Supplementary Information

Alkali and alkaline earth metal ion binding by a foldamer capsule: selective recognition of magnesium hydrate

Pedro Mateus,^a Barbara Wicher,^b Yann Ferrand^a and Ivan Huc*^a ¶

^a Univ. Bordeaux and CNRS, CBMN (UMR 5248), IECB, 2 rue Robert Escarpit, F-33600 Pessac, France.

^b Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland. E-mail: i.huc@iecb.u-bordeaux.fr.

This PDF file includes:

	Page
1. Methods for NMR, Circular Dichroism and X-ray Crystallography	S2
2. Materials and Methods for chemical synthesis	S5
2.1 Synthesis of oligomer 2	S5
2.2 Experimental procedures	S5
3. Solution studies: Circular Dichroism and Nuclear Magnetic Resonance	S8
3.1 Circular dichroism titrations	S8
3.2 ¹ H NMR titrations	S11
3.3 ¹ H NMR competition titrations	S14
4. Solid state X-Ray Crystallography	S18
4.1 X-Ray crystallographic data for the $1 \supset Na^+$ complex.	S18
4.2 X-Ray crystallographic data for the $1 \supset K^+$ complex.	S20
4.3 X-Ray crystallographic data for the $1 \supset Ca^{2+}$ complex.	S22
4.4 X-Ray crystallographic data for the $1 \supset Ba^{2+}$ complex.	S24
5. ¹ H NMR and ¹³ C NMR spectra of new synthetic compounds	S27
6. References	S31

1. Methods for NMR, Circular Dichroism and X-ray crystallography

Nuclear Magnetic Resonance. NMR spectra were recorded on two machines: an Avance II NMR spectrometer (Bruker Biospin) with a vertical 7.05T narrow-bore/ultrashield magnet operating at 300 MHz for ¹H observation and 75 MHz for ¹³C observation by means of a 5-mm direct BBO H/X probe with Z gradient capabilities and an Avance 400 NMR spectrometer (Bruker Biospin) with a vertical 9.4T narrow-bore/ultrashield magnet operating at 400 MHz for ¹H observation by means of a 5-mm direct QNP ¹H/¹³C/³¹P/¹⁹F probe with gradient capabilities. Chemical shifts are reported in parts per million (ppm, δ) with tetramethylsilane as an internal standard. ¹H NMR splitting patterns with observed first-order coupling are designated as singlet (s), doublet (d), triplet (t), or quartet (q). Coupling constants (*J*) are reported in hertz. Data processing was performed with Topspin 2.0 software. Samples were not degassed. CDCl₃ from Aldrich was used after filtration through an alumina pad.

NMR titration. The metal ion guests were added in the form of solutions of their triflate salts by means of a Hamilton microsyringe to solutions of oligomer 1^1 (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) at 298K. After homogenization and equilibration the ¹H NMR spectrum (400 MHz) was recorded.

NMR competition titration. Solutions of the $1 \supset Na^+$ complex were prepared by adding a slight excess of NaOTf to oligomer 1 (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) at 298K. The metal ion competitors were added in the form of solutions of their triflate salts by means of a Hamilton microsyringe. After homogenization and equilibration the ¹H NMR spectrum (400 MHz) was recorded.

Circular Dichroism. The metal ion guests were added in the form of solutions of their triflate salts by means of a Hamilton microsyringe and after homogenization and equilibration CD spectra were recorded in the 340–450 nm region on a Jasco J-815 spectropolarimeter at 298.2±0.1 K using a 2 mm pathlength cell. Changes in ellipticity were analysed considering a 1:1 binding model, using the HypSpec program². The errors quoted are the standard deviations of the overall constants given directly by the program for the input data, which include all the wavelengths of each experimental point.

Crystallography. The X-ray diffraction measurements were carried out on a Rigaku FRX rotating anode (2.9 kW) diffractometer at the IECB X-ray facility (UMS 3033 - UMS001). CuK α radiation monochromated with high flux Osmic Varimax mirrors was used for data collection. The X-ray source is equipped with a Dectris Pilatus 200K detector and partial chi goniometer. The Rigaku CrystalClear suite³ was used to index and integrate data with a multiscan absorption correction. Structures were solved with Shelxt and refined by full-matrix least-squares method on F² with Shelxl-2016.⁴

For the $1 \supset Ca^{2+}$ complex, decrease in diffraction power was observed in the last scans, most probably due to radiation damage of the crystal. These scans were removed during data reduction thus data has only 91.6% of completeness up to θ =50.43°. For this structure, no counter ions were found, thus only C-bound hydrogen atoms for the backbone were placed at idealized position and were refined in the riding-model approximation, with Uiso(H)=1.2Ueq(C). Also, anisotropic displacement parameters were used only for the backbone.

In case of the $1 \supset Na^+$ complex, a triflate anion was localized in the electron density map. However, high residual electron density peaks were observed near this ion that could not be reasonably modelled and were introduced in the refinement as dummy oxygen atoms. For this reason, the occupancy factor for the triflate molecule was refined and at final stages got a value of 0.7.

For the $1 \supset Na^+$, $1 \supset K^+$ and $1 \supset Ba^{2+}$ complexes, anisotropic displacement parameters were used for the backbone, some atoms of the isobutoxy side chains, triflate and some solvent molecules. Hydrogen atoms were placed at idealized position and were refined in the riding-model approximation, with Uiso(H)=1.2Ueq(CH, CH2, NH) and Uiso(H)=1.5Ueq(CH3). DFIX, AFIX, SIMU, RIGU, EADP and DELU instructions were employed to model the geometry of the molecules and temperature parameters.

