Electronic Supporting Information

Sun Light Assisted Direct Amide Formation via a Charge-transfer Complex

Materials

All the reagents and solvents described in the manuscript were purchased from Sigma-Aldrich and used as received unless noted. Amines were purified by distillation over CaH₂ and kept in the dark over KOH.

Apparatus

NMR spectra were recorded on Bruker-AM-300, Bruker-AM-400 and Bruker-AM-500 spectrometers. High-resolution mass spectra were recorded using a Waters LCT Premier (TOF) ESI (APCI) instrument. Absorption spectra were recorded on a Shimadzu UV-1601 spectrometer equipped with themperature controlled cell holders. Light intensity was measured using a Nova II- Laser power meter, Ophir. Photo amidation experiments were performed at room temperature in a Pyrex (boro-silicate) glass cell equipped with a magnetic stirrer. All experiments were performed under nitrogen atmosphere. Three different light sources were used for photo amidation experiments: a) a medium-pressure mercury lamp equipped with a 400 nm cutoff filter (light flux at the front side of the cuvette was 49 mW/cm²); b) a blue LED, λ_{max} =450 nm (light flux at the front side of the cuvette was 55-65 mW/cm²); the sun, using the boro-silicate vessel wall as the optical

filter (light flux at the front side of the cuvette was 0.2 (early morning, late evening)-59 (at noon) mW/cm²). The progress of the reaction was followed by analyzing aliquots of the solution at different times after the beginning of the irradiation either by TLC or HPLC. G4 calculations were carried also out using Gaussian $09.^{1}$

¹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,

O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

Transmission Spectrum of borosilicate glass

Filter used for arc-lamp

Triethylamine – CCl₄ 1:1 charge transfer complex absorption in the UV-VIS spectrum.

UV-VIS spectra of Butyl-amine, dibutylamine and tribulty amine complexes with CCl₄.

NMR study of triethylamine in $3CCl_4 + 1CD_2Cl_2$ revealing the formation of iminium ion: ¹H and ¹³C NMR spectra were recorded at the noted time intervals.

Oxygen Inhibition of the reaction of 2-napthoic acid with triethylamine (yield determined by HPLC)

Determination of K_{eq}

The value of the equilibrium constant, K, was determined by the iterative process of calculating the concentration of the CCl_4 -TEA complex and its molar absorbance via equations 1 and 2.

Equation 1

 $K = \frac{[Complex]}{([TEA]_0 - [Complex])([CCl_4]_0 - [Complex])}$ Equation 2 $A = \varepsilon_{complex} \cdot l \cdot [Complex] + \varepsilon_{TEA} \cdot l \cdot ([TEA]_0 - [Complex])$

Were

 $[TEA]_0$ is the concentration of TEA calculated by the mass of TEA added divided by the volume of the solution.

 $[CCl4]_0$ is the concentration of CCl₄ calculated by the mass of CCl₄ added divided by the volume of the solution.

[*Complex*] is the concentration of the complex.

l is the optical pathway

 $\varepsilon_{complex}$ is the molar absorption of the complex

 ε_{TEA} is the molar absorption of TEA

The following experiment was conducted. 6 solutions where prepared, for each one the concentration of the CCl4 was kept constant and high relatively to the TEA for maintaining the ratio of CCL4:TEA in the complex low.

The TEA was added to the solutions in different amounts. The absorbance of the solutions was measured as well as the absorbance of TEA and CCl4 in separate.

The values were calculated for the values measured at 330 nm

 ε_{TEA} was obtained by measuring the absorbance of neat TEA in certain concentrations.

The same experiment wasz performed in different temperatures to learn about the nature of the equilibrium constant, K.

The procedure commenced with completing the calculations for values of K ranging from 0.01 to 100.01 in steps of 1, then plotting calculated complex concentration as a function of CCl_4 concentration.

In order to discover the correct solution these plots where compared to the plot of the absorbance of the solution as a function of CCl_4 concentration. The RSS (Residual Sum of Squares) was calculated for each one of the calculated plots with reference to the empiric plot. The K was selected as the one with the minimal RSS.

The calculations where then refined to a range of K of 0.01 to 1 in 0.01 steps. The same procedure for selecting the K was made.

