Nickel-Catalyzed Direct C–H Trifluoroethylation of Heteroarenes with Trifluoroethyl Iodide

Sheng-Yi Yan,^a Zhuo-Zhuo Zhang,^a Bing-Feng Shi^{*ab}

^a Department of Chemistry, Zhejiang University, Hangzhou 310027, China. E-mail: <u>bfshi@zju.edu.cn</u>

^b School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, 529020, China

Supporting Information

Table of Contents:

1. General Information	2
2. Experimental Section	2
2.1 Preparation of Substrates	2
2.2 Optimization of Reaction Conditions	
2.3 General Procedure for the Trifluoroethylation	6
2.4 Removal of 2-Pyridinyl Director	
2.5 Intermolecular competition experiment	
2.6 Intermolecular kinetic isotopic effect experiment	
2.7 Radical Scavenger experiments	
3. References:	
4. NMR Spectra	

1. General Information

All the materials and solvents were purchased from commercial suppliers, such as Adamas-beta[®], Energy Chemical, TCI, J&K and used without additional purification excepted for ¹BuCN which was redistilled by CaH₂ before use. NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, ¹⁹F NMR at 376 MHz, using TMS as internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal of CDCl₃ (77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or a low-resolution MS instrument using EI ionization.

2. Experimental Section

2.1 Preparation of Substrates

All the raw materials were known compounds. Compounds 1a - 1q were prepared according to the literature procedures ^[1-5] while compounds 1r - 1x were reference to the following procedures. ^[6-7]

2.2 Optimization of Reaction Conditions

Table S1: Optimization of Reaction Conditions^a

cat (10 mol %), L (20 mol %) AgF (x equiv), Base (2.0 equiv) Solvent (1 mL), 150 °C, N₂, 24 h

	cat	T' 1	AgF (x	Base		Yield
Entry		Ligand	equiv)		Solvent	(%) ^b
1	Ni(acac) ₂	dppb	1.0	Na ₂ CO ₃	CH ₃ CN	25
2	Ni(acac) ₂	dppb	1.0	Li ₂ CO ₃	CH ₃ CN	20
3	Ni(acac) ₂	dppb	1.0	NaHCO ₃	CH ₃ CN	23
4	Ni(acac) ₂	dppb	1.0	LiOBu ^t	CH ₃ CN	Trace
5	Ni(acac) ₂	dppb	1.0	Na ₂ CO ₃	^t BuCN	47
6 ^{<i>c</i>}	Ni(Tfacac) ₂ ·2H ₂ O	dppb	1.0	Na ₂ CO ₃	^t BuCN	60
7	Ni(Tfacac) ₂ ·2H ₂ O	dppb	0.7	Na ₂ CO ₃	^t BuCN	65
8	Ni(Tfacac) ₂ ·2H ₂ O	dppb	0.5	Na ₂ CO ₃	^t BuCN	50
9	Ni(Tfacac) ₂ ·2H ₂ O	dppe	0.7	Na ₂ CO ₃	^t BuCN	36
10	Ni(Tfacac) ₂ ·2H ₂ O	dppp	0.7	Na ₂ CO ₃	^t BuCN	61
11	Ni(Tfacac) ₂ ·2H ₂ O	PhDave-Phos	0.7	Na ₂ CO ₃	^t BuCN	59
12^d	Ni(Tfacac) ₂ ·2H ₂ O	dppb	0.7	Na ₂ CO ₃	^t BuCN	64
13 ^e	Ni(Tfacac)2·2H2O	dppb	0.7	Na ₂ CO ₃	'BuCN	74 ^{<i>f</i>}
14	CuI	2,2'-bipy	0.7	Na ₂ CO ₃	^t BuCN	4%
15	Co(OAc) ₂ ·4H ₂ O	dppb	0.7	Na ₂ CO ₃	^t BuCN	6%
16		dppb	0.7	Na ₂ CO ₃	^t BuCN	trace

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.0 mmol), [Ni] (10 mol%), L (20 mol%), base (0.4 mmol) in 1 mL solvent at 150 °C in N₂ for 24 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard. ^{*c*}Tf = 1,1,1- Trifluoroacetylacetonate. ^{*d*}36 h. ^{*e*}reaction was conducted at 160 °C. ^{*f*}isolated yield.

Table S2 Screen of Solvent^a

× +	CF ₃ CH ₂ I 2a	Ni(acac) ₂ (10 mol%) dppb (20 mol %), AgF, Na ₂ CO ₃ Solvent (1 mL), 150 °C, N ₂ , 24 h	CH ₂ CF ₃
1a			3aa
Entry		Solvent	Yield ^b
1		'BuCN	47
2		MeCN	25
3		toluene	20
4		1,4-dioxane	15
5		DMF	NR
6		DMSO	16
7		THF	12
8		2-MeTHF	18
9		ⁱ PrCN	15
10		"BuCN	22
11		acetone	18

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.0 mmol), Ni(acac)₂ (10 mol%), dppb (20 mol%), Na₂CO₃ (0.4 mmol), AgF (1.0 equiv) in 1 mL solvent at 150 °C in N₂ for 24 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard.

