Supporting Information for chemical communications

Li@Organic Superhalogens: Possible Electrolytes in Li-ion Batteries

G Naaresh Reddy, Rakesh Parida and Santanab Giri*

Department of chemistry, National Institution of Technology Rourkela-769008, India

Email: giris@nitrkl.ac.in

Figure S1. Natural Bond Orbital(NBO) Charges of neutral and anion of $[C_2H_3BNO]$, $[C_2H_3BNS]$, $[C_3H_4BN_2]$, $[C_3H_4BS]$, and $[C_4H_5BN]$.

Figure S2. Natural Bond Orbital(NBO) Charges of neutral and anion of $[C_2BNO(NO_2)_3]$, $[C_2BNS(NO_2)_3], [C_3BN_2(NO_2)_4], [C_3BN_2(NO_2)_4], [C_3BS(NO_2)_4], and [C_4BN(NO_2)_5].$

 $[C_3BN_2(NO_2)_4]$

 $[C_4BN(NO_2)_5]$

 $[C_3BS(NO_2)_4]^-$

 $[C_4BN(NO_2)_5]^-$

Figure S3. Natural Bond Orbital(NBO) Charges of $Li[C_2BNO(NO_2)_3]$, $Li[C_2BNS(NO_2)_3]$, $Li[C_3BN_2(NO_2)_4]$, $Li[C_3BS(NO_2)_4]$, and $Li[C_4BN(NO_2)_5]$.

 $Li[C_4BN(NO_2)_5]$

(0.4

3)

(0.819)

(0.9

Figure S4. Optimized geometries of neutral and anions of $[C_2HBNS(NO_2)_2]$, $[C_2HBNS(NO_2)_2]$, $[C_3H_2BN_2(NO_2)_2]$, $[C_3H_2BS(NO_2)_2]$, and $[C_4H_2BN(NO_2)_2]$ in wB97XD/6-311+G(d) level.

 $[C_3H_2BS(NO_2)_2]$

 $[C_4H_2BN(NO_2)_2]$

 $[C_3H_2BS(NO_2)_2]$

 $[C_4H_2BN(NO_2)_2]^-$

Figure S5. Optimized geometries of $Li[C_2HBNO(NO_2)_2]$, $Li[C_2HBNS(NO_2)_2]$, $Li[C_3H_2BN_2(NO_2)_2]$, $Li[C_3H_2BS(NO_2)_2]$, and $Li[C_4H_3BN(NO_2)_2]$ in wB97XD/6-311+G(d) level.

Table 1. Calculated VDE of two NO_2 -substituted electrolytes in gas phase and insolvent(ethylenecarbonate) phase at wB97XD level of theory using 6-311+G(d) basis set.

	VDE	VDE		VDE*
Anions	(in eV)	(in eV)	Anions	(in eV)
	(in gas phase)	(in solvent phase)		(In gas phase)
$C_3H_2BN_2(NO_2)_2$	4.66	6.11	CIO ₄	5.83
C ₂ HBNO(NO ₂) ₂	4.91	6.36	$N(SO_2CF_3)_2$	7.01
C ₂ HBNS(NO ₂) ₂	5.41	6.93	BF ₄	7.66
C ₄ H ₃ BN(NO ₂) ₂	3.93	6.09	PF ₆	8.55
C ₃ H ₂ BS(NO ₂) ₂	4.58	5.45	CB ₁₁ H ₁₂	5.99

*Values taken from reference 28.

Table 2. Calculated BE's of Li-heterocycles in gas phase and solvent(ethylene carbonate)phase at wB97XD level of theory using 6-311+G(d) basis set.

	Binding	g energy(BE)		BE*
Li-Salts	BE= E _{Salt} -(E _{Li} ⁺ + E _{Anion}) (in eV)		Li-Salts	(in eV) (In gas phase)
	(in gas phase)	(in solvent phase)		
$Li[C_3H_2BN_2(NO_2)_2]$	5.60	5.11	LiClO ₄	5.96
Li[C ₂ HBNO(NO ₂) ₂]	6.05	5.37	$LiN(SO_2CF_3)_2$	6.01
Li[C ₂ HBNS(NO ₂) ₂]	6.43	5.42	LiBF ₄	6.08
$Li[C_4H_3BN(NO_2)_2]$	5.23	5.52	LiPF ₆	5.73
Li[C ₃ H ₂ BS(NO ₂) ₂]	6.34	4.97	LiCB ₁₁ H ₁₂	5.08

*Values taken from reference 28.