General procedure for the preparation of amides 10a-q

The relevant carboxylic acid (1 equiv., 0.1M), amine (7.5 equiv., 0.717M) and K_2CO_3 (6.8 equiv., 0.687M) were added to a mixture of CCl₄ (6.9M) and DCM (3.6M) in a borosilicate vessel equipped with a rubber stopper and the combined mixture degassed using N₂ or argon. The oxygen-free reaction mixture was then stirred under sun light for the indicated time. The progress of the reaction was monitored by thin layer chromatogrophy. After acidification of the TLC sample with 1M HCl and extraction with DCM. Upon completion the reactions were acidified with 1M solution of HCl and extracted with DCM. The organic extracts were dried over anhydrous Na₂SO₄ and the solvent removed using a rotary evaporator under reduced pressure. The residue were subjected to column chromatography to isolate the amides as a pure product.

Procedure for the large scale (10g) reaction

2-Naphthoic acid (10 g, 58.14 mmol), triethylamine (61.27 mL, 436.05 mmol) and K_2CO_3 (26.07 g, 188.95 mmol) were added to a mixture of CCl_4 (450 mL) and DCM (150 mL) in a borosilicate 2L round bottom flask with a rubber stopper and the combined mixture degassed using N_2 . The oxygen-free reaction mixture was then stirred under sun light for 24 h. The reaction was found to incomplete by thin layer chromatogrophy (TLC). TLC was performed after acidification of the TLC sample with 1M HCl and extraction with DCM. The reaction mixture was filtered over whatman filter paper to removed K₂CO₃ that had been finely crushed by the magnet during reaction. Fresh K₂CO₃ (26.07 g) was added to reaction mixture which was degassed with N₂. The reaction mixture was allowed to stir exposed to sunlight sun light further 16 h. Again reaction was found to incomplete by TLC. Filtration was repeated and fresh K₂CO₃ (26.07 g) added to the solution. The reaction was found to be complete after additional 16 h of sunlight exposure. Upon completion the reaction was acidified with 1M solution of HCl and extracted with DCM. The organic extract was dried over anhydrous Na₂SO₄ and the solvent removed using a rotary evaporator under reduced pressure. The residue was subjected to column chromatography to isolate the pure N-N-diethyl-2-naphthamide (10k) with 91% yield (12.02 g).

Procedure for the large scale (10g) reaction with mechanical stirring

2-Naphthoic acid (10 g, 58.14 mmol), triethylamine (61.27 mL, 436.05 mmol) and K_2CO_3 (52.14 g, 377.91 mmol) were added to a mixture of CCl_4 (450 mL) and DCM (150 mL) in a borosilicate 2L round bottom flask with a rubber stopper and the combined mixture degassed using N₂. The oxygen-free reaction mixture was then stirred using mechanical stirrer under sun light. After 65 h of stirring the proton NMR of reaction mixture shown about 85% conversion. The reaction was acidified with 1M HCl and extracted with DCM. The organic extract was dried over anhydrous Na₂SO₄ and the solvent removed using a rotary evaporator under reduced pressure. The residue was subjected to column chromatography to isolate the pure *N-N*-diethyl-2-naphthamide (**10k**) with 80% yield (10.52 g).

Procedure for synthesis of *N*-butyl-2-naphthamide using mixture of amines (DABCO (1,4-diazabicyclo[2.2.2]octane) and *n*-butylamine)

The relevant 2-naphthoic acid (0.50 g, 2.90 mmol), *n*-butylamineamine (0.43 mL, 4.35 mmol), DABCO (2.44 g, 21.75 mmol) and K_2CO_3 (2.60 g, 18.89) were added to a mixture of CCl₄ (20 mL) and DCM (10 mL) in a borosilicate vessel equipped with a rubber stopper and the combined mixture degassed using N₂. The oxygen-free reaction mixture was then stirred under sun light exposure for 62 h. The starting material was shown to have undergone 80% conversion into product by NMR of the reaction mixture. The reaction was acidified with 1M solution of HCl and extracted with DCM. The organic extract was dried over anhydrous Na₂SO₄ and the solvent removed using a rotary evaporator under reduced pressure. The residue was subjected to column chromatography to isolate the *N*-butyl-2-naphthamide in 65% yield (0.430 g) as a pure product.