Heavily disordered solvent molecules in $1 \supset K^+$ and $1 \supset Ba^{2+}$ complexes were removed using the SQUEEZE⁵ procedure. For the search and analysis of solvent accessible voids in the structures default parameters were used: grid 0.20 Å, probe radius 1.2 Å and NStep 6. Calculated total potential solvent accessible void volumes and electron counts per unit cell were 6199 Å³ and 1590, and 3822 Å³ and 882 for $1 \supset K^+$ and $1 \supset Ba^{2+}$ complexes, respectively.

Despite many attempts to collect high quality data, only weak diffraction intensity and data with moderate resolution were obtained due to: radiation damage of the crystals; large volume fractions occupied with disordered solvent molecules; disorder of the isobutoxy substituents; and large size of the foldamer molecules. For these reasons, unavoidable A - level and B - level alerts remain in the check cif file but they are inherent to the data quality and refinement procedures and do not reflect errors. These alerts are listed below.

Group 1 alerts illustrate weak quality of the data and refinement statistics if compared to that expected for small molecule structures from highly diffracting crystals:

THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550

Calculated $sin(theta_max)/wavelength = 0.5000$

PLAT023_ALERT_3_A Resolution (too) Low [sin(theta)/Lambda < 0.6].. 50.43 Degree

PLAT084_ALERT_3_A High wR2 Value (i.e. > 0.25) 0.50 Report

PLAT234_ALERT_4_A Large Hirshfeld Difference

PLAT934_ALERT_3_A Number of (Iobs-Icalc)/SigmaW > 10 Outliers

PLAT082_ALERT_2_B High R1 Value

PLAT084_ALERT_3_B High wR2 Value (i.e. > 0.25)

PLAT090_ALERT_3_B Poor Data / Parameter Ratio (Zmax > 18)

PLAT230_ALERT_2_B Hirshfeld Test Diff for ...

PLAT234 ALERT 4 B Large Hirshfeld Difference ...

PLAT241 ALERT 2 B High 'MainMol' Ueq as Compared to Neighbors of ...

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of ...

PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds

PLAT911_ALERT_3_B Missing # FCF Refl Between THmin & STh/L= 0.500 375 Report

PLAT919_ALERT_3_B Reflection # Likely Affected by the Beamstop ...

PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW > 10 Outliers ...

Group 2 alerts is connected with decision made during refinement and explained below:

PLAT201_ALERT_2_A Isotropic non-H Atoms in Main Residue(s):

As indicated above not all non-H atoms were refined with anisotropic displacement parameters.

PLAT602 ALERT 2 A VERY LARGE Solvent Accessible VOID(S) in Structure ! Info:

Not all electron density could be reasonably modeled thus in the structures solvent accessible voids are observed. PLAT973_ALERT_2_A Check Calcd Positive Residual Density on Ba1 2.48 eA-3:

The atom type is correct and there is no evidence of twinning. The large residual density near Ba atom may be due to an anomalous dispersion effect and has no chemical significance.

PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing ?); PLAT326_ALERT_2_B Possible Missing H on sp3? Carbon; PLAT327_ALERT_2_B Possible Missing H on sp3? Carbon: As indicated above not all H atoms were determined.

PLAT430_ALERT_2_B Short Inter D...A Contact :

Alerts concerns O…O distances between water molecules that most probably hydrogen bonded but H atoms were not determined.

PLAT987_ALERT_1_B The Flack x is >> 0 - Do a BASF/TWIN Refinement Please Check: Alert concerns $1 \supset Ca^{2+}$ complex with very low completeness thus Flack parameter cannot be reliably determined.

2. Materials and Methods for chemical synthesis

All reactions were carried out under a dry nitrogen atmosphere. Commercial reagents were purchased from Sigma-Aldrich, Alfa-Aesar or TCI and were used without further purification unless otherwise specified. Chloroform (CHCl₃) and diisopropylethylamine (DIEA) were distilled over calcium hydride (CaH₂) prior to use. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. GPC purification was performed on an LC-9130G NEXT setup (Japan Analytical Industry Co., Ltd.) equipped with two preparative columns (Inner diameter of 20mm and length of 600mm): a JAIGEL 2.5H and a JAIGEL 3H, in conjugation with UV-600 NEXT UV detector and an FC-3310 fraction collector. Chloroform with 1% EtOH and 0.5% Et₃N was used as mobile phase, with a flow rate of 7.0 mL/min. ESI mass spectra were obtained from the Mass Spectrometry Laboratory at the European Institute of Chemistry and Biology (UMS 3033 - IECB), Pessac, France.

2.1 Synthesis of oligomer 2

Scheme S1. Synthesis of oligomer 2.

2.2 Experimental procedures

Oligomer 2: Diacid **3**¹ (9.2 mg, 0.028 mmol), and hexamer amine **4**⁶ (87 mg, 0.058 mmol) and PyBOP (148 mg, 0.285 mmol) were dissolved in dry CHCl₃ (1 mL). Then, DIEA (0.05 mL, 0.285 mmol) was added at room temperature and the reaction mixture was heated to 40 °C. After two days, the mixture was washed with saturated aqueous. NH₄Cl, followed by saturated aqueous NaHCO₃ and finally water. The organic phase was dried on anhydrous MgSO₄, filtered and evaporated to dryness. The residue was purified by GPC to yield **2** as a yellow solid (60 %, 56 mg). ¹H NMR (300 MHz, CDCl₃) δ ppm = 12.07 (s, 2H); 12.04 (s, 2H); 11.35 (s,

