Electronic Supplementary Material (ESI) for

Solution-phase process of $g-C_3N_4/BiVO_4$ dyad to large-area photoanode: interfacial synergy for highly efficient water oxidation

Bing Zhang, Shu-Yu Zhao, Tian-Jian Zhao, Hong-Hui Wang, Yong-Xing Liu, Li-Bing Lv, Xiao Wei, Xin-Hao Li*, and Jie-Sheng Chen*

> School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 (P. R. China)

Corresponding authors: xinhaoli@sjtu.edu.cn; chemcj@sjtu.edu.cn

Experimental Procedures

Materials

F-doped SnO₂ (FTO) transparent substrate electrode (Nippon Sheet Glass, Japan, sodalime, sheet resistance: $14 \Omega \text{ sq}^{-1}$), cyanamide (Stru Chem Co., Ltd, 95%), sodium sulfate (Adamas, 99%), silver nitrate (Adamas, 99%), bismuth nitrate, ammonium metavanadate, phosphate buffer powder, concentrated nitric acid (65 wt.%), ethanol and acetone were all purchased from Sinopharm Chemical Reagent Co., Ltd and used as received.

Synthesis of the colloidal soltuion of flexible $g\mbox{-}C_3N_4$ nanolayers

Carbon nitride solids were prepared via thermal condensation of cyanamide at 550 °C in a covered crucible in air. Then 0.1 g of carbon nitride powder was dispersed into 10 mL of HNO_3 (10 N) under stir. The dispersion was heated to 80 °C for 3h. The as-obtained solution was used as such after naturally cooled to room temperature.

Preparation of FTO slides

FTO slides were cut into small pieces with certain area and then washed three times with distilled water, ethanol and acetone successively. The clean FTO slides were kept in distilled water for further use.

Fabrication of pristine g-C₃N₄ electrodes

FTO slides were dipped into the colloidal soltuion of flexible $g-C_3N_4$ nanolayers for 5 s and then dried at room temperature. The coated slides were then annealed at 400 °C for 2 h.

Typical synthesis of pristine BiVO₄ electrodes

Clean FTO slides were dipped into an aqueous solution of 0.1 M Bi(NO₃)₃·5H₂O, 0.1 M NH₄VO₃ and 2M nitric acid solution for 5 s and then dried at room temperature. The coated slides were then annealed at 400 °C for 2 h in air, resulting in yellow BiVO₄ thin films for further characterizations and applications.

Synthesis of BiVO₄/g-C₃N₄ electrodes

equal mol of Bi(NO₃)₃·5H₂O and NH₄VO₃ were dissolved in 2M aqueous nitric acid solution repespectively, then mixed to form 0.2 M precursor. The concentrated nitric acid (65 wt.%) processed g-C₃N₄ dispersion solution was diluted to certain concentration by which can be equally mixed with BiVO₄ precursor solution to form BV/CN-x precursors (x means mol ratios of BiVO₄ to g-C₃N₄, here are 2, 5 and 10 respectively). Washed FTO slides with certain area were dipped in the precursor solution for 5 s, after dryness at room temperature, films were calcinated at 400 °C for 2 h in air to form a yellow thin film. Ag⁺ doped BV/CN-5 photoanode was prepared by simply immersing the as-obtained BV/CN-5 photoanode in 0.01 M AgNO₃ aqueous solution overnight in dark. For the synthesis of BiVO₄/bulk g-C₃N₄ (BV/BCN) electrodes, bulk g-C₃N₄ powders without nitric acid processing were directly mixed with BiVO₄ precursor, then FTO slides with certain area were dipped in the precursor solution for 5 s, after dryness at room temperature, films were calcinated at 400 °C for 2 h in air to form a yellow thin film. Ag⁺ doped BV/CN-5 photoanode was prepared by simply immersing the as-obtained BV/CN-5 photoanode in 0.01 M AgNO₃ aqueous solution overnight in dark. For the synthesis of BiVO₄/bulk g-C₃N₄ (BV/BCN) electrodes, bulk g-C₃N₄ powders without nitric acid processing were directly mixed with BiVO₄ precursor, then FTO slides with certain area were dipped in the precursor solution for 5 s, after dryness at room temperature, films were calcinated at 400 °C for 2 h in air.

Photoelectrochemical measurements

The PEC performances were investigated using a three-electrode electrochemical quartz cell in a 0.5 M Na₂SO₄ phosphate buffer solution (pH = 6.8) under simulated sunlight illumination (Perfectlight Tech. Co., Ltd., PLS-SXE300C, 300 W Xe lamp) with a glass optical filter used to cut off the short wavelength part (λ < 400 nm). The light intensity was calibrated using a reference Si solar cell (Oriel-91150). The electrolyte was stirred and bubbled with O₂-saturated gas before the measurements. A saturated calomel electrode (SCE) in saturated KCI solution was used as a reference electrode and a Pt coil was used as a counter electrode. The measured potentials versus SCE were all converted to the reversible hydrogen electrode scale according to the Nernst equation. Mott–Schottky Plots was performed in the above 0.5M Na₂SO₄ aqueous solution using typical three-electrode system at an increasing rate of 50 mV/s from -1.5 V to 0.8 V. Surface photovoltage spectroscopy were conducted with a system consisted of a source of monochromatic light, a lock-in amplifier (SR830-DSP) with a light chopper (SR540), a photovoltaic cell, and a computer. A 500 W xenon lamp and a grating monochromator (Omni- λ 500) were combined to provide the monochromatic light. A low chopping frequency of ~23 Hz was used to obtain stable and intensive signals. The photovoltaic cell was a sandwich-like structure consisting of FTO-sample-FTO. For measuring the incident photon-to-current efficiency (IPCE), the xenon lamp 40 lamp (Newport 67 005) was connected to a Newport monochromator. Two lenses were used to focus monochromatic light onto the active area of the DSSCs. The light output was modulated to certain wavelength and the IPCE data were calibrated with a NREL calibrated reference cell.