When this reaction is carried out in the absence of butylamine the anhydride of napthoic acid can be ioslated from the reaction . In reactions carried out under the general proced (without DABCO) the anhydride cannot be observed. These reactions are also faster.

Characterization Data

N-Butyl-2-naphthamide (11)²

Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.95 – 7.76 (m, 4H), 7.62 – 7.45 (m, 2H), 6.33 (br, 1H), 3.51 (dd, J = 13.0, 7.1 Hz, 2H), 1.64 (dd, J = 14.8, 7.6 Hz, 2H), 1.45 (dq, J = 14.6, 7.3 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.56, 134.63, 132.61, 132.05, 128.85, 128.40, 127.71, 127.52, 127.18, 126.69, 123.55, 39.92, 31.77, 20.18, 13.79; HRMS (ESI⁺) *m/z*: Calcd for C₁₅H₁₈NO [M+H]⁺228.1388, found 228.1383.

² A. Correa and R. Martin, J. Am. Chem. Soc., 2014, 136, 7253.

N,N-Diethylacetamide (10a)³

³ C. Heyde, I. Zug and H. Hartmann, Eur. J. Org. Chem., 2000, 3273.

Colorless liquid, yield quantitative (Based on HPLC); ¹H NMR (300 MHz, CDCl₃) δ 3.38 - 3.25 (m, 4H), 2.07 (s, 3H), 1.24 - 1.08 (m, 6H).

N,*N*-Diethyl-2-phenylacetamide (10b)⁴

⁴ M. S. Carle, G. K. Shimokura and G. K. Murphy, Eur. J. Org. Chem., 2016, 3930.

Yellow liquid, yield 79% (0.274g); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, J = 7.4 Hz, 2H), 7.30 – 7.24 (m, 3H), 3.73 (s, 2H), 3.42 (q, J = 7.1 Hz, 1H), 3.32 (q, J = 7.1 Hz, 1H), 1.18 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 170.08, 135.46, 128.60, 128.56, 126.59, 42.29, 40.86, 40.08, 14.14, 12.87; HRMS (ESI⁺) *m/z*: Calcd for C₁₂H₁₈NO [M+H]⁺ 192.1388, found 192.1336.

⁵ Z. Yin, Z. Wang, W. Li and X.-F. Wu, *Eur. J. Org. Chem.*, 2017, 1769.

N,*N*-Diethylbenzamide (10c)⁵

Viscous liquid, yield 83% (0.240 g), ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.34 (m, 5H), 3.54 (br, 2H), 3.25 (br, 2H), 1.27 - 1.09 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.27, 137.28, 129.04, 128.36, 126.24, 43.28, 39.09,14.19, 12.93; HRMS (ESI⁺) *m/z*: Calcd for C₁₁H₁₆NO [M+H]⁺ 178.1231, found 178.1261.

N,N-Diethyl-4-methylbenzamide (10d)⁶

Viscous liquid, yield 63% (0.176 g); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 7.8 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 3.54 (br, 2H) 3.27 (br, 2H), 2.37 (s, 3H), 1.22 (br, 3H), 1.10 (br, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.45, 139.01, 134.27, 128.90, 126.18, 43.20, 39.16, 21.27, 14.16, 12.70; HRMS (ESI⁺) *m/z*: Calcd for C₁₂H₁₈NO [M+H]⁺ 192.1388, found 192.1373.

⁶ S. L. Zultanski, J. Zhao and S. S. Stahl, J. Am. Chem. Soc., 2016, 138, 6416.

N,*N*-Diethyl-4-methoxybenzamide (10e)⁷

Yellow liquid, yield 45% (0.2632 g), ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 3.73 (s, 3H), 3.33 (br, 4H), 1.17 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.66, 159.79, 128.95, 127.67, 113.12, 54.75, 42.88, 38.82, 13.48, 12.78; HRMS (ESI⁺) *m/z*: Calcd for C₁₂H₁₈NO₂ [M+H]⁺ 208.1337, found 208.1363.