Table S3 Screen of Ag salt^a

R + CF_3CH_2I N 2a 1a	Ni(acac) ₂ (10 mol%) dppb (20 mol %), Na ₂ CO ₃ [Ag] (1.0 equiv) ^t BuCN (1 mL), 150 °C, N ₂ , 24 h	CH ₂ CF ₃ N N 3aa
Entry	[Ag]	Yield ^b
1	AgF	25
2	Ag ₂ CO ₃	trace
3	Ag ₂ O	10
4	AgOAc	12
5	AgVO ₃	9
6	Ag ₃ PO ₄	19
7	$AgSbF_6$	5

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.0 mmol), Ni(acac)₂ (10 mol%), dppb (20 mol%), Na₂CO₃ (0.4 mmol) in 1 mL solvent at 150 °C in N₂ for 24 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard.

Table S4 Failed Substrates

2.3 General Procedure for the Trifluoroethylation

To a 50 mL Schlenk tube was added substrate **1** (0.2 mmol), CF_3CH_2I (1.0 mmol), Na_2CO_3 (42.4 mg, 0.4 mmol), dppb (17 mg, 0.04 mmol), $Ni(Tfacac)_2 \cdot 2H_2O$ (8 mg, 0.02 mmol), AgF (17.8 mg, 0.14 mmol) and 'BuCN (1 mL). The vial was evacuated and filled with N_2 (1 atm) and then stirred at 160 °C for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through ceilt. After concentration, the resulting residue was purified by preparative TLC using hexane/EtOAc as the eluent to afford the product.

1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3aa

The title compound was isolated by flash chromatography in PE : EA = 10 : 1 as a colorless oil (41 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.8 Hz, 2H), 8.34 (dd, *J* = 8.4, 0.4 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.2, 1.2 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.12 (t, *J* = 4.8 Hz, 1H), 6.75 (s, 1H), 4.29 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.30, 158.23, 137.37, 129.23 (q, *J* = 3.4 Hz), 128.70, 125.53 (q, *J* = 275.6 Hz), 123.96, 122.38, 120.58, 117.50, 114.43, 110.34, 34.08 (q, *J* = 30.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.97; **HRMS** (EI-TOF) calcd for C₁₄H₁₀F₃N₃ (M⁺): 277.0827, found: 277.0824.

5-fluoro-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3ba

The title compound was isolated by flash chromatography in PE : EA = 20 : 1 as a colorless oil (41.3 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.31 (dd, *J* = 9.2, 4.8 Hz, 1H), 7.23 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.16 (t, *J* = 4.8 Hz, 1H), 7.02 (td, *J* = 9.2, 2.4 Hz, 1H), 6.70 (s, 1H), 4.30 (qd, *J* = 10.4, 0.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.34, 158.33, 158.03 (q, *J* = 10.2 Hz), 133.75, 130.92 (q, *J* = 3.4 Hz), 129.36 (q, *J* = 10.1 Hz), 125.44 (q, *J* = 275.6 Hz), 117.65, 115.72 (q, *J* = 9.0 Hz), 111.84 (q, *J* = 24.9 Hz), 110.01 (q, *J* = 3.4 Hz), 105.64 (q, *J* = 23.5 Hz), 34.22 (q, *J* = 30.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.90, -121.75; **HRMS** (EI-TOF) calcd for C₁₄H₉F₄N₃ (M⁺): 295.0733, found: 295.0735.

5-chloro-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3ca

The title compound was isolated by flash chromatography in PE : EA = 20 : 1 as a colorless oil (41.0 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.28 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 7.23 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.17 (t, *J* = 4.8 Hz, 1H), 6.67 (s, 1H), 4.29 (q, *J* = 10.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.35, 157.98, 135.69, 130.72 (q, *J* = 3.3 Hz), 129.80, 127.88, 125.40 (q, *J* = 275.6 Hz), 124.07, 119.97, 117.78, 115.80, 109.57, 34.16 (q, *J* = 30.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.89; **HRMS** (EI-TOF) calcd for C₁₄H₉ClF₃N₃ (M⁺): 311.0437, found: 311.0442.

5-bromo-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3da

The title compound was isolated by flash chromatography in PE : EA = 20 : 1 as a yellow oil (44.9 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (t, *J* = 4.8 Hz, 2H), 8.23 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 2.0 Hz, 1H), 7.36 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.17 (t, *J* = 4.8 Hz, 1H), 6.67 (s, 1H), 4.29 (qd, *J* = 10.4, 0.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.36, 157.96, 136.02, 130.58 (q, *J* = 3.3 Hz), 130.37, 126.70, 125.39 (q, *J* = 275.6 Hz), 123.06, 117.80, 116.19, 115.54, 109.44, 34.13 (q, *J* = 30.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.88; **HRMS** (EI-TOF) calcd for C₁₄H₉BrF₃N₃ (M⁺): 354.9932, found: 354.9938.