2H), 11.10 (s, 2H); 9.85 (s, 2H); 9.83 (s, 2H); 9.82 (s, 2H); 8.86-8.68 (m, 12H); 8.51-8.47 (m, 4H); 8.17 (t, J = 4.41, 2H); 7.90-7.83 (m, 12H); 7.68-7.65 (m, 4H); 7.37 (d, J = 7.96, 2H); 7.29 (s, 1H); 7.14 (s, 2H); 7.11-7.05 (m, 4H); 6.83 (d, J = 8.30, 2H); 6.71 (s, 2H); 6.42 (t, J = 7.96, 2H); 4.34-4.20 (m, 8H); 4.15-4.10 (m, 2H); 4.00-3.94 (m, 2H); 3.63-3.50 (m, 8H); 2.48-2.34 (m, 6H); 2.02 (m, 2H); 1.87-1.76 (m, 4H); 1.68-1.61 (m, 2H); 1.44-1.33 (m, 4H); 1.27-1.20 (m, 37H); 0.86-0.82 (m, 18H); 0.67-0.65 (m, 17H); 0.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ppm = 176.2, 164.4, 164.3, 163.9, 163.8, 163.5, 163.3, 163.2, 162.5, 161.8, 161.7, 160.3, 158.7, 154.7, 154.2, 154.1, 153.8, 153.0, 151.4, 151.3, 150.8, 149.6, 148.9, 147.5, 139.9, 138.8, 137.9, 137.4, 134.5, 134.3, 134.1, 132.3, 127.0, 126.2, 126.0, 124.8, 122.6, 122.3, 121.8, 121.6, 116.8, 116.6, 116.4, 115.9, 115.5, 115.3, 114.9, 114.6, 110.3, 108.9, 100.1, 99.1, 98.7, 98.6, 98.1, 91.6, 75.9, 75.8, 75.2, 75.0, 74.9, 54.6, 54.0, 29.7, 29.0, 28.6, 28.3, 28.2, 27.9, 19.3, 19.1, 18.9, 18.7, 16.1, 9.6. HRMS (ESI+): *m/z* calcd for C₁₈₁H₁₈₁N₃₅O₂₈ [M+2H]+ 1646.19075 found 1646.19673.

1⊃**Na⁺ complex.** Oligomer **1** (2.99 mg, 1.0 μmol) was first dissolved in an NMR tube in CDCl₃ (300 μL), then a solution (0.005 M) of NaOTf in CD₃CN (200 μL) was added. The tube was agitated manually at room temperature and NMR was recorded ten minutes after the addition. ¹H NMR (400 MHz, CDCl₃/CD₃CN 6:4): δ ppm 11.72 (s, 2H), 11.20 (s, 2H), 10.42 (s, 2H), 10.28 (s, 2H), 9.96 (s, 2H), 9.89 (s, 2H), 9.19 (s, 2H), 8.99 (d, J = 7.1 Hz, 2H), 8.77 (d, J = 7.1 Hz, 2H), 8.41 (d, J = 9.5 Hz, 2H), 8.27 - 8.23 (m, 4H), 8.19 - 8.17 (m, 2H), 8.13 (d, J = 7.1 Hz, 2H), 8.05 (d, J = 8.6 Hz, 2H), 7.94 (t, J = 6.2 Hz, 1H), 7.85 (s, 3H), 7.83 (s, 1H), 7.73 (d, J = 7.7 Hz, 2H), 7.32 (d, J = 6.7 Hz, 2H), 7.29 (s, 2H), 7.18 (s, 2H), 7.16 - 7.08 (m, 6H), 7.03 (s, 1H), 7.01 (s, 1H), 6.98 - 6.94 (m, 4H), 6.73 (d, J = 6.7 Hz, 2H), 6.59 (s, 1H), 6.00 (t, J = 6.7 Hz, 2H), 4.62 - 4.58 (m, 1H), 4.56 - 4.52 (m, 2H), 4.41 - 4.37 (m, 2H), 4.30 - 4.27 (m, 2H), 4.21 - 4.17 (m, 2H), 3.73 - 3.64 (m, 4H), 3.40 (d, J = 6.7 Hz, 2H), 3.11 - 3.07 (m, 2H), 2.96 - 2.92 (m, 2H), 2.57 - 2.46 (m, 4H), 2.20 - 2.11 (m, 7H), 1.42 - 1.00 (m, 48H), 0.62 (d, J = 6.9 Hz, 6H), 0.48 (d, J = 6.9 Hz, 6H). HRMS (ESI+): calcd. for C₁₆₁H₁₅₂N₃₅O₂₆Na [M + Na + H]²⁺ 1508.0807, found 1508.0211

1SK⁺ **complex.** Oligomer **1** (2.99 mg, 1.0 µmol) was first dissolved in an NMR tube in CDCl₃ (300 µL), then a solution (0.005 M) of KOTf in CD₃CN (200 µL) was added. The tube was agitated manually at room temperature and NMR was recorded ten minutes after the addition. ¹H NMR (400 MHz, CDCl₃/CD₃CN 6:4): δ ppm 11.71 (s, 2H), 11.28 (s, 2H), 10.20 (s, 2H), 10.17 (s, 2H), 9.76 (s, 2H), 9.39 (s, 2H), 8.94 – 8.87 (m, 4H), 8.56 (d, J = 8.9 Hz, 2H), 8.25 – 8.02 (m, 13H), 7.93 (s, 3H), 7.91 (s, 1H), 7.40 (s, 2H), 7.28 (s, 2H), 7.18 – 7.13 (m, 4H), 7.07 (d, J = 7.7 Hz, 2H), 7.02 (d, J = 7.7 Hz, 2H), 6.85 – 6.78 (m, 4H), 6.61 (s, 2H), 6.54 (t, J = 8.1 Hz, 2H), 6.03 (t, J = 8.1 Hz, 2H), 5.91 (s, 2H), 4.61 - 4.58 (m, 1H), 4.52 - 4.48 (m, 2H), 4.32 - 4.25 (m, 4H), 4.20 - 4.17 (m, 2H), 3.75 - 3.66 (m, 4H), 3.43 - 3.35 (m, 4H), 2.97 – 2.93 (m, 2H), 2.56 – 2.43 (m, 5H), 2.32 - 2.28 (m, 2H), 2.23 - 2.14 (m, 4H), 1.38 - 1.05 (m, 48H), 0.59 (d, J = 6.4 Hz, 6H), 0.40 (d, J = 6.3 Hz, 6H). HRMS (ESI+): calcd. for C₁₆₁H₁₅₂N₃₅O₂₆K [M + K + H]²⁺ 1515.5659, found 1515.5699.