⁷ P. Nareddy, F. Jordan, S. E. Brenner-Moyer and M. Szostak ACS Catal., 2016, 6, 4755.

N,N-Diethyl-4-(trifluoromethyl)benzamide (10f)⁸

Yellow liquid, yield 88% (0.231 g), ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 3.56 (q, *J* = 6.8 Hz, 2H), 3.21 (q, *J* = 6.7 Hz, 2H), 1.26 (t, *J* = 6.5 Hz, 3H), 1.11 (t, *J* = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.79, 140.74, 131.29, 130.97, 126.65, 125.50, 122.42, 43.22, 39.35, 14.18, 12.85; HRMS (ESI⁺) *m/z*: Calcd for C₁₂H₁₅F₃NO [M+H]⁺ 246.1105, found 246.1096.

⁸ W. Li and X.-F. Wu, Org. Lett. 2015, 17, 1910.

N,N-Diethyl-4-nitrobenzamide (10g)⁹

Viscpous liquid, yield 72% (0.4651g); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 8.8 Hz, 2H), 3.41 (q, *J* = 6.8 Hz, 2H), 3.07 (q, *J* = 6.8 Hz, 2H), 1.09 (t, *J* = 6.2 Hz, 3H), 0.97 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, Acetone) δ 169.30, 148.95, 145.23, 128.64, 124.63, 43.90, 39.95, 14.55, 13.25; HRMS (ESI⁺) *m/z*: Calcd for C₁₁H₁₅N₂O₃ [M+H]⁺ 223.1082, found 223.1060.

⁹ N. Iranpoor, F. Panahi, F. Roozbin, S. Erfan and S. Rahimi Eur. J. Org. Chem. 2016, 1781.

N,*N*-Diethylcinnamamide (10h)¹⁰

Viscous liquid, yield 65% (0.2359 g); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 15.4 Hz, 1H), 7.59 - 7.46 (m, 2H), 7.44 - 7.30 (m, 3H), 6.82 (d, *J* = 15.4 Hz, 1H), 3.72 - 3.33 (m, 4H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.18 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.64, 142.21, 135.45, 129.38, 128.70, 127.69, 117.74, 42.24, 41.02, 15.03, 13.16; HRMS (ESI⁺) *m/z*: Calcd for C₁₃H₁₈NO [M+H]⁺ 204.1388, found 204.1340.

¹⁰ Y. Kim and S. Chang, Angew. Chem. Int. Ed., 2016, 55, 218.

N,*N*-Diethyl-2-thiophenecarboxamide (10i)¹¹

Viscous solid, yield 52% (0.3652 g); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, J = 5.0, 1.0 Hz, 1H), 7.27 (dd, J = 3.7, 1.1 Hz, 1H), 7.00 – 6.95 (m, 1H), 3.51 - 3.43 (q, 4H), 1.21 - 1.15 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.02, 137.69, 127.66, 127.31, 126.13, 41.65 (bs), 13.49, 13.03; HRMS (ESI⁺) *m/z*: Calcd for C₉H₁₄NOS [M+H]⁺ 184.0796, found 184.0782.

¹¹ K. Fukuzumi, Y. Unoh, Y. Nishii, T. Satoh, K. Hirano and M. Miura J. Org. Chem. 2016, 81, 2474.

N,*N*-Diethylisonicotinamide (10j)¹²

Reaction was performed as general procedure. Subsequently, reaction mixture was washed with 1M HCl, furthermore water layer was basifiy by 10% NaOH solution and extracted with DCM. The solvent was evaporated in in rotary evaporator and cound was kept under high vacume over two days. Viscous liquid, yield 69% (0.2496 g); ¹H NMR (300 MHz, CDCl₃) δ 8.66 (br, 2H), 7.25 (d, *J* = 5.7 Hz, 2H), 3.51 (q, *J* = 9.0 Hz, 2H), 3.19 (q, *J* = 9.0 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.59, 150.16, 144.69, 120.65, 43.09, 39.29, 14.18, 12.80; HRMS (ESI⁺) *m/z*: Calcd for C₁₀H₁₅N₂O [M+H]⁺179.1184, found 179.1192.

