SUPPLEMENTARY INFORMATION

Graphene oxide as catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives

Simona M. Coman,^a Iunia Podolean,^a Madalina Tudorache,^a Bogdan Cojocaru,^a Vasile I. Parvulescu^a, Marta Puche,^b Hermenegildo Garcia^b

Preparation of GO.

GO has been obtained starting from graphite by conventional Hummers oxidation to graphite oxide, followed by exfoliation by ultrasounds.³³ In brief, graphite flakes (3 g) were suspended in a mixture of concentrated H_2SO_4/H_3PO_4 (360:40 ml). To this mixture, KMnO₄ (18 g) was added by producing an exothermic reaction raising the temperature to 35–40 °C. This reaction mixture was then heated to 50 °C under stirring for 12 h. The reaction was cooled to room temperature and poured into 400 g of ice containing 30 % H_2O_2 (3 ml). After allowing the suspension to cool at the air, the mixture was filtered, washed with 1:10 HCl (37%) solution and then further washed with additional water. The remaining solid was sonicated in 400 ml of water for 30 min and centrifuged at 4,000 r.p.m. for 4 h. The supernatant was again centrifuged at 15,000 r.p.m. for 1 h. The solid obtained, after centrifugation at 15,000 r.p.m., was dried at 60 °C.

NH₃-TPD measurement was performed using an AutoChem II 2920 station from Micromeritics. Before NH₃ adsorption, the fresh sample was heated to 120°C (20°C min⁻¹) in 30 mL high pure He flow. Subsequently, the sample was cooled down to RT in He flow. NH₃ adsorption was performed under ambient conditions for 120 min in a flow of 10% ammonia in He (30 mL.min⁻¹). Then, the samples were purged with He to allow the physisorption of ammonia to be evacuated. Desorption of NH₃ was carried out with the linear heating rate (10°C min⁻¹) in a flow of He till 500°C.

Figure SI 1. NH₃-TPD of GO

The NH_3 -TPD measurements of the GO evidenced the presence of two desorption peaks: a low intensity peak at 230°C and a high intensity peak at 380°C indicating the presence of acidic sites preponderantly of high strength.

Acknowledgements

The authors are grateful to Dr. F. Cocu who took care on the synthesis of all investigated organic substrates. V.I.P thanks Romaniuan UEFIDISCI (project PN-III-P4-ID-PCE-2016-0146) for funding. Partial funding by the Spanish Ministry of Economy and Competitiiveness (Severo Ochoa and CTQ2015-69543-CO2-R1) is acknowledged.