5-methoxy-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3e

The title compound was isolated by flash chromatography in PE : EA = 10 : 1 as a colorless oil (32.0 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 4.8 Hz, 2H), 8.29 (d, *J* = 9.2 Hz, 1H), 7.12 (t, *J* = 4.8 Hz, 1H), 7.04 (d, *J* = 2.8 Hz, 1H), 6.93 (dd, *J* = 9.2, 2.8 Hz, 1H), 6.67 (s, 1H), 4.30 (qd, *J* = 10.4, 0.4 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.26, 158.22, 155.76, 132.26, 129.81 (q, *J* = 3.4 Hz), 129.45, 125.55 (q, *J* = 275.6 Hz), 117.23, 115.68, 113.26, 110.27, 102.56, 55.84, 34.26 (q, *J* = 30.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.941; **HRMS** (EI-TOF) calcd for C₁₅H₁₂F₃N₃O (M⁺): 307.0932, found: 307.0935.

5-methyl-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3fa

The title compound was isolated by flash chromatography in PE : EA = 20 : 1 as a colorless oil (30.8 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 5.2 Hz, 2H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.37 – 7.36 (m, 1H), 7.11 (t, *J* = 4.8 Hz, 2H), 6.66 (s, 1H), 4.29 (qd, *J* = 10.4, 0.4 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.33, 158.22, 135.68, 131.78, 129.24 (q, *J* = 3.4 Hz), 128.96, 125.57 (q, *J* = 275.7 Hz), 125.41, 120.36, 117.24, 114.29, 110.18, 34.18 (q, *J* = 30.8 Hz), 21.41; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.99; **HRMS** (EI-TOF) calcd for C₁₅H₁₂F₃N₃ (M⁺): 291.0983, found: 291.0989.

5-nitro-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3ga

The title compound was isolated by flash chromatography in PE : EA = 10 : 1 as a yellow solid (30.3 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, *J* = 4.8 Hz, 2H), 8.52 (d, *J* = 2.0 Hz, 1H), 8.38 (d, *J* = 9.2 Hz, 1H), 8.17 (dd, *J* = 9.6, 2.4 Hz, 1H), 7.32 (t, *J* = 4.8 Hz, 1H), 6.89 (s, 1H), 4.32 (q, *J* = 10.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.68, 157.55, 143.47, 140.17, 132.75 (q, *J* = 3.5 Hz), 128.16, 125.17 (q, *J* = 275.7 Hz), 119.15, 118.75, 117.13, 114.68, 110.84, 34.09 (q, *J* = 31.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.85; **HRMS** (EI-TOF) calcd for C₁₄H₉F₃N₄O₂ (M⁺): 322.0678, found: 322.0680.

1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole-4-carbonitrile 3ha

The title compound was isolated by flash chromatography in PE : EA = 10 : 1 as a colorless solid (34.4 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 4.8 Hz, 2H), 8.55 (d, *J* = 8.4 Hz, 1H), 7.55 (dd, *J* = 7.4, 0.8 Hz, 1H), 7.32 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.28 (t, *J* = 4.8 Hz, 1H), 6.96 (s, 1H), 4.34 (q, *J* = 10.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.57, 157.59, 136.96, 132.34 (q, *J* = 3.3 Hz), 130.17, 127.14, 125.15 (q, *J* = 275.7 Hz), 123.65, 119.33, 118.46, 118.21, 108.19, 103.16, 34.07 (q, *J* = 31.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.74; **HRMS** (EI-TOF) calcd for C₁₅H₉F₃N₄ (M⁺): 302.0779, found: 302.0782.

1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole-3-carbonitrile 3ia

The title compound was isolated by flash chromatography in PE : EA = 10 : 1 as a colorless oil (32.6 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, *J* = 4.8 Hz, 2H), 8.25 (dd, *J* = 7.2, 0.8 Hz, 1H), 7.77 – 7.75 (m, 1H), 7.44 – 7.38 (m, 2H), 7.35 (t, *J* = 4.8 Hz, 1H), 4.57 (q, *J* = 9.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.80, 157.20, 136.89 (q, *J* = 3.2 Hz), 136.47, 126.75, 126.01, 124.56 (q, *J* = 276.8 Hz), 124.17, 119.56, 119.39, 114.91, 114.47, 95.48, 32.48 (q, *J* = 31.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.36; **HRMS** (EI-TOF) calcd for C₁₅H₉F₃N₄ (M⁺): 302.0779, found: 302.0782.

3-chloro-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3ja

The title compound was isolated by flash chromatography in PE : Acetone = 50 : 1 as a colorless oil (46.0 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 4.8 Hz, 2H), 8.38 (d, *J* = 8.4 Hz, 1H), 7.68 (dd, *J* = 7.6, 0.4 Hz, 1H), 7.39 (ddd, *J* = 8.5, 7.2, 1.4 Hz, 1H), 7.33 (td, *J* = 8.0, 0.8 Hz, 1H), 7.18 (t, *J* = 4.8 Hz, 1H), 4.53 (q, *J* = 10.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.35, 157.99, 135.92, 126.34, 125.41, 125.35 (q, *J* = 276.8 Hz), 124.87 (q, *J* = 3.2 Hz), 122.88, 118.51, 117.88, 114.64, 30.82 (q, *J* = 31.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.49; **HRMS** (EI-TOF) calcd for C₁₄H₉ClF₃N₃ (M⁺): 311.0437, found: 311.0434.