1 \supset **Mg**²⁺ **complex.** Oligomer **1** (2.99 mg, 1.0 µmol) was first dissolved in an NMR tube in CDCl₃ (300 µL), then a solution (0.005 M) of Mg(OTf)₂ in CD₃CN (200 µL) was added. The tube was agitated manually at room temperature and NMR was recorded ten minutes after the addition. ¹H NMR (400 MHz, CDCl₃/CD₃CN 6:4): 11.39 (s, 2H), 10.91 (s, 2H), 10.24 (s, 2H), 10.01 (s, 2H), 9.94 (s, 2H), 9.46 (s, 2H), 9.08 (d, J = 8.5 Hz, 2H), 8.54 (d, J = 9.4 Hz, 2H), 8.42 (d, J = 10.6 Hz, 2H), 8.41 (d, J = 11.0 Hz, 2H), 8.32 - 8.28 (m, 4H), 8.15 (d, J = 7.9 Hz, 2H), 8.00 - 7.96 (m, 2H), 7.91 - 7.87 (m, 5H), 7.68 (s, 2H), 7.50 - 7.44 (m, 5H), 7.34 - 7.32 (m, 2H), 7.29 - 7.25 (m, 4H), 7.01 - 6.93 (m, 5H), 6.80 (d, J = 8.1 Hz, 2H), 6.74 (s, 2H), 6.70 (d, J = 8.1 Hz, 2H), 6.10 (s, 2H), 6.00 (t, J = 7.7 Hz, 2H), 4.61 - 4.58 (m, 1H), 4.56 - 4.52 (m, 2H), 4.35 - 4.29 (m, 6H), 3.87 - 3.78 (m, 4H), 3.58 - 3.51 (m, 4H), 3.13 - 3.06 (m, 2H), 2.98 - 2.94 (m, 2H), 2.63 - 2.47 (m, 5H),

2.31 - 2.17 (m, 4H), 1.37 - 1.07 (m, 48H), 0.59 (d, J = 6.4 Hz, 6H), 0.41 (d, J = 6.3 Hz, 6H). HRMS (ESI+): calcd. for $C_{161}H_{151}N_{35}O_{26}Mg \ [M + Mg]^{2+}$ 1508.0744, found 1508.0357.

1 \square **Ca**²⁺ **complex.** Oligomer **1** (2.99 mg, 1.0 µmol) was first dissolved in an NMR tube in CDCl₃ (300 µL), then a solution (0.005 M) of Ca(OTf)₂ in CD₃CN (200 µL) was added. The tube was agitated manually at room temperature and NMR was recorded ten minutes after the addition. ¹H NMR (400 MHz, CDCl₃/CD₃CN 6:4): 11.49 (s, 2H), 10.78 (s, 2H), 10.37 (s, 2H), 9.96 (s, 2H), 9.76 (s, 2H), 9.69 (s, 2H), 9.07 (d, J = 8.5 Hz, 2H), 8.50 (d, J = 8.6 Hz, 2H), 8.49 (d, J = 8.2 Hz, 2H), 8.44 - 8.39 (m, 4H), 8.29 (d, J = 8.2 Hz, 2H), 8.18 (d, J = 7.1 Hz, 2H), 8.00 - 7.86 (m, 7H), 7.49 (s, 2H), 7.45 (s, 2H), 7.36 - 7.23 (m, 12H), 6.92 (t, J = 7.1 Hz, 2H), 6.81 (t, J = 7.8 Hz, 2H), 6.68 (s, 2H), 6.67 (d, J = 8.1 Hz, 2H), 6.16 (s, 2H), 6.07 (t, J = 7.9 Hz, 2H), 4.61 - 4.56 (m, 3H), 4.44 - 4.26 (m, 6H), 3.75 - 3.74 (m, 4H), 3.56 - 3.55 (m, 4H), 3.14 - 3.08 (m, 2H), 2.95 - 2.91 (m, 2H), 2.61 - 2.47 (m, 5H), 2.25 - 2.18 (m, 4H), 1.40 - 1.11 (m, 48H), 0.61 (d, J = 6.4 Hz, 6H), 0.43 (d, J = 6.3 Hz, 6H). HRMS (ESI+): calcd. for C₁₆₁H₁₅₁N₃₅O₂₆Ca [M + Ca]²⁺ 1516.0632, found 1516.0102.

1 \supset **Ba**²⁺ **complex.** Oligomer **1** (2.99 mg, 1.0 µmol) was first dissolved in an NMR tube in CDCl₃ (300 µL), then a solution (0.005 M) of Ba(OTf)₂ in CD₃CN (200 µL) was added. The tube was agitated manually at room temperature and NMR was recorded ten minutes after the addition. ¹H NMR spectrum could not be precisely assigned due to the presence of multiple overlapping peaks as a result of incomplete folding (see text).

3. Solution studies: Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR)

3.1 Circular dichroism titrations

QiBu OiBu QiBu QiBu Ĥ ö ပ္ပံြ NΗ 0. ΗŃ -0 (1S) (1S) (a) 450 (b) 100 260 free 2 400 240 **2**⊃Ba²⁺ - 80 350 % formation relative to [2] 220 300 Δε /cm² mmol⁻¹ Δε /cm² mmol⁻¹ 60 200 250 200 180 40 150 160 100 20 140 50 120 0 0 420 2.5 340 360 380 400 440 0.0 0.5 1.0 1.5 2.0 3.0 3.5 4.0 λ /nm [Ba²⁺]_t/[2]_t

Titrations with oligomer 2

Figure S1. (a) CD spectra recorded at 298 K for the binding study of oligomer **2** vs. Ba²⁺ in CHCl₃/MeCN (6:4 vol/vol). [**2**]_{initial} = 0.015 mM, [Ba(OTf)₂]_{titrant} = 0.41 mM; (b) Experimental and calculated values for the ICD binding study of oligomer **2** vs. Ba²⁺ in CHCl₃/MeCN (6:4 vol/vol) with the corresponding species distribution diagram. Although only $\Delta \varepsilon$ values at 350 nm are shown here, all wavelengths in the 340-450 nm region were used for the calculation of the binding constant. Log $K_a = 5.53 \pm 0.01$. Limiting $\Delta \varepsilon = 275$ cm² mmol⁻¹.