¹² Y. Zhaoa and V. Snieckus, Adv. Synth. Catal., 2014, 356, 152.

N-N-Diethyl-2-naphthamide (10k)¹³

Viscous liquid, yield 96% (0.636 g); ¹H NMR (400 MHz, CDCl₃) δ 7.79 - 7.86 (m, 4H), 7.50 - 7.41 (m, 3H), 3.56 (br, 2H), 3.25 (br, 2H), 1.12 - 1.05 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 171.29, 134.57, 133.35, 132.75, 128.27, 128.23, 127.75, 126.73, 126.56, 125.71, 123.90, 43.34, 39.33, 14.25, 12.89. HRMS (ESI⁺) *m/z*: Calcd for C₁₅H₁₈NO [M+H]⁺ 228.1388, found 228.1395.

Gram-scale experiment. The 2-naphthoic acid (3.0 g, 17.44 mmol), triethylamine (18.25 mL, 130.8 mmol) and K_2CO_3 (16.60 g, 120 mmol) were added to a mixture of CCl_4 (135 mL) and DCM (45 mL) in a 2 L borosilicate vessel equipped with a rubber stopper. The combined mixture was degassed using N₂. The oxygen-free reaction mixture was then stirred under sun light for 18 hours combined over two days. Upon completion the reaction was acidified with 1M solution of HCl and extracted with DCM. The organic extracts were dried over anhydrous Na₂SO₄ and the solvent removed using a rotary to isolate the 3.23 g (82%) *N-N*-diethyl-2-naphthamide.

¹³ R. S. Mane and B. M. Bhanage J. Org. Chem., 2016, 81, 1223.

N-(2-Naphthoyl)pyrrolidine (10l)¹⁴

Visous liquid, yield 56% (0.148 g), ¹H NMR (400 MHz, CDCl₃) δ 8.01 (br, 1H), 7.83 – 7.89 (m, 3H), 7.62 (dd, J = 8.5, 1.5 Hz, 1H), 7.57 – 7.47 (m, 2H), 3.70 (t, J = 7.0 Hz, 2H), 3.49 (t, J = 6.6 Hz, 2H), 1.98 (q, J = 13.7, Hz, 2H), 1.89 (q, J = 13.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.74, 134.46, 133.75, 132.56, 128.47, 128.04, 127.73, 127.00, 126.93, 126.51, 124.39, 49.70, 46.27, 26.40, 24.47; HRMS (APCI) *m/z*: Calcd for C₁₅H₁₆NO [M+H]⁺ 226.1231, found 226.1249.

¹⁴ P. Nareddy, F. Jordan, S. E. Brenner-Moyer and M. Szostak ACS Catal., 2016, 6, 4755.

N-(2-Naphthoyl)piperidine (10m)¹⁵

Yellow solid, yield 48% (0.142 g), ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.68 (m, 4H), 7.64 – 7.35 (m, 3H), 3.77 (br, 2H), 3.40 (br, 2H), 1.87 – 1.38 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.33, 133.80, 133.52, 132.75, 128.35, 128.18, 127.76, 126.85, 126.57, 126.48, 124.24, 48.78, 43.30, 26.59, 25.65, 24.59. HRMS (APCI) *m/z*: Calcd for C₁₆H₁₈NO [M+H⁺ 240.1388, found 240.1397.

¹⁵ S. W. Krabbe, V. S. Chan, T. S. Franczyk, S. Shekhar, J. Napolitano, C. A. Presto and J A. Simanis, *J. Org. Chem.* 2016, **81**, 10688.

N-Ethyl-N-isopropyl-2-naphthamide (10n)

Yellowish liquid, yield 50% (0.140 g), ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.76 (m, 4H), 7.58 – 7.46 (m, 2H), 7.44 (dd, J = 8.4, 1.5 Hz, 1H), 4.01 (br, 1H), 3.45 (br, 2H), 1.48 – 0.94 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.17, 133.33, 132.91, 128.36, 128.31, 127.83, 126.73, 126.63, 125.45, 123.78, 50.30, 35.42, 21.21, 14.96; HRMS (ESI⁺) *m/z*: Calcd for C₁₆H₂₀NO [M+H]⁺ 242.1544, found 242.1540.