3-methyl-1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3ka

The title compound was isolated by flash chromatography in PE : Acetone = 50 : 1 as a colorless oil (43.7 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, *J* = 4.8 Hz, 2H), 8.32 (d, *J* = 8.4 Hz, 1H), 7.58 – 7.56 (m, 1H), 7.31 (td, *J* = 7.2, 1.2 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.09 (t, *J* = 4.8 Hz, 1H), 4.41 (q, *J* = 10.4 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.42, 158.20, 136.92, 129.69, 125.87 (q, *J* = 276.4 Hz), 124.92 (q, *J* = 3.1 Hz), 124.26, 121.94, 118.83, 118.27, 117.14, 114.28, 30.76 (q, *J* = 30.7 Hz), 9.07; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.82; **HRMS** (EI-TOF) calcd for C₁₅H₁₂F₃N₃ (M⁺): 291.0983, found: 291.0984.

2-(1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indol-3-yl)ethyl acetate 3la

The title compound was isolated by flash chromatography in PE : Acetone = 5 : 1 as a colorless oil (56.0 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.32 (td, *J* = 7.2, 1.2 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.14 (t, *J* = 4.8 Hz, 1H), 4.45 (q, *J* = 10.4 Hz, 2H), 4.33 (t, *J* = 7.2 Hz, 2H), 3.16 (t, *J* = 7.2 Hz, 2H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.15, 158.30, 137.03, 128.72, 126.05 (q, *J* = 3.1 Hz), 125.42 (q, *J* = 276.3 Hz), 124.40, 122.17, 118.89, 117.89, 117.55, 114.20, 63.83, 30.60 (q, *J* = 30.8 Hz), 24.05, 21.10; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.62; **HRMS** (EI-TOF) calcd for C₁₈H₁₆F₃N₃O₂ (M⁺): 363.1195, found: 363.1196.

ethyl 2-(1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indol-3-yl)acetate 3ma

The title compound was isolated by flash chromatography in PE : DCM = 1 : 1 as a yellow oil (48.6 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 4.8 Hz, 2H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.34 - 7.30 (m, 1H), 7.28 - 7.24 (m, 1H), 7.15 (t, *J* = 4.8 Hz, 1H), 4.51 (q, *J* = 10.4 Hz, 2H), 4.15 (q, *J* = 6.8 Hz, 2H), 3.82 (s, 2H), 1.23 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.89, 158.30, 136.90, 128.70, 126.66 (q, *J* = 3.1 Hz), 125.55 (q, *J* = 276.4 Hz), 124.45, 122.29, 119.11, 117.62, 115.17, 114.25, 61.19, 30.70 (q, *J* = 30.8 Hz), 30.62, 14.26; ¹⁹F NMR

(377 MHz, CDCl₃) δ -64.59; **HRMS** (EI-TOF) calcd for C₁₈H₁₆F₃N₃O₂ (M⁺): 363.1195, found: 363.1198.

1-(pyridin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3na

The title compound was isolated by flash chromatography in PE : Acetone = 100 : 1 as a yellow oil (34.3 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (ddd, J = 4.8, 2.0, 0.8 Hz, 1H), 7.91 (td, J = 7.6, 2.0 Hz, 1H), 7.65 – 7.63 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.38 – 7.36 (m, 1H), 7.32 (ddd, J = 7.2, 4.8, 0.8 Hz, 1H), 7.22 – 7.15 (m, 2H), 6.74 (s, 1H), 3.91 (q, J = 10.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.10, 149.81, 138.72, 137.37, 129.04 (q, J = 3.3 Hz), 128.19, 125.33 (q, J = 275.4 Hz), 123.09, 122.41, 121.32, 121.17, 120.95, 110.38, 106.94, 32.47 (q, J = 31.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -65.20; **HRMS** (EI-TOF) calcd for C₁₅H₁₁F₃N₂ (M⁺): 276.0874, found: 276.0877.

5-fluoro-1-(pyridin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3oa

The title compound was isolated by flash chromatography in PE : Acetone = 100 : 1then PE : DCM = 2 : 1 as a colorless oil (35.3 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.66 - 8.64 (m, 1H), 7.93 (td, J = 7.6, 2.0 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.36 (ddd, J = 7.6, 5.2, 1.2 Hz, 1H), 7.30 - 7.26 (m, 2H), 6.94 (td, J = 9.2, 2.8 Hz, 1H), 6.70 (s, 1H), 3.88 (q, J = 10.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.72 (d, J = 235.0 Hz), 150.89, 149.93, 138.89, 133.96, 130.63 (q, J = 3.3 Hz), 128.59 (d, J = 10.3 Hz), 125.21 (q, J = 275.4 Hz), 122.67, 121.08, 111.36 (d, J = 16.5 Hz), 111.19, 106.68 (d, J = 3.9 Hz), 105.84 (d, J = 23.5 Hz), 32.51 (q, J = 31.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -65.12, -123.06; **HRMS** (EI-TOF) calcd for C₁₅H₁₀F₄N₂ (M⁺): 294.0780, found: 294.0778.