Figure S2. (a) CD spectra recorded at 298 K for the binding study of oligomer **2** vs. K⁺ in CHCl₃/MeCN (6:4 vol/vol). [**2**]_{initial} = 0.015 mM, [KOTf]_{titrant} = 0.41 mM; (b) Experimental and calculated values for the ICD binding study of oligomer **2** vs. K⁺ in CHCl₃/MeCN (6:4 vol/vol) with the corresponding species distribution diagram. Although only $\Delta \varepsilon$ values at 350 nm are shown here, all wavelengths in the 340-450 nm region were used for the calculation of the binding constant. Log $K_a = 6.08\pm0.01$. Limiting $\Delta \varepsilon = 270$ cm² mmol⁻¹.

Figure S3. (a) CD spectra recorded at 298 K for the binding study of oligomer **2** vs. Ca²⁺ in CHCl₃/MeCN (6:4 vol/vol). $[\mathbf{2}]_{initial} = 0.030 \text{ mM}, [Ca(OTf)_2]_{titrant} = 0.80 \text{ mM};$ (b) Experimental values for the ICD binding study of oligomer **2** vs. Ca²⁺ in CHCl₃/MeCN (6:4 vol/vol). $\Delta \varepsilon$ values at 350 nm are shown. $K_a > 10^7 \text{ M}^{-1}$. Lines are for guiding the eye only.

Figure S4. (a) CD spectra recorded at 298 K for the binding study of oligomer **2** vs. Na⁺ in CHCl₃/MeCN (6:4 vol/vol). [**2**]_{initial} = 0.030 mM, [NaOTf]_{titrant} = 0.80 mM; (b) Experimental values for the ICD binding study of oligomer **2** vs. Na⁺ in CHCl₃/MeCN (60:40). $\Delta \varepsilon$ values at 350 nm are shown. $K_a > 10^7 \text{ M}^{-1}$. Lines are for guiding the eye only.

Figure S5. (a) CD spectra recorded at 298 K for the binding study of oligomer **2** vs. Mg²⁺ in CHCl₃/MeCN (6:4 vol/vol). $[\mathbf{2}]_{\text{initial}} = 0.030 \text{ mM}, [Mg(OTf)_2]_{\text{titrant}} = 0.80 \text{ mM};$ (b) Experimental values for the ICD binding study of oligomer **2** vs. Mg²⁺ in CHCl₃/MeCN (6:4 vol/vol). $\Delta \varepsilon$ values at 369 nm are shown. $K_a > 10^7 \text{ M}^{-1}$. Lines are for guiding the eye only.

Titrations with oligomer 1

Figure S6. Part of the ¹H NMR spectrum (400 MHz) at 298K of oligomer **1** (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 0.25 equiv.; (c) 0.50 equiv.; (d) 0.75 equiv.; (e) 1 equiv. of Ba(OTf)₂. Peaks belonging to the **1** \supset Ba²⁺ complex are marked in red. $K_a > 10^5$ M⁻¹.

Figure S7. Part of the ¹H NMR spectrum (400 MHz) at 298K of oligomer **1** (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 0.25 equiv.; (c) 0.50 equiv.; (d) 0.75 equiv.; (e) 1 equiv. of KOTf. Peaks belonging to the $\mathbf{1} \supset K^+$ complex are marked in red. $K_a > 10^5 \text{ M}^{-1}$. Additional peaks marked as * correspond to the $\mathbf{1} \supset Na^+$ complex which is present even though no Na⁺ was added, as this metal ion is a well-known, ubiquitous contaminant of, for instance, glassware.

Figure S8. Part of the ¹H NMR spectrum (400 MHz) at 298K of oligomer **1** (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 0.25 equiv.; (c) 0.50 equiv.; (d) 0.75 equiv.; (e) 1 equiv. of Ca(OTf)₂. Peaks belonging to the $\mathbf{1} \supset Ca^{2+}$ complex are marked in red. $K_a > 10^5 \text{ M}^{-1}$. Peaks marked in blue correspond to the empty, protonated oligomer, formed probably from proton transfer from the calcium hydrate to the pyz-pyr-pyz unit. Additional peaks marked as * correspond to the $[\mathbf{1} \supset Na]^+$ complex which is present even though no Na⁺ was added, as this metal ion is a well-known, ubiquitous contaminant of, for instance, glassware.

Figure S9. Part of the ¹H NMR spectrum (400 MHz) at 298K of oligomer 1 (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 0.25 equiv.; (c) 0.50 equiv.; (d) 0.75 equiv.; (e) 1 equiv. of NaOTf. Peaks belonging to the $1 \supset Na^+$ complex are marked in red. $K_a > 10^5$.

Figure S10. Part of the ¹H NMR spectrum (400 MHz) at 298K of oligomer 1 (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 0.25 equiv.; (c) 0.50 equiv.; (d) 0.75 equiv.; (e) 1 equiv. of Mg(OTf)₂. Peaks belonging to the 1 \supset Mg²⁺ complex are marked in red. $K_a > 10^5$ M⁻¹.

