No.	1551840	1551841

 Table S2. Crystallographic data for 4[BPh4]•CH2Cl2 and 5[BPh4].

Fig. S1. ORTEP diagram of **1[BPh4]**•0.5CH₂Cl₂. One of the two crystallographically independent molecules is shown. Thermal ellipsoids are shown at 50% probability level. The substitutional disordered I and CO ligands, BPh₄ anion, the CH₂Cl₂ molecule and hydrogen atoms on carbons are omitted for clarity.

	a conta anotan		······································		
	Molecule 1	Molecule 2		Molecule 1	Molecule 2
Distances (Å)					
Co1 ·· Co2	3.4054(1)	3.3941(1)			
Co1–S1	2.2617(12)	2.2493(12)	Co1–S2	2.2678(12)	2.2495(13)
Co2–S1	2.2604(13)	2.2616(12)	Co2–S2	2.2698(12)	2.2532(12)
Co1-C25	1.764(17)	1.752(8)	Co2–I1	2.643(2)	2.6366(12)
Co1–Cp*1	1.7204(0)	1.7233(0)	Co2–Cp*2	1.7280(0)	1.7204(0)
Angles ()					
Co1-S1-Co2	97.71(5)	97.60(5)	Co1-S2-Co2	97.26(5)	97.84(5)
Torsion angles ()					
\$1-Co1Co2-\$2	155.929(4)	157.720(4)			
Dihedral angle ()					
Cp*1–Cp*2	62.9	64.9			

Table S3. Selected bond distances and angles for 1[BPh₄]•0.5CH₂Cl₂.

Fig. S2. ORTEP diagram of $2[PF_6]_2$. Thermal ellipsoids are shown at 50% probability level. The PF₆ anions and hydrogen atoms on carbons are omitted for clarity.

Distances (Å)			
Co1 ·· Co1A	3.3624(4)		
Co1–S1	2.2623(9)	Co1–N1	1.914(3)
Co1–Cp*1	1.7021(0)		
Angles ()			
Co1–S1–Co1A	96.10(4)	Co1-N1-C13	165.9(3)
Torsion angles ()			
S1-Co1Co1A-S1A	156.644(5)		
Dihedral angles ()			
Cp*1–Cp*2	61.1		

Table S4. Selected bond distances and angles for 2[PF6]2.

Fig. S3. ORTEP diagram of **3[BPh4]** at 173 K. Thermal ellipsoids are shown at 50% probability level. BPh4 anion and hydrogen atoms on carbons are omitted for clarity.

Distances (Å)			
Co1–Co2	2.8483(4)		
Co1–S1	2.3381(14)	Co1–S1'	2.2456(11)
Co1–S2	2.1933(15)	Co1–S2'	2.3261(12)
Co2–S1	2.3115(14)	Co2–S1'	2.2638(12)
Co2–S2	2.2179(14)	Co2–S2'	2.2952(12)
Co1–N1	2.026(5)	Co1–N1'	2.011(4)
Co2–N1	2.044(5)	Co2–N1'	2.014(4)
N1-N2	1.162(9)	N1'-N2'	1.205(6)
N2-N3	1.167(9)	N2'-N3'	1.143(7)
Co1–Cp*1	1.6851(0)	Co2–Cp*2	1.6824(0)
Angles ()			
Co1-S1-Co2	75.55(4)	Co1–S1'–Co2	78.34(4)
Co1-S2-Co2	80.43(5)	Co1–S2'–Co2	76.10(4)
Co1–N1–Co2	88.8(2)	Co1–N1'–Co2	90.10(18)
Co1-N1-N2	120.8(5)	Co1-N1'-N2'	117.9(4)
N1-N2-N3	176.3(8)	N1'-N2'-N3'	171.9(6)
Torsion angles ()			
S1-Co2Co1-N1	111.844(3)	S1'-Co2Co1-N1'	125.147(4)
S2-Co1Co2-N1	132.627(4)	S2'-Co1Co2-N1'	119.283(3)
S1-Co1Co2-S2	115.529(3)	S1'-Co1Co2-S2'	115.571(3)
Dihedral angle ()			
Cp*1–Cp*2	7.6		

Table S5. Selected bond distances and angles for 3[BPh4].

Fig. S4. ORTEP diagram of **4[BPh**₄]•CH₂Cl₂. Thermal ellipsoids are shown at 50% probability level. The BPh₄ anion, the CH₂Cl₂ molecule and hydrogen atoms on carbons are omitted for clarity.