N,N-Dibenzyl-2-naphthamide (10o)¹⁶

Yellow solid, yield 35% (0.214 g); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.41 – 7.27 (m, 12H), 7.14 (d, *J* = 5.8 Hz, 2H), 4.71 (s, 2H), 4.40 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.25, 136.14, 129.64, 128.83, 128.71, 128.54, 128.41, 127.62, 127.52, 127.02, 126.70, 51.53, 46.75.

¹⁶ X. Chen, T. Chen, Q. Li, Y. Zhou, L.-B. Han and S.-F. Yin, Chem. Eur. J., 2014, 20, 12234.

N-Butyl-*N*-methyl-2-naphthamide (10p)

Yellowish liquid, yield 40% (0.120 g), ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 4H), 7.55 – 7.45 (m, 3H), 3.59 (br, 1H), 3.29 (br, 1H), 3.12 (br, 3/2H), 2.98 (br, 3/2H), 1.73 – 1.29 (m, 2H), 1.22 – 0.72 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 171.91, 134.10, 133.43, 132.68, 128.30, 128.15, 127.74, 126.81, 126.54, 126.26, 124.19, 51.16, 47.29, 37.47, 32.74, 30.38, 29.13, 20.11, 19.55, 13.88, 13.65; HRMS (ESI⁺) *m/z*: Calcd for C₁₆H₂₀NO [M+H]⁺ 242.1544, found 242.1542.

N,N-Dimethyl-2-naphthamide (10p')¹⁷

Yellowish liquid, yield 41% (0.120 g), ¹H NMR (400 MHz, CDCl₃) δ 7.91 (br, 1H), 7.89 – 7.83 (m, 3H), 7.56 – 7.49 (m, 3H), 3.17 (br, 3H), 3.03 (br, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.63, 133.58, 132.65, 128.37, 128.15, 127.76, 126.95, 126.82, 126.59, 124.40, 39.66, 35.44; HRMS (APCI) *m/z*: Calcd for C₁₃H₁₄NO [M+H]⁺ 200.1075, found 200.1091.

¹⁷ M.-Z. Zhang, Q.-H. Guo, W.-B. Sheng and C.-C. Guo, Adv. Synth. Catal., 2015, 357, 2855.

N-Butyl-*p*-toluamide (10q)¹⁸

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.13 (br, 1H), 3.447 – 3.40 (m, 2H), 2.38 (s, 3H), 1.66 – 1.52 (m, 2H), 1.43 – 1.31 (m, 2H), 1.07 – 0.81 (m, 3H); HRMS (APCI) *m/z*: Calcd for C₁₂H₁₈NO [M+H]⁺ 192.1388, found 192.1400.

¹⁸ Y.-L. Deng, S. Tang, G.-L. Ding, M.-W. Wang, J. Li, Z.-Z. Li, L. Yuana and R.-L. Sheng, *Org. Biomol. Chem.*, 2016, **14**, 9348.

N,*N*-Dibutyl-*p*-toluamide (10q')¹⁹

Viscous liquid, yield 6% (0.022 g); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 3.46 (br, 2H), 3.19 (br, 2H), 2.41 (s, 3H), 1.70 – 1.25 (m, 4H), 1.20 – 0.75 (m, 6H); HRMS (APCI) *m/z*: Calcd for C₁₆H₂₆NO [M+H]⁺ 248.2014, found 248.2023.

Computational Results

¹⁹ T. Fang, X.-H. Gao, R.-Y. Tang, X.-G. Zhang and C.-L. Deng, *Chem. Commun.*, 2014, **50**, 14775.