3.3 ¹H NMR competition titrations

As can be seen in Figs S6 to S10, addition of the metal ion guests to a 1 mM solution of **1** produces a separated set of proton resonances for the free and bound capsule indicating that the binding process is slow in the NMR time scale. In all cases, addition of 1 equiv. of guest leads to saturation of the capsule in agreement with association constants that are higher than 10^5 M⁻¹, thus impossible to be accurately measured by NMR. As an alternative, competition experiments were performed to determine the selectivity ratios.

Considering a host H that can bind two different guests A and B in a 1:1 binding stoichiometry, the two processes can be described by the following equilibria:

H + A \rightleftharpoons HA; $K_{HA} = [HA]/[A][H]$ H + B \rightleftharpoons HB; $K_{HB} = [HB]/[B][H]$

The selectivity ratio is defined as the ratio between binding constants:

 $K_{A/B} = K_{HA}/K_{HB} = [HA][B]/[HB][A]$ which is the equilibrium constant of the following competition equilibrium:

 $\mathrm{HB} + \mathrm{A} \rightleftharpoons \mathrm{HA} + \mathrm{B}$

Starting with conditions such that the HB complex is fully formed and adding guest A leads to displacement of guest B from the host. When the binding process is slow in the NMR time scale the concentrations of HA, HB, A and B in equilibrium can be known by integration of the HA and HB peaks and thus $K_{A/B}$ can be determined.

Since it was possible to determine the association constants for the binding of Ba^{2+} and K^+ by CD spectroscopy, the knowledge of the selectivity ratios allows the determination of all association constants (see Table 1).

Figure S11. Part of the ¹H NMR spectrum (400 MHz) at 298K of $1 \supset \text{Na}^+$ (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 1 equiv.; (c) 3 equiv.; (d) 8 equiv.; (e) 15 equiv. of KOTf. Signals of $1 \supset \text{K}^+$ amide resonances are marked in red. $K_a(1 \supset \text{Na}^+)/K_a(1 \supset \text{K}^+) = 271$.

Figure S12. Part of the ¹H NMR spectrum (400 MHz) at 298K of $1 \supset Na^+$ (1 mM) in CDCl₃/d₃-MeCN (60:40) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 0.5 equiv.; (c) 1.5 equiv.; (d) 4.5 equiv. of Ca(OTf)₂. Signals of $1 \supset Na^+$ and of $1 \supset Ca^{2+}$ amide resonances are marked with filled circle and empty circle, respectively. $K_a(1 \supset Na^+)/K_a(1 \supset Ca^{2+}) = 1.7$.

Figure S13. Part of the ¹H NMR spectrum (400 MHz) at 298K of $1 \supset \text{Na}^+$ (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 10 equiv.; (c) 20 equiv.; (d) 40 equiv. of NaOTf. Signals of $1\supset \text{Mg}^{2+}$ amide resonances are marked in red. $K_a(1\supset \text{Na}^+)/K_a(1\supset \text{Mg}^{2+}) = 0.002$.

Figure S14. Part of the ¹H NMR spectrum (400 MHz) at 298K of $1 \supset Mg^{2+}$ (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 1 equiv.; (c) 2 equiv.; (d) 4 equiv. and (e) 6 equiv. of Cu(MeCN)₄BF₄. Signals of $1 \supset Cu^+$ amide resonances are marked in red.

Figure S15. Part of the ¹H NMR spectrum (400 MHz) at 298K of $1 \supset Mg^{2+}$ (1 mM) in CDCl₃/CD₃CN (6:4 vol/vol) showing the amide resonances in the presence of: (a) 0 equiv.; (b) 1 equiv.; (c) 5 equiv.; (d) 10 equiv. of Zn(OTf)₂.

4. Solid state X-Ray Crystallography

4.1 X-Ray crystallographic data for the 1⊃Na⁺ complex

Identification code	$1 \supset \mathrm{Na^+}$
Chemical formula	$C_{161}H_{151}N_{35}O_{26}Na \cdot 0.7(CF_{3}O_{3}S) \cdot C_{6}H_{5}Cl \cdot 4.17(CHCl_{3}) \cdot 6(H_{2}O) \cdot 6.43(O) \ast 0.43(O) + 0.43(O) \cdot 6.43(O) \cdot$
Formula weight	3934.93
Temperature	100(2)
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	$P2_{1}/c$
Unit cell dimensions	a=20.5626 (4), α=90
	b=49.2607 (11), β=105.218 (3)
	c=22.2525 (6), γ=90
Volume	21749.8 (9)
Ζ	4
Density (calculated)	1.202
Absorption coefficient	2.27
Absorption correction	Multi-scan
Crystal size	0.20 imes 0.07 imes 0.02
Index ranges	$h = -20 \rightarrow 20, k = -48 \rightarrow 42, l = -21 \rightarrow 21$
Completeness to theta = 50.43°	98.9
Reflections collected	89947
Reflections observed $[I > 2\sigma(I)]$	18677
R _{int}	0.055
Data/parameters/restrains	22533/2249/148
Goodness-of-fit on F ²	3.74
Final R indices $[I > 2\sigma(I)]$	R1 = 0.1971, wR2 = 0.4819
R indices (all data)	R1 = 0.2100, wR2 = 0.4971
Lasgest diff. peak and hole	1.56, -0.87
CCDC #	1561023

Table S1. Crystal data and refinement details for the $1 \supset Na^+$ complex.

*Unrecognized electron density was introduced to the refinement as a dummy oxygen atoms.

(b)

Figure S16. Solid-state structure of the *P*-1 \supset Na⁺ complex: (a) side view; (b) Na coordination sphere. Isobutoxy side chains and cavity-excluded solvent molecules are omitted for clarity. The capsule backbone is represented in sticks. Sodium atoms are represented in pink balls and oxygen atoms of water molecules are depicted as red balls.