3-bromo-1-(pyridin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3pa

The title compound was isolated by flash chromatography in PE : Acetone = 100 : 1 as a yellow oil (53.3 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (ddd, J = 5.2, 2.0, 0.8 Hz, 1H), 7.92 (td, J = 7.6, 2.0 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.38 - 7.33 (m, 2H), 7.29 - 7.24 (m, 2H), 4.13 (q, J = 10.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.84, 149.88, 138.87, 136.57, 127.20, 126.77 (q, J = 3.2 Hz), 125.08 (q, J = 276.8 Hz), 124.53, 122.84, 122.00, 121.15, 119.92, 110.49, 98.75, 30.65 (q, J = 31.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -64.55; **HRMS** (EI-TOF) calcd for C₁₅H₁₀BrF₃N₂ (M⁺): 353.9979, found: 353.9978.

3-methyl-1-(pyridin-2-yl)-2-(2,2,2-trifluoroethyl)-1H-indole 3qa

The title compound was isolated by flash chromatography in PE : Acetone = 50 : 1 as a yellow oil (40.1 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.60 (ddd, J = 4.8, 2.0, 0.8 Hz, 1H), 7.88 (td, J = 8.0, 2.0 Hz, 1H), 7.62 – 7.59 (m, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.36 – 7.34 (m, 1H), 7.28 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 7.23 – 7.17 (m, 2H), 4.01 (q, J = 10.8 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.55, 149.66, 138.62, 136.99, 128.88, 125.65 (q, J = 276.3 Hz), 125.05 (q, J = 3.0 Hz), 123.32, 122.05, 121.21, 120.75, 119.23, 115.25, 110.11, 29.74 (q, J = 31.1 Hz), 8.97; ¹⁹F NMR (377 MHz, CDCl₃) δ -65.04; **HRMS** (EI-TOF) calcd for C₁₆H₁₃F₃N₂ (M⁺): 290.1031, found: 290.1036.

2-(2-(2,2,2-trifluoroethyl)-1H-pyrrol-1-yl)pyrimidine 3ra

The title compound was isolated by flash chromatography in PE : Acetone = 50 : 1 as a yellow oil (12.7 mg, 28%). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.8 Hz, 2H), 7.82 (dd, *J* = 3.2, 2.0 Hz, 1H), 7.08 (t, *J* = 4.8 Hz, 1H), 6.35 (s, 1H), 6.27 (t, *J* = 3.2 Hz, 1H), 4.25 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.21, 157.76, 125.61 (q, *J* = 275.4 Hz), 122.87 (q, *J* = 3.6 Hz), 122.76, 117.56, 115.82, 110.19, 33.59 (q, *J* = 30.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -66.09; **HRMS** (EI-TOF) calcd for C₁₀H₈F₃N₃ (M⁺): 227.0670, found: 227.0674.

2-(2,5-bis(2,2,2-trifluoroethyl)-1H-pyrrol-1-yl)pyrimidine 3ra'

The title compound was isolated by flash chromatography in PE : Acetone = 50 : 1 as a yellow oil (35.0 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 4.8 Hz, 2H), 7.26 -7.24 (m, 1H), 6.30 (s, 2H), 3.91 (q, *J* = 10.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 158.72, 157.66, 125.31 (q, *J* = 275.4 Hz), 124.14 (q, *J* = 3.4 Hz), 119.00, 113.27, 32.68 (q, *J* = 31.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -66.09; **HRMS** (EI-TOF) calcd for C₁₂H₉F₆N₃ (M⁺): 309.0701, found: 309.0707.

2-(2-methyl-5-(2,2,2-trifluoroethyl)-1H-pyrrol-1-yl)pyrimidine 3sa

The title compound was isolated by flash chromatography in PE : Acetone = 50 : 1 as a yellow oil (25.1 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 4.8 Hz, 2H), 7.21 (t, *J* = 4.8 Hz, 1H), 6.21 (d, *J* = 3.6 Hz, 1H), 5.99 (dd, *J* = 3.6, 1.2 Hz, 1H), 3.86 (q, *J* = 10.4 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.47, 157.99, 132.45, 125.50 (q, *J* = 275.4 Hz), 121.60 (q, *J* = 3.3 Hz), 118.50, 113.00, 109.36, 32.72 (q, *J* = 30.9 Hz), 14.80; ¹⁹F NMR (377 MHz, CDCl₃) δ -66.21; **HRMS** (EI-TOF) calcd for C₁₁H₁₀F₃N₃ (M⁺): 241.0827, found: 241.0831.

2-(3,5-dimethyl-2-(2,2,2-trifluoroethyl)-1H-pyrrol-1-yl)pyrimidine 3ta

The title compound was isolated by flash chromatography in PE : Acetone = 50 : 1 as a yellow oil (25.5 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 4.8 Hz, 2H), 7.17 (t, *J* = 4.8 Hz, 1H), 5.89 (s, 1H), 3.91 (q, *J* = 10.8 Hz, 2H), 2.34 (d, *J* = 0.4 Hz, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.38, 158.14, 131.54, 125.85 (q, *J* = 276.2 Hz), 122.03, 118.18, 117.56 (q, *J* = 3.0 Hz), 111.98, 26.77 (q, *J* = 30.8 Hz), 14.58, 11.25; ¹⁹F NMR (377 MHz, CDCl₃) δ -66.13; **HRMS** (EI-TOF) calcd for C₁₂H₁₂F₃N₃ (M⁺): 255.0983, found: 255.0982.