Characterizations

The SEM measurements were performed on a FEI Nova NanoSEM 2300. The TEM and HRTEM measurements were taken with a JEM-2100F microscope operated at an acceleration voltage of 200 kV. The AFM tests were conducted with a Nanonavi E-Sweep Scanning Probe Microscope. The Powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å) with a scan rate of 6° min⁻¹. UV-vis spectra were taken with a SHIMADZU UV-2450 UV-vis spectrophotometer.

Results and Discussion

Figure S1. Photograph of the aqueous dispersion of g-C₃N₄ nanolayers for the fabrication of BV/CN photoanodes. The typical Tyndall effect well illustrated the nature of colloidal solution.

 $\label{eq:Figure S2. TEM image of g-C_3N_4 before exfoliation. The irregular shape of condensed g-C_3N_4 solid can be clearly seen.$

Figure S3. AFM image of g-C₃N₄ nanosheets in the g-C₃N₄ aqueous dispersion. The thickness of as-exfoliated g-C₃N₄ nanolayers was around 4-8 nm.

Figure S4. XRD patterns of $g-C_3N_4$ powder samples (a) and XPS spectra of $g-C_3N_4$ nanolayers (b-c). XRD peaks near 13.1 and 27 illustrated that $g-C_3N_4$ nanolayers possessed the very nature of bulk $g-C_3N_4$. C 1s (b) and N 1s (c) XPS spectra also showed typical spectra originated from C and N atoms in the conjugated C=N-N system of triazine. Note that the typical peaks of sp² C-C bonds of graphitic carbon at 284.6 eV, which generally existed in all $g-C_3N_4$ samples in the literature ^[51].

Figure S5. SEM image and element distribution of BV/CN-5 precursor dried at room temperature. The well dispersed $g-C_3N_4$ nanolayers revealed the supramolecular assembly of highly dispersed $g-C_3N_4$ nanolayers with the chains of $[VO_3]_n^-$ into uniform foam-like thin films (a-c). After calcination at 400 °C (d-f), monoclinic BiVO_4 nanocrystals¹⁷ and BV/CN nanocomposites formed. Elemental mapping results demonstrated the well dispersion of $g-C_3N_4$ nanolayers and BiVO_4.

Figure S6. SEM images of pristine BiVO₄ and pristine $g-C_3N_4$ photoanodes. Typical surface of pristine BiVO₄ photoanode (a) and $g-C_3N_4$ photoanode (b) after calcination at 400 °C. Pristine BiVO₄ photoanode exhibited irregular porous structure and nanocrystals and pristine $g-C_3N_4$ photoanode showed either irregular large sheets structure. While the introduction of $g-C_3N_4$ nanolayers can maintain BV/CN-5 photoelectrodes uniform porous structure and nanocrystals. The as-exfoliated $g-C_3N_4$ nanolayers with a rich amount of $-NH_2$ groups on the surface or edges could also function as "linkers" to connect the chains of $[VO_3]_n$, which helped to ensure the formation of uniform structure.

Figure S7. Typical SEM images of BV/CN-2 (a) and BV/CN-10 (b) photoanodes. Relative uniform nanocrystals can be seen in two photoanodes further revealed the "linker" function of g-C₃N₄ nanolayers.

Figure S8. XRD patterns of different photoanodes. Peaks near 13.1 showed the existence of $g_-C_3N_4$ and peaks closing to 29.7 indicated the formation of monoclinic BiVO₄ (m-BiVO₄). m-BiVO₄ was considered as most promising candidates for photo or photoelectrochemical applications among all crystal structures of BiVO₄.

Figure S9. LSV curves of BV/CN photoanodes with different mol ratios for photoelectrochemical OER. (a) LSV curves of BV/CN photoanodes with different mol ratios for photoelectrochemical OER under visible irradiation. BV/CN-5 photoanode exhibited the best photoelectrochemical OER performance. The synergistic effect between $g-C_3N_4$ and BiVO₄ well explained the variation in the current output upon changing the mol ratios of $g-C_3N_4$ and BiVO₄ in dyadic thin films, which largely dominated the photo-excited charge free transfer path and thus final OER performance (b) LSV curves of BV/CN-5 photoanodes for photoelectrochemical OER with visible irradiation or in dark. The chopped *i-V* curve of BV/CN-5 photoanode (c) which showed the same tendency with the linear *i-V* curves also indicated the fast response of the BV/CN-5 electrode to photo illumination in relatively low overpotentials.