Distances (Å)			
Co1–Co2	2.4668(10)		
Co1–S1	2.2308(18)	Co2–S1	2.2176(18)
Co1–N1	1.815(4)	Co2–N1	1.790(5)
N1-S2	1.605(5)		
Co1–Cp*1	1.6942(0)	Co2–Cp*2	1.6938(0)
Angles ()			
Co1-S1-Co2	67.36(5)	Co1–N1–Co2	86.3(2)
Co1-N1-S2	144.9(3)	Co2-N1-S2	126.6(3)
Torsion angles ()			
S1-Co1Co2-N1	124.784(2)	Co1–Co2N1–S2	166.644(4)
Dihedral angle ()			
Cp*1–Cp*2	52.2		

Table S6.	. Selected	bond	distances	and a	angles	for	4[BPh	4]•(CH_2C	Ľl ₂ .
-----------	------------	------	-----------	-------	--------	-----	-------	------	---------	-------------------

Fig. S5. ORTEP diagram of **5**[**BPh**₄]. Thermal ellipsoids are shown at 50% probability level. The BPh₄ anion and hydrogen atoms on carbons are omitted for clarity.

Distances (Å)			
Co1 ·· Co1A	3.1475(8)		
Co1–S1	2.2272(11)	Co1–S2	2.2353(10)
Co1–N1	1.905(3)	N1-N2	1.286(3)
Co1–Cp*1	1.6996(2)		
Angles ()			
Co1–S1–Co1A	89.92(5)	Co1–S2–Co1A	89.51(5)
Co1-N1-N2	135.2(2)	N1N2N1A	118.1(4)
Torsion angles ()			
S1-Co1Co1A-S2	145.827(12)		
Dihedral angle ()			
Cp*1–Cp*2	44.6		

Table S7. Selected bond distances and angles for 5[BPh4].

V. NMR Spectra

Fig. S7. 13 C NMR spectrum of 1[I] in CD₂Cl₂.

Fig. S8. ¹H NMR spectrum of 2[PF6]2 in CD₂Cl₂.

Fig. S9. ¹³C NMR spectrum of $2[PF_6]_2$ in CD₂Cl₂.

Fig. S10. ¹H NMR spectrum of 3[BPh4] in CD₂Cl₂.

Fig. S12 ¹H NMR spectrum of 4[BPh4] in CD₂Cl₂.

Fig. S13. ¹³C NMR spectrum of 4[BPh4] in CD₂Cl₂.

Fig. S14. ¹H NMR spectrum of 5[BPh4] in CD₂Cl₂.

Fig. S15. ¹³C NMR spectrum of 5[BPh4] in CD₂Cl₂.

Fig. S16. ¹H NMR spectrum of D-5[BPh4] in CD₂Cl₂.

VI. IR Spectra

Fig. S18. IR spectrum of 2[PF6]2.

Fig. S19. IR spectrum of 3[BPh4].

Fig. S20. IR spectrum of ¹⁵N-3[BPh4].

Fig. S22. IR spectrum of 5[BPh4].

Fig. S23. IR spectrum of D-5[BPh4].

VII. ESI-HRMS Spectra

Fig. S24. ESI-HRMS spectrum of 1[I] in CH₂Cl₂.

(a) The signals at m/z = 665.0209 and 637.0305 corresponds to $[1]^+$ and $[1-CO]^+$, respectively. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[1]^+$ (bottom). (c) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[1-CO]^+$, (bottom).

(a) The signals at m/z = 296.0891, 275.5748 and 255.0627 corresponds to $[2]^{2+}$, $[2-MeCN]^{2+}$ and $[2-2MeCN]^{2+}$, respectively. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[2]^{2+}$ (bottom). (c) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[2-MeCN]^{2+}$ (bottom). (d) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[2-MeCN]^{2+}$ (bottom). (d) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[2-2MeCN]^{2+}$ (bottom).

(a)

S24

Fig. S26. ESI-HRMS spectrum of 3[BPh4] in CH₂Cl₂.

(a) The signal at an m/z = 552.1335 corresponds to $[3]^+$. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[3]^+$ (bottom).

Fig. S27. ESI-HRMS spectrum of ¹⁵N-3[BPh4] in CH₂Cl₂.

(a) The signal at an m/z = 553.1310 corresponds to ¹⁵N-[3]⁺. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for ¹⁵N-[3]⁺ (bottom).

Fig. S28. ESI-HRMS spectrum of 4[BPh4] in CH₂Cl₂.

(a) The signal at an m/z = 524.1253 corresponds to [4]⁺. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for [4]⁺ (bottom).
(a)

Fig. S29. ESI-HRMS spectrum of 5[BPh4] in CH₂Cl₂.

(a) The signal at an m/z = 554.1493 corresponds to $[5]^+$. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for $[5]^+$ (bottom).

Fig. S30. ESI-HRMS spectrum of D-5[BPh4] in CH₂Cl₂.

(a) The signal at an m/z = 556.1599 corresponds to **D-[5]**⁺. (b) Calculated isotopic distribution (upper) and the amplifying experimental diagram for **D-[5]**⁺ (bottom). (a)

(b)