TMA-TCM-comp9-G4.log:

Standard orientation:

Center	Atomic	A	tomic	Coordinate	s (Angstron	ns)	
Number	Numbe	er	Туре	X Y	Ζ		
1	7	0	3.075878	-0.000051	0.001552		
2	6	0	3.494041	0.334197	-1.352527		
3	1	0	3.095701	-0.403701	-2.054998		
4	1	0	3.101165	1.316986	-1.628847		
5	1	0	4.594226	0.358826	-1.465517		
6	6	0	3.510823	1.003052	0.963236		
7	1	0	3.116137	1.983006	0.679322		
8	1	0	3.126535	0.754178	1.956693		
9	1	0	4.612287	1.081540	1.029524		
10	6	0	3.507419	-1.337055	0.384149		
11	1	0	3.123924	-1.578760	1.379719		
12	1	0	3.109431	-2.070581	-0.323088		
13	1	0	4.608623	-1.440501	0.404641		
14	17	0	0.211874	-0.000685	0.005422		
15	6	0	-1.574811	0.000042	0.000636		
16	17	0	-2.178166	-1.030870	-1.331790)	
17	17	0	-2.185652	-0.636838	1.557317	7	
18	17	0	-2.180056	1.668273	-0.228671		
Temperat	ure=		298.150000 F	ressure=	1	.000000	
E(ZPE)=	:	(0.128390 E(T	hermal)=	0.	.141760	
E(CCSD	(T))=		-2050.377638	BE(Empiric)=	-0.201463	
DE(Plus))=	-	-0.026112 DE	Z(2DF) =	-0	.446530	
E(Delta-	G3XP)=		-1.724516	DE(HF)=		-0.063826	
G4(0 K)=	=	-20	052.711696 G	4 Energy=	-2	052.698326	
G4 Entha	alpy=	-	2052.697382	G4 Free En	ergy=	-2052.755796	
$1 \ GING$	C-N098\N	Aixe	dG4G4C4F	I9Cl4N1\GA	ALITPAR\2	4-May-2017\0\\#G4\\TMA-	Т
CM-com	p9-G4\\0	,1\N	,0,3.0305942	567,0.01906	666688,-0.01	163397341\C,0,3.467	
7269704	,-1.09421	295	3,0.81410223	93\H,0,3.07	69902059,-	0.9740168009,1.828	
7505842	\H,0,3.08	1071	13793,-2.033	170267,0.4	072405397	H,0,4.5693877244,-	
1.173443	33811,0.8	7612	277707\C,0,3	455123708	9,-0.141166	2687,-1.3999319366	
\H,0,3.0667525952,-1.0827176142,-1.7991099909\H,0,3.0569157507,0.67762							
69619,-2.0062159334\H,0,4.5557934139,-0.1482214138,-1.5106283938\C,0,3							
.4535925158,1.2995345832,0.5328975721\H,0,3.0561671113,2.1141378152,-0							
.0795763639\H,0,3.0632822315,1.4133316472,1.5484508106\H,0,4.554158623							
9,1.4039	968862,0	.573	0695095\Cl,0	,0.16680294	441,-0.0079	535636,0.00618442	
59\C,0,-1	1.6196491	1251	,-0.03024604	49,0.025086	56247\Cl,0,-	-2.2076696192,-0.	
0855802	503,1.714	1271	4593\Cl,0,-2.	2529234792	2,1.4434515	573,-0.7681197917	

 $Cl,0,-2.2175572086,-1.4711928027,-0.8513133917 \Version=EM64L-G09RevD. \\ 01\State=1-A\MP2/GTBas1=-2050.2433587\MP4/GTBas1=-2050.3792532\CCSD(T) /G3Bas1=-2050.3776378\MP2/GTBas2=-2050.2671006\MP4/GTBas2=-2050.405365 \\ 4\MP2/GTBas3=-2050.6453657\MP4/GTBas3=-2050.825783\HF/GTLargeXP=-2049. \\ 2227849\MP2/GTLargeXP=-2052.393624\HF/GFHFB1=-2049.2765764\HF/GFHFB2=-2049.2846451\G4=-2052.7116956\$