1-(pyrimidin-2-yl)-2-(2,2,2-trifluoroethyl)-6,7-dihydro-1H-indol-4(5H)-one 3ua

The title compound was isolated by flash chromatography in PE : DCM = 1 : 5 as a yellow solid (20.7 mg, 35%). ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.8 Hz, 2H), 7.32 (t, *J* = 4.8 Hz, 1H), 6.72 (s, 1H), 3.94 (q, *J* = 10.0 Hz, 2H), 3.03 (t, *J* = 6.0 Hz, 2H), 2.53 (t, *J* = 6.0 Hz, 2H), 2.17 – 2.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.78, 158.71, 157.00, 146.58, 125.18 (q, *J* = 275.5 Hz), 124.00 (q, *J* = 3.3 Hz), 121.93, 119.41, 110.59, 37.90, 32.61 (q, *J* = 31.2 Hz), 24.78, 23.91; ¹⁹F NMR (377 MHz, CDCl₃) δ -65.91; **HRMS** (EI-TOF) calcd for C₁₄H₁₂F₃N₃O (M⁺): 295.0932, found: 295.0935.

2-(3-(2,2,2-trifluoroethyl)furan-2-yl)pyridine 3va

The title compound was isolated by flash chromatography in PE : Acetone = 10 : 1 as a colorless oil (25.0 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.61 – 8.59 (m, 1H), 7.74 – 7.66 (m, 2H), 7.16 (ddd, J = 7.2, 4.8, 1.2 Hz, 1H), 7.02 (d, J = 3.2 Hz, 1H), 6.47 (d, J = 3.2 Hz, 1H), 3.57 (q, J = 10.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.01, 149.77, 149.08, 145.23 (q, J = 3.7 Hz), 136.80, 124.63 (q, J = 275.4 Hz), 122.25, 118.75, 112.38, 109.66, 33.90 (q, J = 32.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -65.63; **HRMS** (EI-TOF) calcd for C₁₁H₈F₃NO (M⁺): 227.0558, found: 227.0562.

2-(2-(2,2,2-trifluoroethyl)benzofuran-3-yl)pyridine 3wa

The title compound was isolated by flash chromatography in PE : DCM = 4 : 1 as a yellow oil (26.6 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.73 (m, 1H), 7.85 – 7.81 (m, 2H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.38 (td, *J* = 7.2, 1.2 Hz, 1H), 7.35 – 7.27 (m, 2H), 4.15 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.83, 151.68, 150.19, 146.06 (q, *J* = 3.7 Hz), 136.93, 126.81, 125.24, 125.02 (q, *J* = 276.6 Hz), 123.56, 123.25, 122.33, 120.60, 120.55, 111.74, 32.80 (q, *J* = 31.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.83; **HRMS** (EI-TOF) calcd for C₁₅H₁₀F₃NO (M⁺): 277.0714, found: 277.0718.

2-(2-(2,2,2-trifluoroethyl)thiophen-3-yl)pyridine 3xa

The title compound was isolated by flash chromatography in PE : EA = 10 : 1 as a yellow oil (42.7 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (ddd, *J* = 4.8, 1.6, 0.8 Hz, 1H), 7.74 (td, *J* = 8.0, 2.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 5.2 Hz, 1H), 7.28 (d, *J* = 5.2 Hz, 1H), 7.21 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 4.22 (q, *J* = 10.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.72, 149.49, 140.51, 136.91, 129.33 (q, *J* = 3.2 Hz), 128.57, 125.51 (q, *J* = 275.7 Hz), 125.21, 122.94, 122.04, 32.90 (q, *J* = 31.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -65.72; **HRMS** (EI-TOF) calcd for C₁₁H₈F₃NS (M⁺): 243.0330, found: 243.0334.

2-(3-(2,2,2-trifluoroethyl)benzo[b]thiophen-2-yl)pyridine 3ya

The title compound was isolated by flash chromatography in PE : Acetone = 100 : 1 as a yellow oil (19.8 mg, 34%). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (ddd, J = 4.8, 2.0, 0.8 Hz, 1H), 7.87 – 7.82 (m, 2H), 7.77 (td, J = 7.6, 2.0 Hz, 1H), 7.67 (dt, J = 8.0, 0.8 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.28 – 7.26 (m, 1H), 4.33 (q, J = 10.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.06, 149.76, 142.07, 140.78, 138.91, 137.06, 126.14 (q, J = 276.6 Hz), 125.50, 124.88, 123.70, 122.90, 122.43, 31.24 (q, J = 30.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -63.55; **HRMS** (EI-TOF) calcd for C₁₅H₁₀F₃NS (M⁺): 293.0486, found: 293.0486.