Figure S10. Band gaps of BV/CN-5, pristine $BiVO_4$ and pristine $g-C_3N_4$ photoanodes calculated according to UV-vis spectrum. The band gap of $BiVO_4$ in BV/CN-5 was not changed compared with pristine $BiVO_4$.

Figure S11. HRTEM image of BV/CN-5 photoanode after calcination. The results revealed the fine structure of composite photoanode and the high crystallinity with clear lattice structures attributed to the (121) facet of the monoclinic phase of BiVO₄.

Figure S12. Electronic structure analysis for BV/CN-5, pristine BiVO₄ and pristine $g_-C_3N_4$ photoanodes. Mott-schottky curves in 0.5 M Na₂SO₄ solution (a) and corresponding schematic diagram of energy band structure (b) of BV/CN-5, pristine BiVO₄ and pristine $g_-C_3N_4$ photoanodes. The valance and conduction band position of BV/CN-5 was slightly elevated due to the introduction of $g_-C_3N_4$ nanolayers, rather suggesting the formation of a rectifying contact between the BiVO₄ and $g_-C_3N_4$ components.

Figure S13. Photoelectrochemical OER performance of BiVO₄ and bulk g-C₃N₄ photoanode (BV/BCN-5) in 0.5 M Na₂SO₄ solution. The introduction of bulk g-C₃N₄ with condensed solid structure showed negligible improvement for photoelectrochemical OER compared with pristine BiVO₄ photoelectrodes which further illustrated the importance of ultrathin and flexible nature of g-C₃N₄ nanolayers for constructing efficient heterojunctions with BiVO₄.

Figure S14. Current-time of BV/CN-5 for photoelectrochemical oxidation with (gray) or without Ag⁺ (red) doping in 0.5 M Na₂SO₄ phosphate buffer solution. Ag⁺ doped BV/CN-5 photoanodes (Ag⁺: BV/CN-5) was proved to further enhance the long-time durability of photoanode with more than 80% catalytic activity reserved after 10 hours' water splitting reaction. This is to say that our method could be extended for further modifying the OER performance via introducing additional dopants and cocatalysts.

Figure S15. DER performance of scaled-up photoanodes of BV/CN-5 dyad. LSV curves (a) of BV/CN-5 photoanodes for photoelectrochemical OER and corresponding current density (b) at 1.35 V vs. RHE at a distance with 0.3 sun irradiation. Inset b: Photographs of typical BV/CN-5 photoanodes with different areas.

Table S1. IPCE of BiVO ₄ based photoanodes prepared by solution-phase method for photoelectrochemical water oxidation performance at differe	nt
voltage	

Photoanodes	IPCE _{λ400} (%)	Voltage	Ref.
BiVO ₄ -TiO ₂	11.5	~1.65 V vs. RHE	S2
BiVO ₄ -WO ₃	37.5	~1.3V vs. RHE	S3
Mo:BiVO4	38	1.23 V vs. RHE	S4
SnO ₂ /BiVO ₄	30	1.63 vs. RHE	S5
WO ₃ /BiVO ₄	31	0.5V bias	S6
Co-Pi/W:BiVO ₄	32	1.2 V vs. RHE	S7
RhO ₂ /Mo–BiVO ₄	~48	1 V vs. RHE	S8
BiVO ₄ /SnO ₂ /WO ₃	43	1.2V vs. RHE	S9
SnO ₂ /BiVO ₄ :W	49	1.63 vs. RHE	S5
g-C ₃ N ₄ /BiVO ₄	50	1.23 V vs. RHE	
	97	1.6 V vs. RHE	This paper

References

- [1] H. Yu, L. Shang, T. Bian, R. Shi, G. I. N. Waterhouse, Y. Zhao, C. Zhou, L.-Z. Wu, C.-H. Tung and T. Zhang, Adv. Mater. 2016, 28, 5080-5086.
- [2] S. Ho-Kimura, S. J. A. Moniz, A. D. Handoko and J. Tang, J. Mater. Chem. A, 2014, 2, 3948-3953.
- [3] S. J. Hong, S. Lee, J. S. Jang and J. S. Lee, *Energy Environ. Sci.*, 2011, **4**, 1781-1787.
- [4] K. P. S. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang and J. S. Lee, ChemSusChem, 2012, 5, 1926-1934.
- [5] Y. Liang, T. Tsubota, L. P. A. Mooij and R. van de Krol, J. Phys. Chem. C, 2011, 115, 17594-17598.
- [6] J. Su, L. Guo, N. Bao and C. A. Grimes, *Nano Lett.*, 2011, **11**, 1928-1933.
- [7] D. K. Zhong, S. Choi and D. R. Gamelin, J. Am. Chem. Soc., 2011, 133, 18370-18377.
- [8] W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu and Z. Zou, Energy Environ. Sci., 2011, 4, 4046-4051.
- [9] R. Saito, Y. Miseki and K. Sayama, Chem. Commun., 2012, 48, 3833-3835.