TMA-G4.log

Center	Atomic	Ā	Atomic	Coordina	tes (Angstr	oms)	
Number	Numb	er	Туре	X	Y Z		
1	7	0	0.000067	0.000087	-0.36619	5	
2	6	0	-1.054175	0.903413	0.05968	3	
3	1	0	-0.863450	1.908073	-0.33132	9	
4	1	0	-2.017261	0.562478	-0.33384	4	
5	1	0	-1.146122	0.980090	1.16161	2	
6	6	0	-0.255400	-1.364553	0.05963	9	
7	1	0	-1.220152	-1.702059	-0.33272	25	
8	1	0	0.522125	-2.028129	-0.33245	4	
9	1	0	-0.277541	-1.482160) 1.16159	7	
10	6	0	1.309529	0.461120	0.05969	99	
11	1	0	2.084163	-0.205572	2 -0.33282	26	
12	1	0	1.495410	1.466263	3 -0.33242	26	
13	1	0	1.422637	0.500524	1.16163	32	
т (2 00 1 50000 T			1 000000	
I emperat	ure=		298.150000 F	ressure=		1.000000	
E(ZPE) - E(CCSD)	· (T))_		0.118185 E(1)	E(Emmini	-)-	0.123/13	
E(CCSD DE(Dlug)	(1))-		-1/3.893284	E(Empire)	-(:	-0.090311	
DE(Plus)	$(2 \mathbf{V} \mathbf{D}) =$		-0.0118/1 DE	DE(UE) -		-0.1//111	
E(Delta-V)		1	-0.240338	$DE(\Pi\Gamma) = 4$ Energy=		-0.01/333	
$G4(0 \text{ K})^{-1}$	- 1mu-	-]	174.320287 0	4 Ellergy-	norau=	-1/4.514/54	
	11py- 7 N100\1	Aive	-1/4.515610	U4 FICE EI	ITDAD\24	-1/4.54/0/0	
$1 \times GINC-N100 \times G4 \times $							
U,1\IN,U,-U.UUUUU9488UD,-U.UUUU/4342/,-U.30UU421031\C,U,-U.39//89/430,-1 2521225115_0_0658660606\U_0_1_6172100009_1_2207528224_0_225487507\							
.2551555115,0.0058009090\0,0,-1.01/5109908,-1.550/528554,-0.52548/59/\ H 0 _0 0176284266 _2 0042474455 _0 3272020028\H 0 _0 6482573401 _1 261							
11,0,-0.01/0204200,-2.07424/4433,-0.32/2737020\ff,0,-0.04623/3471,-1.301 6669093 1 1677993528\C 0 1 3838320612 0 1088081251 0 0662573523\H 0 1							
9611157091 -0 734806786 -0 3257420178\H 0 1 8221172924 1 0322608546 -0							
3258605214\H 0 1 5027598824 0 1182768973 1 1682549182\C 0 -0 78644064							
96.1.1441829906.0.0653552709\H.00.3443932086.2.0656562783 -0.3271921							
015\H.01.8051662822.1.06176161450.3271114453\H.00.8543324122.1.2							
433360681,1.167244885\\Version=EM64L-G09RevD.01\State=1-A\MP2/GTBas1=-							
173.8282	2872\MP	4/G1	Bas1 = -173 8	934209\CC	CSD(T)/G3	Bas1=-173.8952841\MP2/GT	
					(=), 30		

 $TBas 3=-174.0705315 \ HF/GTLarge XP=-173.331101 \ MP2/GTLarge XP=-174.2520517 \ HF/GFHFB 1=-173.3446977 \ HF/GFHFB 2=-173.3477197 \ G4=-174.3202866$

TCM-G4.log

Center Number	Atomic Numl	e At ber	tomic Type	Coordinate X Y	s (Angstro Z	ms)
1	6	0	0.000000	0.000000	0.000000	
2	17	0	1.030084	1.030084	1.030084	1
3	17	0	-1.030084	-1.030084	1.03008	4
4	17	0	1.030084	-1.030084	-1.030084	4
5	17	0	-1.030084	1.030084	-1.03008	4
Temperature=		2	298.150000 P	ressure=		1.000000
E(ZPE)=		0	.009118 E(T	hermal)=		0.014837
E(CCSD(T))=		-	1876.474544	E(Empiric))=	-0.111152
DE(Plus)=		_(0.012678 DE	(2DF)=		0.268239
E(Delta-G3XP)=		=	-1.479873	DE(HF)=		-0.047008
G4(0 K)=		-18	78.384375 G	4 Energy=		1878.378656
G4 Enthalpy=		-1	878.377712	G4 Free Energy=		-1878.413067