2-(2,2,3,3,3-pentafluoropropyl)-1-(pyrimidin-2-yl)-1H-indole 3ab

The title compound was isolated by flash chromatography in PE : Acetone = 100 : 1 as a yellow oil (45.2 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 4.8 Hz, 2H), 8.35 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.60 ((d, *J* = 7.6 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.25 – 7.21 (m, 1H), 7.13 (t, *J* = 4.8 Hz, 1H), 6.75 (s, 1H), 4.32 (t, *J* = 18.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.33, 158.23, 137.56, 128.63, 128.07, 124.02, 122.38, 120.57, 117.53, 114.49, 111.45, 30.61 (t, *J* = 21.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -85.29, -116.20; **HRMS** (EI-TOF) calcd for C₁₅H₁₀F₅N₃ (M⁺): 327.0795, found: 327.0800.

2-(2,2,3,3,4,4,4-heptafluorobutyl)-1-(pyrimidin-2-yl)-1H-indole 3ac

The title compound was isolated by flash chromatography in PE : Acetone = 100 : 1 as a colorless oil (45.1 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.36 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.60 (dd, *J* = 7.2, 0.8 Hz, 1H), 7.31 (ddd, *J* = 8.5, 7.2, 1.2 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.15 (t, *J* = 4.8 Hz, 1H), 6.76 (s, 1H), 4.37 (t, *J* = 18.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.37, 158.23, 137.61, 128.64, 127.90, 124.03, 122.38, 120.57, 117.54, 114.54, 111.73, 30.59 (q, *J* = 21.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -80.49 (t, *J* = 9.8 Hz), -113.14 (qt, *J* = 9.8, 2.3 Hz), -127.85 (q, *J* = 2.3 Hz); **HRMS** (EI-TOF) calcd for C₁₆H₁₀F₇N₃ (M⁺): 377.0763, found: 377.0761.

2.4 Removal of 2-Pyridinyl Director^[8]

Methyl trifluoromethanesulfonate (27 μ L, 0.24 mmol) was added dropwise to a solution of **3ra** (59.6 mg, 0.20 mmol) in dry CH₂Cl₂ (5.0 mL) at 0 °C, and the resulting solution was stirred for 24 h at room temperature. Then the solvent was removed under vacuum, and the residue was dissolved in MeOH (3.0 mL). A 2 M aq. NaOH solution (1.2 mL) was added, and stirring was continued at 60 °C for 12 h. The solvents were removed, and the resulting residue was extracted with EtOAc (2 × 15 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash chromatography, affording the desired product **4** (30.7 mg, 72%) as a yellow solid.

3-methyl-2-(2,2,2-trifluoroethyl)-1H-indole 4

The title compound was isolated by flash chromatography in PE : DCM = 5 : 1 as a yellow solid (30.7 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.14 - 7.11 (m, 1H), 3.50 (q, *J* = 10.8 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.00, 128.66, 125.58 (q, *J* = 275.8 Hz), 122.73, 119.68, 119.04, 111.98, 110.82, 31.64 (q, *J* = 31.2 Hz), 8.54; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.08; **HRMS** (EI-TOF) calcd for C₁₁H₁₀F₃N (M⁺): 213.0765, found: 213.0766.

To a 50 mL Schlenk tube was added substrate **1e** (0.2 mmol), **1g** (0.2 mmol), CF₃CH₂I (0.2 mmol), Na₂CO₃ (42.4 mg, 0.4 mmol), dppb (17 mg, 0.04 mmol), Ni(Tfacac)₂ • 2H₂O (8 mg, 0.02 mmol), AgF (17.8 mg, 0.14 mmol) and 'BuCN (1.5 mL). The vial was evacuated and filled with N₂ (1 atm) and then stirred at 160 °C for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through ceilt. After concentration, the resulting residue was purified by preparative TLC using PE/EA as the eluent to afford the product.

2.6 Intermolecular kinetic isotopic effect experiment

 $K_{\rm H}/K_{\rm D} = 1.04$

^aH NMR yield using CH₂Br₂ as internal standard.

A mixture of **1a** (0.2 mmol) or [2-D]-**1a** (0.2 mmol), CF_3CH_2I (1.0 mmol), Na_2CO_3 (42.4 mg, 0.4 mmol), dppb (17 mg, 0.04 mmol), $Ni(Tfacac)_2 \cdot 2H_2O$ (8 mg, 0.02 mmol), AgF (17.8 mg, 0.14 mmol) was combined in 'BuCN (1.0 mL) in **two paralleled** dried Schlenk tube which was evacuated and filled with N_2 (1 atm) and then stirred at 160 °C for 3 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through ceilt. After concentration, the resulting residue was analyzed with NMR using CH_2Br_2 as the internal standard.

2.7 Radical Scavenger experiments

^{a1}H NMR yield using CH₂Br₂ as the internal standard.

To a 50 mL Schlenk tube was added substrate **1a** (0.2 mmol), CF_3CH_2I (1.0 mmol), Na_2CO_3 (42.4 mg, 0.4 mmol), dppb (17 mg, 0.04 mmol), additive (1.0 equiv), $Ni(Tfacac)_2 \cdot 2H_2O$ (8 mg, 0.02 mmol), AgF (17.8 mg, 0.14 mmol) and 'BuCN (1 mL). The vial was evacuated and filled with N_2 (1 atm) and then stirred at 160 °C for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through ceilt. After concentration, the resulting residue was analyzed with NMR using CH_2Br_2 as the internal standard.