Bond	Bond length (Å) ^b
Na01–O1W	2.344(8)
Na01–O2W	2.330(8)
Na01–N17A	2.701(8)
Na01–N18A	2.625(8)
Na01–N19A	2.586(8)

Table S2. First-coordination sphere bond lengths (Å) in the 1⊃Na⁺ complex.^a

^{*a*} Atom numbers are those of the cif file. ^{*b*} Values in parenthesis are standard deviations in the last significant figure.

Table S3. O…N distances shorter than 3.25 Å between water molecules and capsule heteroatoms in the 1⊃Na⁺ complex.^a

	<i>d</i> (Å) ^{<i>b</i>}	
O1W…N7A	2.93(1)	
O2W…N29A	3.02(1)	
O2W…N28A	3.16(1)	
O2W…N30A	3.24(1)	
O3W…N22A	3.11(1)	
O4W…N25A	3.14(1)	
O4W…N26A	3.22(1)	
O5W…N10A	3.15(1)	
O5W…N11A	3.25(1)	
O6W…N14A	2.96(1)	

^{*a*} Atom numbers are those of the cif file. ^{*b*} Values in parenthesis are standard deviations in the last significant figure.

4.2 X-Ray crystallographic data for 1⊃K⁺ complex

Identification code	$1 \supset K^+$
Chemical formula	$C_{161}H_{151}N_{35}O_{26}K\cdot CF_{3}O_{3}S\cdot 3(CHCl_{3})\cdot 6(H_{2}O)*$
Formula weight	3646.53
Temperature	100(2)
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	$P2_{1}/c$
Unit cell dimensions	a=20.339 (4), α=90
	b=49.532 (10), β=103.33 (3)
	c=21.904 (4), γ=90
Volume	21473 (8)
Ζ	4
Density (calculated)	1.128
Absorption coefficient	1.93
Absorption correction	Multi-scan
Crystal size	$0.15 \times 0.10 \times 0.05$
Index ranges	$h = -20 \rightarrow 20, k = -48 \rightarrow 49, l = -21 \rightarrow 20$
Completeness to theta = 50.43°	99.5
Reflections collected	99522
Reflections observed $[I > 2\sigma(I)]$	15657
R _{int}	0.108
Data/parameters/restrains	22365/1764/448
Goodness-of-fit on F ²	2.73
Final R indices $[I > 2\sigma(I)]$	R1 = 0.2008, $wR2 = 0.4668$
R indices (all data)	R1 = 0.2266, wR2 = 0.4875
Lasgest diff. peak and hole	1.16, -0.73
CCDC #	1561024

Table S4. Crystal data and refinement details for $1 \supset K^+$ complex.

*SQUEEZE procedure was used to remove severely disordered solvent molecules

Figure S17. Solid-state structure of the $P-1 \supset K^+$ complex: (a) side view; (b) K coordination sphere. Isobutoxy side chains and cavity-excluded solvent molecules are omitted for clarity. The capsule backbone is represented in sticks. Potassium atoms are represented in purple balls and oxygen atoms of water molecules are depicted as red balls.

Bond	Bond length (Å) ^b	
K01–O1W	2.592(8)	
K01–O2W	3.428(12)	
K01–O3W	2.723(10)	
K01-N17A	3.031(10)	
K01-N18A	3.119(8)	
K01–N19A	2.747(9)	

Table S5. First-coordination sphere bond lengths (Å) in the $1 \supset K^+$ complex.^{*a*}

^{*a*} Atom numbers are those of the cif file. ^{*b*} Values in parenthesis are standard deviations in the last significant figure.

Table S6. O...N distances shorter than 3.25 Å between water molecules and capsule heteroatoms in the $1 \supset K^+$ complex.^{*a*}

	d (Å) ^b	
O1W…N7A	2.91(1)	
O2W…N29A	3.11(1)	
O2W…N28A	2.84(1)	
O3W…N22A	3.23(1)	
O4W…N14A	2.96(1)	
O5W…N10A	3.22(1)	
O5W…N11A	3.11(1)	
O6W…N25A	2.90(1)	

^a Atom numbers are those of the cif file. ^b Values in parenthesis are standard deviations in the

last significant figure.

4.3 X-Ray crystallographic data for 1⊃Ca²⁺ complex

Table S7. Crystal data and refinement details for $1 \supset Ca^{2+}$ complex.

Identification code	$1 \supset Ca^{2+}$
Chemical formula	$C_{161} H_{151} N_{35} O_{26}$, Ca O_7 , 2(O)*
Formula weight	3176.24
Temperature	100(2)
Wavelength	1.54178 Å
Crystal system	Tetragonal
Space group	I4 ₁ cd
Unit cell dimensions	a=b=21.7945 (19), c=71.588 (9)
Volume	34004 (7)
Ζ	8, (Z'=0.5)
Density (calculated)	1.241
Absorption coefficient	0.99
Absorption correction	Multi-scan
Crystal size	$0.20\times0.10\times0.05$
Index ranges	$h = -21 \rightarrow 10, k = -13 \rightarrow 12, l = -71 \rightarrow 66$
Completeness to theta = 50.43°	91.6
Reflections collected	14207
Reflections observed $[I > 2\sigma(I)]$	5429
<i>R</i> _{int}	0.023
Data/parameters/restrains	7297/795/292
Goodness-of-fit on F ²	1.62
Final R indices $[I > 2\sigma(I)]$	R1 = 0.1364, wR2 = 0.3608
R indices (all data)	R1 = 0.1672, wR2 = 0.3932
Lasgest diff. peak and hole	0.80, -0.48
CCDC #	1561025

* Unrecognized electron density was introduced to the refinement as a dummy oxygen atoms.

Figure S18. Solid-state structure of the $P-1 \supset Ca^{2+}$ complex: (a) side view; (b) detail of the hydrogen bonding interactions between the calcium hydrate and the central pyz-pyr-pyz monomer. Isobutoxy side chains and cavity-excluded solvent molecules are omitted for clarity. Dashed lines indicate hydrogen bonds. The capsule backbone is represented in sticks. Calcium atoms are represented in yellow balls and oxygen atoms of water molecules are depicted as red balls.

