Supplementary Information

One-pot preparation of polymer microspheres having wrinkled hard surfaces through self-assembly of silica nanoparticles

Nanami Hano,^a Makoto Takafuji*,^{a,b} and Hirotaka Ihara*,^{b,c}

^a Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan.

^b Kumamoto Institute for Photo-Electro Organics, 3-11-38 Higashimachi, Higashi-ku, Kumamoto 862-0901 Japan.

^c Department of New Frontier Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan.

Tel&Fax: +81-96-342-3662; E-mail: takafuji@kumamoto-u.ac.jp, ihara@kumamoto-u.ac.jp

Fig. S1 DRIFT-IR spectra of Si25 and MSi25.

Fig. S2 Typical SEM images and the size distributions of MSi25(x)@*p*S.

Fig. S3 FE-SEM image (left) and EDX mapping image (right) of cross-section of MSi25(2.0)@pS.

Fig. S4 Typical SEM images and FE-SEM images of the cross-section of MSi25(5.0)@*p*S. The obtained MSi25(5.0)@*p*S were separated by the sieve with mesh size of 46 μ m. The wrinkle structure (D in the footnote of Table 2) was observed dominantly on the surface of smaller size microspheres (< 46 μ m) and almost no rugged surface was observed. Compare with this, the rugged surface (E in the footnote of Table 2) was observed more in bigger size microspheres (> 46 μ m). The images of the cross-sections clearly indicated that the thickness of the layered shell of MSi25 was thinner in the wrinkle surface and thicker in the rugged surface.

Fig. S5 FE-SEM images of the cross-section of the microsphere with different surface morphology (B, C, D and E in the footnote of Table 2).

Fig. S6 Schematics of the formation of the layered shell of C_8Si25 . No wrinkle structure was formed on the surface of $C_8Si25(2.0)@pS$.