3. References:

- 1. L. Ackermann, A. V. Lygin, Org. Lett. 2011, 13, 3332-3335.
- M. Moselage, N. Sauermann, S. C. Richter, L. Ackermann, *Angew. Chem., Int. Ed.* 2015, 54, 6352-6355.
- 3. M.-Z. Lu, P. Lu, Y.-H. Xu, T.-P. Loh, Org. Lett. 2014, 16, 2614–2617.
- 4. A. B. Pawar, S. Chang, Org. Lett. 2015, 17, 660–663.
- C.-D. Shao, G.-F. Shi, Y.-H. Zhang, S.-L. Pan, X.-H. Guan, Org. Lett. 2015, 17, 2652-2655.
- 6. R. Cano, D. J. Ramón, M. Yus, J. Org. Chem., 2011, 76 (2), 654-660.
- J. Pospech, A. Tlili, A. Spannenberg, H. Neumann, M. Beller, *Chem. Eur. J.* 2014, 20, 3135 - 3141.
- 8. V. K. Tiwari, N. Kamal, M. Kapur, Org. Lett., 2015, 17 (7), 1766–1769.

4. NMR Spectra

3aa

160.339 158.327 158.327 157.976 157.976 173.753 130.899 130.899 121.306 111.651 111.765 111.765 111.765 111.716 112.650 123.752 123.75

34.684 34.375 34.067 33.758

F

(158.354 (157.984) (157.984) (130.765) (130.755) (130.755) (130.735) (130.735) (130.735) (130.735) (130.735) (130.735) (131.777) (112.124) (131.777) (111.7777) (111.7777) (111.7777) (111.7777) (111.7777) (111.7777) (

34.624 34.315 34.006 33.697

 715.356

 715.356

 7130.5960

 7130.556

 7130.556

 7130.556

 7130.567

 7130.568

 7130.368

 7130.368

 7130.368

 7130.368

 7130.368

 7130.368

 7130.368

 7130.368

 711.530.56

 711.530.56

 711.530.56

 711.530.56

 711.530.56

 711.530.56

 733.530

 733.530

 733.530

 733.530

 733.530

 733.530

 733.530

 733.530

 733.530

 733.530

 733.530

3da

3ea

 (15).68.4
 (15).549

 (15).757
 (14).163

 (112).797
 (112).763

 (112).797
 (112).763

 (112).763
 (112).763

 (112).763
 (112).763

 (112).763
 (112).763

 (112).763
 (112).763

 (112).763
 (112).763

 (113).766
 (112).763

 (113).766
 (112).763

 (113).766
 (112).763

 (113).766
 (112).763

 (113).766
 (111).756

 (111).767
 (111).765

 (111).767
 (111).756

 (111).767
 (111).756

 (111).767
 (111).756

 (110).841
 (110).841

 (110).841
 (110).841

 (110).841
 (110).841

 (110).841
 (110).841

 (110).841
 (110).841

 (111).841
 (110).841

 (110).841
 (110).841

 (110).841
 (110).841

 (110).841
 (110).841

 (110).841
 (110).841

3ga

√ 157,590
√ 157,590
157,590
136,962
132,338
132,335
132,132
132,146
132,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
133,146
134,193,248
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194
138,194</

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

 158.796

 157.197

 157.197

 155.917

 136.917

 136.855

 136.857

 136.857

 136.857

 136.857

 136.857

 135.817

 136.817

 136.817

 136.817

 136.817

 136.817

 136.817

 136.817

 136.817

 136.817

 136.817

 136.817

 136.817

 137.911

 136.94468

 9344668

32.954 32.635 32.635 32.317 31.999

(58.350
(57.391
(57.391
(57.301
(57.301
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31
(57.31

.31.290 30.976 30.663 30.349

3ka

90 80 f1 (ppm)

Ó

3ma

7 159.893 7 159.893 7 153.957 133.957 133.957 133.957 133.957 133.957 133.957 133.957 133.957 133.957 133.957 105.720 105.550 105.55

ysy-2-177-1c

7150.844 149.880 127.196 127.196 122.035 122.035 122.12.03 121.145 122.12.03 121.145 122.135 122.135 122.135 122.135 122.135 123.124 30.173 30.497 30.497 30.497

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 -100 f1 (ppm)	-120	-140	-160	-180	-200

3ra'

10	ò	-10	-20	-30	-40	-50	-60	-70	-80	-90 -100		-120	-140	-160	-180	-200	
										f1 (ppm))						

3ua

 $\begin{array}{c} 54.008 \\ 144.007 \\ 1445.077 \\ 1452.077 \\ 1452.077 \\ 1452.077 \\ 1452.077 \\ 1452.077 \\ 1452.077 \\ 1452.078 \\ 1452.008 \\ 1122.053 \\ 1122.053 \\ 1122.058 \\ 1122.05$

-34.349 -34.029 -33.708 -33.387

100 90 f1 (ppm)

3wa

S73

3xa

3ya

3ab

3ac

4