Bond	Bond length (Å) ^b	
Cal-O1W	2.378(19)	
Cal-O2W	2.413(12)	
Ca1–O3W	2.344(13)	
Ca1–O4W	2.50(3)	

Table S8. First-coordination sphere bond lengths (Å) in the $1 \supset Ca^{2+}$ complex.^{*a*}

^{*a*} Atom numbers are those of the cif file. ^{*b*} Values in parenthesis are standard deviations in the last significant figure.

Table S9. O...N distances shorter than 3.25 Å between water molecules and capsule heteroatoms in the 1 Ca²⁺ complex.^a

	d (Å) ^b	
O1W…N17A	2.77(2)	
O1W…N18A	3.10(3)	
O2W…N14A	3.01(1)	
O2W…N15A	3.25(2)	
O2W…N16A	2.88(2)	
O3W…N8A	2.71(2)	
O4W…N11A	2.80(3)	
O4W…N12A	3.05(3)	

^a Atom numbers are those of the cif file. ^b Values in parenthesis are standard deviations in the

last significant figure.

4.4 X-Ray crystallographic data for 1⊃Ba²⁺ complex

Table S10. Crystal data and refinement details for 1⊃Ba²⁺ complex.

Identification code	$1 \supset Ba^{2+}$
Chemical formula	$C_{161}H_{151}N_{35}O_{26}Ba \cdot 2(CF_3O_3S) \cdot 6(CHCl_3) \cdot 7(H_2O) *$
Formula weight	4269.96
Temperature	100 (2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	a=21.6820 (6), α=70.405 (3),
	b=23.7632 (9), β=78.648 (2)
	c=26.0862 (7), γ=75.477 (3)
Volume	12163.5 (7)
Ζ	2
Density (calculated)	1.166 Mg/m^3
Absorption coefficient	3.84
Absorption correction	Multi-scan
Crystal size	$0.20\times0.07\times0.02~mm^3$
Index ranges	$h = -21 \rightarrow 21, k = -23 \rightarrow 23, l = -26 \rightarrow 26$
Completeness to theta = 50.43°	98.9
Reflections collected	78956
Reflections observed $[I > 2\sigma(I)]$	13996
R _{int}	0.158
Data/parameters/restrains	25179/1756/727
Goodness-of-fit on F ²	1.75
Final R indices $[I > 2\sigma(I)]$	R1 = 0.1517, $wR2 = 0.3653$
R indices (all data)	R1 = 0.1977, wR2 = 0.4009
Lasgest diff. peak and hole	1.58, -1.05
CCDC #	1561026

*SQUEEZE procedure was used to remove severely disordered solvent molecules

Figure S10. Solid-state structure of the *P*-1 \supset Ba²⁺ complex: (a) side view; (b) detail of the hydrogen bonding interactions between the barium hydrate and the central pyz-pyr-pyz monomer. Isobutoxy side chains and cavity-excluded solvent molecules are omitted for clarity. Dashed lines indicate hydrogen bonds. The capsule backbone is represented in sticks. Barium atoms are represented in orange balls and oxygen atoms of water molecules are depicted as red balls.

Bond	Bond length (Å) ^b	
Bal-O1C	2.804(14)	
Ba1–O12A	2.789(11)	
Ba1–O1W	2.790(11)	
Ba1–O2W	2.827(9)	
Ba1–O3W	2.746(12)	
Ba1–O4W	2.861(9)	
Ba1–O5W	2.917(9)	
Ba1–O6W	2.729(8)	
Ba1–O7W	2.718(9)	

Table S11. First-coordination sphere bond lengths (Å) in the $1 \supset Ba^{2+}$ complex.^{*a*}

^{*a*} Atom numbers are those of the cif file. ^{*b*} Values in parenthesis are standard deviations in the last significant figure.

	<i>d</i> (Å) ^{<i>b</i>}
O1W…N4A	3.02(2)
O1W···N7A	3.24(2)
O1W…N8A	2.81(2)
O3W…N14A	2.85(2)
O4W…N24A	3.033(2)
O4W…N25A	2.85(1)
O5W···N27A	2.930(2)
O5W…N28A	2.93(2)
O6W…N17A	2.80(2)
O6W…N18A	3.10(2)
O6W…N19A	2.85(2)
O7W···N20A	3.07(2)
O7W…N21A	3.16(2)
07W…N22A	3.03(1)

Table S12. O···N distances shorter than 3.25 Å between water molecules and capsule heteroatoms in the $1 \supset Ba^{2+}$ complex.^{*a*}

^{*a*} Atom numbers are those of the cif file. ^{*b*} Values in parenthesis are standard deviations in the last significant figure.

5. ¹H NMR and ¹³C NMR spectra of new synthetic compounds

1⊃Na⁺ complex.

 $1 \supset K^+$ complex.

S30

1⊃Ca²⁺ complex.

6. References

¹ M. Horeau, G. Lautrette, B. Wicher, V. Blot, J. Lebreton, M. Pipelier, D. Dubreuil, Y. Ferrand and Ivan Huc, *Angew. Chem. Int. Ed.*, 2017, **56**, 1

² P. Gans, A. Sabatini, A. Vacca, Ann. Chim. 1999, 89, 45.

³ CrystalClear-SM Expert 2.1 (*Rigaku* 2013) Software, Version 5.6.2.0, Tokyo, Japan.

- ⁴ G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- ⁵ A. L. Spek, Acta. Cryst., 2015, C71, 9.

⁶ Y. Ferrand, N. Chandramouli, A. M. Kendhale, C. Aube, B. Kauffmann, A. Grélard, M. Laguerre, D. Dubreuil and I. Huc, *J. Am. Chem. Soc.*, 2012, **134**, 11282.